The HTEX3 Sources

The BTEX3 Project”
May 20, 2014

Abstract

This is the reference documentation for the expl3 programming environment. The
expl3 modules set up an experimental naming scheme for ITEX commands, which
allow the BTEX programmer to systematically name functions and variables, and
specify the argument types of functions.

The TEX and e-TEX primitives are all given a new name according to these con-
ventions. However, in the main direct use of the primitives is not required or en-
couraged: the expl3 modules define an independent low-level IXTEX3 programming
language.

At present, the expl3 modules are designed to be loaded on top of INTEX 2¢. In time,
a ITEX3 format will be produced based on this code. This allows the code to be
used in BTEX 2¢ packages now while a stand-alone IXTEX3 is developed.

While expl3 is still experimental, the bundle is now regarded as broadly
stable. The syntax conventions and functions provided are now ready
for wider use. There may still be changes to some functions, but these
will be minor when compared to the scope of expl3.

New modules will be added to the distributed version of expl3 as they
reach maturity.

*E-mail: latex-team@Ilatex-project.org

mailto:latex-team@latex-project.org

Contents

I Introduction to expl3 and this document

1

11

II1

IV

Naming functions and variables

1.1 Terminological inexactitude

Documentation conventions

Formal language conventions which apply generally

TEX concepts not supported by I TEX3

The 13bootstrap package: Bootstrap code

Using the BTEX3 modules

1.1 Internal functions and variables.

The I3names package: Namespace for primitives

Setting up the BTEX3 programming language

The I3basics package: Basic definitions
No operation functions
Grouping material

Control sequences and functions

3.1 Defining functions Lo o
3.2 Defining new functions using parameter text
3.3 Defining new functions using the signature
3.4 Copying control sequences
3.5 Deleting control sequences
3.6 Showing control sequences
3.7 Converting to and from control sequences

Using or removing tokens and arguments

4.1 Selecting tokens from delimited arguments

ii

N =]

Predicates and conditionals

5.1 Tests on control sequences
5.2 Testing string equality
5.3 Engine-specific conditionals00
5.4 Primitive conditionals

Internal kernel functions

The I3expan package: Argument expansion

Defining new variants

Methods for defining variants
Introducing the variants
Manipulating the first argument
Manipulating two arguments
Manipulating three arguments
Unbraced expansion

Preventing expansion

Internal functions and variables

The 13prg package: Control structures
Defining a set of conditional functions

The boolean data type

Boolean expressions

Logical loops

Producing n copies

Detecting TEX’s mode

Primitive conditionals

Internal programming functions

iii

20
21
22
23
23

24

27
27
28
28
29
30
31
32
32

34

35
35
37
39
40
41
41
42

42

VII The I13quark package: Quarks

1

Introduction to quarks and scan marks
1.1 Quarks e

Defining quarks

Quark tests

Recursion

Clearing quarks away

An example of recursion with quarks
Internal quark functions

Scan marks

VIII The I3token package: Token manipulation

1

2

All possible tokens

Character tokens

Generic tokens

Converting tokens

Token conditionals

Peeking ahead at the next token

Decomposing a macro definition

The 13int package: Integers
Integer expressions

Creating and initialising integers
Setting and incrementing integers
Using integers

Integer expression conditionals

iv

44

44
44

45
45
46
47
47
48

48

49
49
50
53
54
54
58

61

62
62
63
64
65

65

10

11

12

13

14

10

11

12

13

14

Integer expression loops

Integer step functions

Formatting integers

Converting from other formats to integers
Viewing integers

Constant integers

Scratch integers

Primitive conditionals

Internal functions

The I3skip package: Dimensions and skips
Creating and initialising dim variables
Setting dim variables

Utilities for dimension calculations
Dimension expression conditionals
Dimension expression loops

Using dim expressions and variables
Viewing dim variables

Constant dimensions

Scratch dimensions

Creating and initialising skip variables
Setting skip variables

Skip expression conditionals

Using skip expressions and variables

Viewing skip variables

67
69
69
71
72
73
73
74

74

76
76
77
T
78
80
81
82
82
82
83
83
84
84

85

15
16
17
18
19
20
21
22
23
24

25

XI

10
11

12

Constant skips

Scratch skips

Inserting skips into the output

Creating and initialising muskip variables
Setting muskip variables

Using muskip expressions and variables
Viewing muskip variables

Constant muskips

Scratch muskips

Primitive conditional

Internal functions

The 13tl package: Token lists
Creating and initialising token list variables
Adding data to token list variables
Modifying token list variables
Reassigning token list category codes
Reassigning token list character codes
Token list conditionals
Mapping to token lists
Using token lists
Working with the content of token lists
The first token from a token list
Viewing token lists

Constant token lists

vi

85
85
86
86
87
87
88
88
88
88

89

90
91
92
92
93
93
94
96
98
98
100
102

103

13 Scratch token lists

14 Internal functions

XII The I13seq package: Sequences and stacks
1 Creating and initialising sequences

2 Appending data to sequences

3 Recovering items from sequences

4 Recovering values from sequences with branching
5 Modifying sequences

6 Sequence conditionals

7 Mapping to sequences

8 Using the content of sequences directly

9 Sequences as stacks

10 Constant and scratch sequences

11 Viewing sequences

12 Internal sequence functions

XIII The 13clist package: Comma separated lists
1 Creating and initialising comma lists

2 Adding data to comma lists

3 Modifying comma lists

4 Comma list conditionals

5 Mapping to comma lists

6 Using the content of comma lists directly

7 Comma lists as stacks

8 Viewing comma lists

vii

103

103

104
104
105
105
106
107
108
108
110
110
112
112

112

113
113
114
115
115
116
119
119

121

9 Constant and scratch comma lists 121

XIV The I3prop package: Property lists 122
1 Creating and initialising property lists 122
2 Adding entries to property lists 123
3 Recovering values from property lists 123
4 Modifying property lists 124
5 Property list conditionals 124
6 Recovering values from property lists with branching 124
7 Mapping to property lists 125
8 Viewing property lists 126
9 Scratch property lists 127
10 Constants 127
11 Internal property list functions 127
XV The I3box package: Boxes 128
1 Creating and initialising boxes 128
2 Using boxes 129
3 Measuring and setting box dimensions 129
4 Box conditionals 130
5 The last box inserted 131
6 Constant boxes 131
7 Scratch boxes 131
8 Viewing box contents 131
9 Horizontal mode boxes 132
10 Vertical mode boxes 133

viii

11 Primitive box conditionals 135

XVI The I3coffins package: Coffin code layer 136
1 Creating and initialising coffins 136
2 Setting coffin content and poles 136
3 Joining and using coffins 138
4 Measuring coffins 138
5 Coffin diagnostics 139

5.1 Constants and variables oL Lo 139
XVII The I3color package: Color support 140
1 Color in boxes 140
XVIII The I3msg package: Messages 141
1 Creating new messages 141
2 Contextual information for messages 142
3 Issuing messages 143
4 Redirecting messages 145
5 Low-level message functions 146
6 Kernel-specific functions 147
7 Expandable errors 148
8 Internal I3msg functions 149
XIX The I3keys package: Key—value interfaces 150
1 Creating keys 151
2 Sub-dividing keys 155

3 Choice and multiple choice keys 155

ix

4 Setting keys 157

5 Handling of unknown keys 158
6 Selective key setting 159
7 Utility functions for keys 160
8 Low-level interface for parsing key—val lists 160
XX The I3file package: File and I/O operations 162
1 File operation functions 162
1.1 Input-output stream management 163
1.2 Reading from files o 164
2 Writing to files 165
2.1 Wrapping lines in output oL 167
2.2 Constant input—output streams 168
2.3 Primitive conditionalso oL 168
2.4 Internal file functions and variables 0oL 168
2.5 Internal input—output functions 169
XXI The I3fp package: floating points 170
1 Creating and initialising floating point variables 171
2 Setting floating point variables 171
3 Using floating point numbers 172
4 Floating point conditionals 173
5 Floating point expression loops 175
6 Some useful constants, and scratch variables 176
7 Floating point exceptions 177
8 Viewing floating points 178
9 Floating point expressions 178
9.1 Input of floating point numbers oo 178
9.2 Precedence of operators e 179
9.3 Operations e 180

10 Disclaimer and roadmap 186

XXII The I3luatex package: LuaTeX-specific functions 189
1 Breaking out to Lua 189
2 Category code tables 190

XXIIT The 13candidates package: Experimental additions to

13kernel 192
1 Additions to I3basics 192
2 Additions to 13box 192

2.1 Affine transformations o Lo 192

2.2 Viewing part of abox L 193

2.3 Internal variables oo 194
3 Additions to 13clist 195
4 Additions to 13coffins 195
5 Additions to 13file 196
6 Additions to 13fp 197
7 Additions to 13prop 199
8 Additions to 13seq 200
9 Additions to 13skip 201
10 Additions to I3tl 202
11 Additions to I3tokens 203
XXIV The I3drivers package: Drivers 205
1 Box clipping 205
2 Box rotation and scaling 206
3 Color support 206

XXV Implementation 206

xi

I3bootstrap implementation

1.1
1.2
1.3
1.4
1.5

Format-specificcodeo
The \pdfstrcmp primitive with XX and LuaTgX
Engine requirements Lo oo oo
Extending allocators L
The ITEX3 code environment

I3names implementation

I3basics implementation

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22

Renaming some TEX primitives (again)
Defining some constants L o o
Defining functions
Selecting tokens
Gobbling tokens from input oL oL
Conditional processing and definitions
Dissecting a control sequence Lo
Exist or free
Defining and checking (new) functions
More new definitions
Copying definitions L o
Undefining functions oL oL oo
Generating parameter text from argument count
Defining functions from a given number of arguments
Using the signature to define functions.
Checking control sequence equality
Diagnostic functions oL oL Lo
Engine specific definitions o L L.
Doing nothing functions
String compariSonso e e e e e e e e
Breaking out of mapping functions oL L.
Deprecated functions oL o

13expan implementation

4.1
4.2
4.3
4.4
4.5
4.6
4.7

General expansion Lo
Hand-tuned definitions o oo
Definitions with the automated technique
Last-unbraced versions Lo o
Preventing expansion Lo oL oo
Defining function variants oL Lo
Variants which cannot be created earlier.

xii

206
207
207
209
210
211

213

13prg implementation 268

5.1 Primitive conditionals L oo oo 269
5.2 Defining a set of conditional functions 269
5.3 The boolean data type. oo 269
5.4 Boolean expressions L L Lo 272
5.5 Logical loops L 277
5.6 Producingncopies. Lo 278
5.7 Detecting TEX’smodeo 280
5.8 Internal programming functions oL oL 280
I3quark implementation 283
6.1 Quarks 283
6.2 Scanmarks 286
6.3 Deprecated quark functions Lo L 287
I3token implementation 287
7.1 Character tokens L 287
7.2 Generic tokenso 289
7.3 Token conditionals Lo 291
7.4 Peeking ahead at the next tokeno 300
7.5 Decomposing a macro definition o000 306
13int implementation 306
8.1 Imteger expressions oo 307
8.2 Creating and initialising integers L. 309
8.3 Setting and incrementing integers oL 311
8.4 Using integers o e 311
8.5 Integer expression conditionals Lo L 312
8.6 Integer expression loops L Lo Lo 315
8.7 Imteger step functions 317
8.8 Formatting integerso oL Lo 318
8.9 Converting from other formats to integers 324
8.10 Viewing integer L L 328
8.11 Constant integers 328
8.12 Scratch integers L L 329
8.13 Deprecated functions 330

xiii

10

I13skip implementation 330

9.1 Length primitives renamed oL 330
9.2 Creating and initialising dim variables 330
9.3 Setting dim variables. oL oo 331
9.4 Utilities for dimension calculations 332
9.5 Dimension expression conditionals00 333
9.6 Dimension expression loops oo 0oL 335
9.7 Using dim expressions and variables 336
9.8 Viewing dim variables L oL oo 337
9.9 Constant dimensions L Lo L 337
9.10 Scratch dimensions Lo 337
9.11 Creating and initialising skip variables 338
9.12 Setting skip variables oL Lo 339
9.13 Skip expression conditionalso oL 339
9.14 Using skip expressions and variables 340
9.15 Imserting skips into the output 340
9.16 Viewing skip variableso oL 341
9.17 Constant skips L 341
9.18 Scratch skips 341
9.19 Creating and initialising muskip variables 341
9.20 Setting muskip variables. o oo 342
9.21 Using muskip expressions and variables 343
9.22 Viewing muskip variableso oo 343
9.23 Constant muskips 344
9.24 Scratch muskips 344
9.25 Deprecated functions Lo 344
13tl implementation 344
10.1 Functions e 344
10.2 Constant token lists o o 346
10.3 Adding to token list variables oL, 347
10.4 Reassigning token list category codes 350
10.5 Reassigning token list character codes 351
10.6 Modifying token list variables oo, 351
10.7 Token list conditionals Lo oo 353
10.8 Mapping to token lists Lo oo 357
10.9 Using token lists o e 358
10.10Working with the contents of token lists 359
10.11Token by token changes 361
10.12The first token from a token list 363
10.13Viewing token lists L Lo s 369
10.14Scratch token listso oL 369
10.15Deprecated functions Lo 369

Xiv

11

12

13

14

I13seq implementation

11.1 Allocation and initialisation
11.2 Appending data to eitherend oo
11.3 Modifying sequences oo
11.4 Sequence conditionals L oL o o
11.5 Recovering data from sequences,
11.6 Mapping to SeqUences v v v v v v v i e e e e
11.7 Using sequences e
11.8 Sequence stacks Lo
11.9 Viewing SEqUENCeS v v v v v vt e e e
11.10Scratch sequenceso

13clist implementation

12.1 Allocation and initialisation L.
12.2 Removing spaces around items Lo
12.3 Adding data to comma lists L. Lo
12.4 Comma lists asstacks
12.5 Modifying comma lists. oo
12.6 Comma list conditionals oo
12.7 Mapping to comma lists Lo Lo
12.8 Using comma lists o e
12.9 Viewing comma lists oo Lo
12.10Scratch comma lists e

I3prop implementation

13.1 Allocation and initialisation
13.2 Accessing data in property lists
13.3 Property list conditionals oo
13.4 Recovering values from property lists with branching
13.5 Mapping to property lists L oo
13.6 Viewing property lists L o oo

I3box implementation

14.1 Creating and initialising boxes
14.2 Measuring and setting box dimensions L.
14.3 Using boxes o
14.4 Box conditionals e
14.5 The last box inserted
14.6 Constant boxes e
14.7 Scratch boxes e
14.8 Viewing box contents L o o
14.9 Horizontal mode boxes e
14.10Vertical mode boxes e

XV

370
371
373
374
375
376
379
382
382
383
384

384
384
386
386
387
389
391
392
395
396
396

397
397
398
402
403
404
405

15

16

17

18

19

13coffins Implementation

15.1 Coffins: data structures and general variables
15.2 Basic coffin functions Lo Lo
15.3 Measuring coffins L oL o
15.4 Coffins: handle and pole management
15.5 Coffins: calculation of pole intersections
15.6 Aligning and typesetting of coffins0,
15.7 Coffin diagnostics L L e
15.8 Messages

13color Implementation

I3msg implementation

17.1 Creating messages v v v v i vt e e e
17.2 Messages: support functions and text
17.3 Showing messages: low level mechanism
17.4 Displaying messages oot e e e
17.5 Kernel-specific functions oo oL
17.6 Expandable errors e
17.7 Showing variables L L

I3keys Implementation

18.1 Low-level interface L
18.2 Constants and variables L.
18.3 The key defining mechanism
18.4 Turning properties into actions oL,
18.5 Creating key properties Lo o
18.6 Setting keys oL
18.7 Utilities o o o o e e
18.8 Messages
18.9 Deprecated functionso

I13file implementation

19.1 File operations

19.2 Input operations L Lo e
19.2.1 Variables and constants L L.
19.2.2 Stream managemento e
19.2.3 Reading inputo

19.3 Output operations o e
19.3.1 Variables and constants

19.4 Stream management Lo o e
19.4.1 Deferred writingo
19.4.2 Immediate writing Lo
19.4.3 Special characters for writing
19.4.4 Hard-wrapping lines to a character count

19.5 MeSsages v oo e e e e

xXvi

413
413
414
419
419
422
425
429
435

436

437
437
438
439
441
449
454
456

457
457
460
462
464
468
471
476
477
478

20

21

22

23

24

25

26

13fp implementation 497

I13fp-aux implementation 498
Internal representation 498
Internal storage of floating points numbers 499
23.1 Using arguments and semicolons 499
23.2 Constants, and structure of floating points 500
23.3 Overflow, underflow, and exact zero 502
23.4 Expanding after a floating point number 503
23.5 Packing digits Lo 504
23.6 Decimate (dividing by a power of 10) 506
23.7 Functions for use within primitive conditional branches 508
23.8 Small integer floating points oL oL 509
23.9 Length of a floating point array L. 510
23.10x-like expansion expandablyo oL 511
23 11MESSAZES . v v v e e e e e e e e e e e e e e 511
I13fp-traps Implementation 512
24.1 Flags . . . o o o e e 512
24.2 Traps . . o oo v e e e e e e 513
24.3 EITOrs e e e e e 516
24.4 MeSsages e e 517
13fp-round implementation 517
25.1 Rounding tools 517
25.2 The round functiono 521
I13fp-parse implementation 523
26.1 Work plan 523

26.1.1 Storing results Lo 524

26.1.2 Precedence and infix operators 526

26.1.3 Prefix operators, parentheses, and functions 529

26.1.4 Numbers and reading tokens one by one 529
26.2 Main auxiliary functions oo oL 531
26.3 Helpers o e 532
26.4 Parsing one number L Lo o L 533

26.4.1 Numbers: trimming leading zeros 538

26.4.2 Number: small significand, 540

26.4.3 Number: large significand 0. 542

26.4.4 Number: beyond 16 digits, rounding 544

26.4.5 Number: finding the exponent 546
26.5 Constants, functions and prefix operators 550

26.5.1 Prefix operators 550

26.5.2 Constants 552

26.5.3 Functions L e 553

27

28

26.6 Main functions 555

26.7 Infix operators 556
26.7.1 Closing parentheses and commas 557
26.7.2 Usual infix operators oL 558
26.7.3 Juxtaposition Lo 559
26.7.4 Multi-character cases oL 560
26.7.5 Ternary operator Lo 561
26.7.6 Comparisonso 562

26.8 Candidate: defining new [3fp functions 564

26.9 MeSSAgES ot e e e e e e 566

13fp-logic Implementation 566

27.1 Syntax of internal functions 566

27.2 Existence test oL Lo 567

27.3 CompariSon oL e e e e e 567

27.4 Floating point expression loopso L. 569

27.5 Extremao e e e e 570

27.6 Boolean operations Lo 572

27.7 Ternary operator L Lo e 572

I13fp-basics Implementation 574

28.1 Common to several operations, 574

28.2 Addition and subtraction Lo 575
28.2.1 Sign, exponent, and special numbers 575
28.2.2 Absolute addition oL Lo 578
28.2.3 Absolute subtraction oL 580

28.3 Multiplication L 584
28.3.1 Signs, and special numberso 584
28.3.2 Absolute multiplication 0L, 586

28.4 Division oL e e 588
28.4.1 Signs, and special numbers L 588
28.4.2 Workplano 589
28.4.3 Implementing the significand division 592

28.5 Square root e e e 597

28.6 Setting the sign L 605

xviii

29

30

31

32

I13fp-extended implementation

29.1
29.2
29.3
294
29.5
29.6
29.7
29.8
29.9

Description of fixed point numbers
Helpers for numbers with extended precision
Multiplying a fixed point number by a short one
Dividing a fixed point number by a small integer
Adding and subtracting fixed points
Multiplying fixed points Lo
Combining product and sum of fixed points
Extended-precision floating point numbers
Dividing extended-precision numbers.

29.10Inverse square root of extended precision numbers
29.11Converting from fixed point to floating point

I13fp-expo implementation

30.1

Logarithm

30.1.1 Workplan oL Lo
30.1.2 Some constants e e e e e e e
30.1.3 Sign, exponent, and special numberso
30.1.4 Absolute In L

30.2

Exponential

30.2.1 Sign, exponent, and special numbers

30.3

Power e

13fp-trig Implementation

31.1

Direct trigonometric functions oL 0oL

31.1.1 Filtering special cases
31.1.2 Distinguishing small and large arguments
31.1.3 Small arguments Lo L
31.1.4 Argument reduction in degrees
31.1.5 Argument reduction in radians
31.1.6 Computing the power series

31.2

Inverse trigonometric functions L 0oL

31.2.1 Arctangent and arccotangent 0oL
31.2.2 Arcsine and arccosineo e
31.2.3 Arccosecant and arcsecant

13fp-convert implementation

32.1
32.2
32.3
324
32.5
32.6
32.7
32.8
32.9

Trimming trailing zeroso
Scientific notation oL oL
Decimal representationo 0oL
Token list representation
Formatting Lo
Convert to dimension or integer
Convert from a dimension L oL
Useand eval
Convert an array of floating points to a comma list

Xix

605
605
606
607
608
609
610
611
613
616
619
621

623
623
623
624
624
624
632
632
637

644
644
644
647
648
648
650
656
659
660
665
667

33 13fp-assign implementation 676
33.1 Assigning values Lo 676
33.2 Updating values 677
33.3 Showing values L 678
33.4 Some useful constants and scratch variables 678
34 13fp-old implementation 679
34.1 Compatibility 679
35 I3luatex implementation 682
35.1 Category code tables. L Lo 683
35.2 MESSAZES .+ ¢ v v i e e e e e e e e e 686
36 I3candidates Implementation 686
36.1 Additions to I3box 686
36.2 Affine transformations oL L 686
36.3 Viewing part of abox L 694
36.4 Additions to 3clist 696
36.5 Additions to [3coffins 699
36.6 Rotating coffins o 699
36.7 Resizing coffins oL L 704
36.8 Additions to I3file L 706
36.9 Additions to I3fp 707
36.10Additions to I8prop L 708
36.11Additions to 13seq L. 709
36.12Additions to I3skipo 712
36.13Additions to I3tl 713
36.14Additions to I3tokens Lo 716
37 13drivers Implementation 718
37.1 Settings for direct PDF output 719
37.2 Driver utility functions L 719
37.3 Box clipping e 722
37.4 Box rotation and scaling oL oL oL L 723
37.5 Color support 724
Index 726

XX

Part I
Introduction to expl3 and this
document

This document is intended to act as a comprehensive reference manual for the expl3
language. A general guide to the INTEX3 programming language is found in expl3.pdf.

1 Naming functions and variables

ITREX3 does not use @ as a “letter” for defining internal macros. Instead, the symbols _
and : are used in internal macro names to provide structure. The name of each function
is divided into logical units using _, while : separates the name of the function from the
argument specifier (“arg-spec”). This describes the arguments expected by the function.
In most cases, each argument is represented by a single letter. The complete list of
arg-spec letters for a function is referred to as the signature of the function.

Each function name starts with the module to which it belongs. Thus apart from a
small number of very basic functions, all expl3 function names contain at least one under-
score to divide the module name from the descriptive name of the function. For example,
all functions concerned with comma lists are in module clist and begin \clist_.

Every function must include an argument specifier. For functions which take no
arguments, this will be blank and the function name will end :. Most functions take one
or more arguments, and use the following argument specifiers:

D The D specifier means do not use. All of the TEX primitives are initially \let to a D
name, and some are then given a second name. Only the kernel team should use
anything with a D specifier!

N and n These mean no manipulation, of a single token for N and of a set of tokens given
in braces for n. Both pass the argument through exactly as given. Usually, if you
use a single token for an n argument, all will be well.

¢ This means csname, and indicates that the argument will be turned into a csname
before being used. So So \foo:c {ArgumentOnel} will act in the same way as
\foo:N \ArgumentOne.

V and v These mean value of variable. The V and v specifiers are used to get the con-
tent of a variable without needing to worry about the underlying TEX structure
containing the data. A V argument will be a single token (similar to N), for example
\foo:V \MyVariable; on the other hand, using v a csname is constructed first, and
then the value is recovered, for example \foo:v {MyVariable}.

o This means expansion once. In general, the V and v specifiers are favoured over o
for recovering stored information. However, o is useful for correctly processing
information with delimited arguments.

x The x specifier stands for ezhaustive expansion: every token in the argument is fully
expanded until only unexpandable ones remain. The TEX \edef primitive carries
out this type of expansion. Functions which feature an x-type argument are in
general not expandable, unless specifically noted.

f The £ specifier stands for full expansion, and in contrast to x stops at the first non-
expandable item (reading the argument from left to right) without trying to expand
it. For example, when setting a token list variable (a macro used for storage), the
sequence

\tl_set:Nn \1_mya_tl { A }
\tl_set:Nn \1_myb_tl { B }
\tl_set:Nf \1_mya_tl { \1_mya_tl \l_myb_tl }

will leave \1_mya_t1 with the content A\1_myb_t1, as A cannot be expanded and
so terminates expansion before \1_myb_t1 is considered.

T and F For logic tests, there are the branch specifiers T (true) and F (false). Both
specifiers treat the input in the same way as n (no change), but make the logic
much easier to see.

p The letter p indicates TEX parameters. Normally this will be used for delimited func-
tions as expl3 provides better methods for creating simple sequential arguments.

w Finally, there is the w specifier for weird arguments. This covers everything else, but
mainly applies to delimited values (where the argument must be terminated by
some arbitrary string).

Notice that the argument specifier describes how the argument is processed prior to being
passed to the underlying function. For example, \foo:c will take its argument, convert
it to a control sequence and pass it to \foo:N.

Variables are named in a similar manner to functions, but begin with a single letter
to define the type of variable:

c Constant: global parameters whose value should not be changed.
g Parameters whose value should only be set globally.
1 Parameters whose value should only be set locally.

Each variable name is then build up in a similar way to that of a function, typically
starting with the module' name and then a descriptive part. Variables end with a short
identifier to show the variable type:

bool Either true or false.

box Box register.

IThe module names are not used in case of generic scratch registers defined in the data type modules,
e.g., the int module contains some scratch variables called \1_tmpa_int, \1_tmpb_int, and so on. In
such a case adding the module name up front to denote the module and in the back to indicate the type,
as in \1_int_tmpa_int would be very unreadable.

clist Comma separated list.

coffin a “box with handles” — a higher-level data type for carrying out box alignment
operations.

dim “Rigid” lengths.

fp floating-point values;

int Integer-valued count register.
prop Property list.

seq “Sequence”: a data-type used to implement lists (with access at both ends) and
stacks.

skip “Rubber” lengths.
stream An input or output stream (for reading from or writing to, respectively).

t1l Token list variables: placeholder for a token list.

1.1 Terminological inexactitude

A word of warning. In this document, and others referring to the expl3 programming
modules, we often refer to “variables” and “functions” as if they were actual constructs
from a real programming language. In truth, TEX is a macro processor, and functions
are simply macros that may or may not take arguments and expand to their replacement
text. Many of the common variables are also macros, and if placed into the input stream
will simply expand to their definition as well — a “function” with no arguments and a
“token list variable” are in truth one and the same. On the other hand, some “variables”
are actually registers that must be initialised and their values set and retrieved with
specific functions.

The conventions of the expl3 code are designed to clearly separate the ideas of
“macros that contain data” and “macros that contain code”, and a consistent wrapper is
applied to all forms of “data” whether they be macros or actually registers. This means
that sometimes we will use phrases like “the function returns a value”, when actually we
just mean “the macro expands to something”. Similarly, the term “execute” might be
used in place of “expand” or it might refer to the more specific case of “processing in
TEX’s stomach” (if you are familiar with the TEXbook parlance).

If in doubt, please ask; chances are we’ve been hasty in writing certain definitions
and need to be told to tighten up our terminology.

2 Documentation conventions

This document is typeset with the experimental 13doc class; several conventions are used
to help describe the features of the code. A number of conventions are used here to make
the documentation clearer.

\ExplSyntaxOn
\ExplSyntax0ff

\seq_new:N
ic

\cs_to_str:N «*

\seq_map_function:NN

Each group of related functions is given in a box. For a function with a “user” name,
this might read:

\ExplSyntaxOn ... \ExplSyntaxOff

The textual description of how the function works would appear here. The syntax of
the function is shown in mono-spaced text to the right of the box. In this example, the

function takes no arguments and so the name of the function is simply reprinted.
For programming functions, which use _ and : in their name there are a few addi-

tional conventions: If two related functions are given with identical names but different
argument specifiers, these are termed variants of each other, and the latter functions are
printed in grey to show this more clearly. They will carry out the same function but will
take different types of argument:

\seq_new:N (sequence)

When a number of variants are described, the arguments are usually illustrated only for
the base function. Here, (sequence) indicates that \seq_new:N expects the name of a
sequence. From the argument specifier, \seq_new:c also expects a sequence name, but
as a name rather than as a control sequence. Each argument given in the illustration
should be described in the following text.

Fully expandable functions Some functions are fully expandable, which allows it
to be used within an x-type argument (in plain TEX terms, inside an \edef), as well
as within an f-type argument. These fully expandable functions are indicated in the
documentation by a star:

\cs_to_str:N (cs)

As with other functions, some text should follow which explains how the function works.
Usually, only the star will indicate that the function is expandable. In this case, the
function expects a (cs), shorthand for a (control sequence).

Restricted expandable functions A few functions are fully expandable but cannot
be fully expanded within an f-type argument. In this case a hollow star is used to indicate
this:

\seq_map_function:NN (seq) (function)

Conditional functions Conditional (if) functions are normally defined in three vari-
ants, with T, F and TF argument specifiers. This allows them to be used for different
“true”/“false” branches, depending on which outcome the conditional is being used to
test. To indicate this without repetition, this information is given in a shortened form:

\xetex_if_engine:TF *

\1_tmpa_tl

\token_to_str:N x

\xetex_if_engine:TF {(true code)} {(false code)}

The underlining and italic of TF indicates that \xetex_if_engine:T, \xetex_if_-
engine:F and \xetex_if_engine:TF are all available. Usually, the illustration will use
the TF variant, and so both (true code) and (false code) will be shown. The two variant
forms T and F take only (true code) and (false code), respectively. Here, the star also
shows that this function is expandable. With some minor exceptions, all conditional

functions in the expl3 modules should be defined in this way.
Variables, constants and so on are described in a similar manner:

A short piece of text will describe the variable: there is no syntax illustration in this case.
In some cases, the function is similar to one in I/ TEX 2¢ or plain TEX. In these cases,
the text will include an extra “TpXhackers note” section:

\token_to_str:N (token)

The normal description text.

TEXhackers note: Detail for the experienced TEX or BTEX 2¢ programmer. In this case,
it would point out that this function is the TEX primitive \string.

3 Formal language conventions which apply generally

As this is a formal reference guide for A TEX3 programming, the descriptions of functions
are intended to be reasonably “complete”. However, there is also a need to avoid repeti-
tion. Formal ideas which apply to general classes of function are therefore summarised
here.

For tests which have a TF argument specification, the test if evaluated to give a
logically TRUE or FALSE result. Depending on this result, either the (true code) or the
(false code) will be left in the input stream. In the case where the test is expandable,
and a predicate (_p) variant is available, the logical value determined by the test is left

in the input stream: this will typically be part of a larger logical construct.

4 TgEX concepts not supported by KTEX3

The TEX concept of an “\outer” macro is not supported at all by TEX3. As such, the
functions provided here may break when used on top of KTEX 2¢ if \outer tokens are
used in the arguments.

Part 11
The 13bootstrap package
Bootstrap code

1 Using the BTEX3 modules

The modules documented in source3 are designed to be used on top of BTEX 2 and
are loaded all as one with the usual \usepackage{expl3} or \RequirePackage{expl3}
instructions. These modules will also form the basis of the KTEX3 format, but work in
this area is incomplete and not included in this documentation at present.

As the modules use a coding syntax different from standard ETEX 2¢ it provides a
few functions for setting it up.

\ExplSyntaxOn \ExplSyntaxOn (code) \ExplSyntaxOff

M The \ExplSyntaxOn function switches to a category code régime in which spaces are

Updated: 2011-08-13 jgnored and in which the colon (:) and underscore (_) are treated as “letters”, thus
allowing access to the names of code functions and variables. Within this environment,
~ is used to input a space. The \ExplSyntaxOff reverts to the document category code
régime.

\ProvidesExplPackage \RequirePackage{expl3}

\ProvidesExplClass \ProvidesExplPackage {(package)} {(date)} {(version)} {(description)}

\ProvidesExplFile These functions act broadly in the same way as the I 2¢ kernel functions \ProvidesPackage,

g

\ProvidesClass and \ProvidesFile. However, they also implicitly switch \ExplSyntaxOn
for the remainder of the code with the file. At the end of the file, \ExplSyntax0£ff will
be called to reverse this. (This is the same concept as WTEX 2¢ provides in turning on
\makeatletter within package and class code.)

\GetIdInfo \RequirePackage{13bootstrap}

————— \GetIdInfo $Id: (SVN info field) $ {(description)}
Updated: 2012-06-04

Extracts all information from a SVN field. Spaces are not ignored in these fields. The in-
formation pieces are stored in separate control sequences with \ExplFileName for the part
of the file name leading up to the period, \ExplFileDate for date, \ExplFileVersion

for version and \ExplFileDescription for the description.
To summarize: Every single package using this syntax should identify itself using

one of the above methods. Special care is taken so that every package or class file loaded
with \RequirePackage or alike are loaded with usual IMTEX 2¢ category codes and the
ETREX3 category code scheme is reloaded when needed afterwards. See implementation
for details. If you use the \GetIdInfo command you can use the information when
loading a package with

\ProvidesExplPackage{\ExplFileName}
{\ExplFileDate}{\ExplFileVersion}{\ExplFileDescription}

__expl_package_check:

\1__kernel_expl_bool

1.1 Internal functions and variables

__expl_package_check:

Used to ensure that all parts of expl3 are loaded together (i.e. as part of expl3). Issues
an error if a kernel package is loaded independently of the bundle.

A boolean which records the current code syntax status: true if currently inside a code
environment. This variable should only be set by \ExplSyntax0On/\ExplSyntax0ff.

Part III
The 13names package
Namespace for primitives

1 Setting up the KTEX3 programming language

This module is at the core of the A TEX3 programming language. It performs the following
tasks:

o defines new names for all TEX primitives;
o switches to the category code régime for programming;
e provides support settings for building the code as a TEX format.

This module is entirely dedicated to primitives, which should not be used directly
within I¥TEX3 code (outside of “kernel-level” code). As such, the primitives are not
documented here: The TgXbook, TEX by Topic and the manuals for pdfTEX, X#TEX and
LuaTgX should be consulted for details of the primitives. These are named based on the
engine which first introduced them:

\tex_... Introduced by TEX itself;
\etex_... Introduced by the e-TEX extensions;
\pdftex_... Introduced by pdfTEX;
\xetex_... Introduced by XHIEX;
\luatex_... Introduced by LuaTgX.

\prg_do_nothing: =%

\scan_stop:

\group_begin:
\group_end:

\group_insert_after:N

Part IV
The I13basics package
Basic definitions

As the name suggest this package holds some basic definitions which are needed by most
or all other packages in this set.

Here we describe those functions that are used all over the place. With that we mean
functions dealing with the construction and testing of control sequences. Furthermore
the basic parts of conditional processing are covered; conditional processing dealing with
specific data types is described in the modules specific for the respective data types.

1 No operation functions

\prg_do_nothing:

An expandable function which does nothing at all: leaves nothing in the input stream
after a single expansion.

\scan_stop:

A non-expandable function which does nothing. Does not vanish on expansion but pro-
duces no typeset output.

2 Grouping material

\group_begin:

\group_end:

These functions begin and end a group for definition purposes. Assignments are local
to groups unless carried out in a global manner. (A small number of exceptions to this
rule will be noted as necessary elsewhere in this document.) Each \group_begin: must
be matched by a \group_end:, although this does not have to occur within the same
function. Indeed, it is often necessary to start a group within one function and finish it
within another, for example when seeking to use non-standard category codes.

\group_insert_after:N (token)

Adds (token) to the list of (tokens) to be inserted when the current group level ends. The
list of (tokens) to be inserted will be empty at the beginning of a group: multiple appli-
cations of \group_insert_after:N may be used to build the inserted list one (token)
at a time. The current group level may be closed by a \group_end: function or by a
token with category code 2 (close-group). The later will be a } if standard category codes

apply.

3 Control sequences and functions

As TEX is a macro language, creating new functions means creating macros. At point of
use, a function is replaced by the replacement text (“code”) in which each parameter in
the code (#1, #2, etc.) is replaced the appropriate arguments absorbed by the function.
In the following, (code) is therefore used as a shorthand for “replacement text”.

Functions which are not “protected” will be fully expanded inside an x expansion.
In contrast, “protected” functions are not expanded within x expansions.

3.1 Defining functions

Functions can be created with no requirement that they are declared first (in contrast
to variables, which must always be declared). Declaring a function before setting up the
code means that the name chosen will be checked and an error raised if it is already in
use. The name of a function can be checked at the point of definition using the \cs_-
new... functions: this is recommended for all functions which are defined for the first
time.

There are three ways to define new functions. All classes define a function to ex-
pand to the substitution text. Within the substitution text the actual parameters are
substituted for the formal parameters (#1, #2, ...).

new Create a new function with the new scope, such as \cs_new:Npn. The definition is
global and will result in an error if it is already defined.

set Create a new function with the set scope, such as \cs_set:Npn. The definition is
restricted to the current TEX group and will not result in an error if the function
is already defined.

gset Create a new function with the gset scope, such as \cs_gset:Npn. The definition
is global and will not result in an error if the function is already defined.

Within each set of scope there are different ways to define a function. The differences
depend on restrictions on the actual parameters and the expandability of the resulting
function.

nopar Create a new function with the nopar restriction, such as \cs_set_nopar:Npn.
The parameter may not contain \par tokens.

protected Create a new function with the protected restriction, such as \cs_set_-
protected:Npn. The parameter may contain \par tokens but the function will not
expand within an x-type expansion.

Finally, the functions in Subsections 3.2 and 3.3 are primarily meant to define base
functions only. Base functions can only have the following argument specifiers:

N and n No manipulation.

T and F Functionally equivalent to n (you are actually encouraged to use the family of
\prg_new_conditional: functions described in Section 1).

10

p and w These are special cases.

The \cs_new: functions below (and friends) do not stop you from using other argu-
ment specifiers in your function names, but they do not handle expansion for you. You
should define the base function and then use \cs_generate_variant:Nn to generate
custom variants as described in Section 2.

3.2 Defining new functions using parameter text

\cs_new:Npn \cs_new:Npn (function) (parameters) {(code)}
: (cpn|Npx|cpx)

Creates (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
definition is global and an error will result if the (function) is already defined.

\cs_new_nopar:Npn \cs_new_nopar:Npn (function) (parameters) {{code)}

: (cpnlipx|cpx) Creates (function) to expand to (code) as replacement text. Within the (code), the

(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When the
(function) is used the (parameters) absorbed cannot contain \par tokens. The definition
is global and an error will result if the (function) is already defined.

\cs_new_protected:Npn \cs_new_protected:Npn (function) (parameters) {(code)}
: (cpn|Npx|cpx)

Creates (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
(function) will not expand within an x-type argument. The definition is global and an
error will result if the (function) is already defined.

\cs_new_protected_nopar:Npn \cs_new_protected_nopar:Npn (function) (parameters) {(code)}
: (cpn|Npx|cpx)

Creates (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When the
(function) is used the (parameters) absorbed cannot contain \par tokens. The (function)
will not expand within an x-type argument. The definition is global and an error will
result if the (function) is already defined.

\cs_set:Npn \cs_set:Npn (function) (parameters) {(code)}

+ (cpnlpx|cpx) Sets (function) to expand to (code) as replacement text. Within the (code), the

(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the (function) is restricted to the current TEX group level.

11

\cs_set_nopar:Npn
: (cpn|Npx|cpx)

\cs_set_nopar:Npn (function) (parameters) {{code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When the
(function) is used the (parameters) absorbed cannot contain \par tokens. The assignment
of a meaning to the (function) is restricted to the current TEX group level.

\cs_set_protected:Npn

\cs_set_protected:Npn (function) (parameters) {(code)}

: (cpn|Npx|cpx)

Sets (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the (function) is restricted to the current TEX group level.
The (function) will not expand within an x-type argument.

\cs_set_protected_nopar:Npn \cs_set_protected_nopar:Npn (function) (parameters) {(code)}

: (cpn|Npx|cpx)

\cs_gset :Npn
: (cpn|Npx|cpx)

\cs_gset_nopar:Npn
: (cpn|Npx|cpx)

Sets (function) to expand to (code) as replacement text. Within the (code), the
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When
the (function) is used the (parameters) absorbed cannot contain \par tokens. The as-
signment of a meaning to the (function) is restricted to the current TEX group level. The
(function) will not expand within an x-type argument.

\cs_gset:Npn (function) (parameters) {{code)}

Globally sets (function) to expand to (code) as replacement text. Within the (code),
the (parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the (function) is not restricted to the current TEX group
level: the assignment is global.

\cs_gset_nopar:Npn (function) (parameters) {(code)}

Globally sets (function) to expand to (code) as replacement text. Within the (code),
the (parameters) (#1, #2, etc.) will be replaced by those absorbed by the function.
When the (function) is used the (parameters) absorbed cannot contain \par tokens. The
assignment of a meaning to the (function) is not restricted to the current TEX group
level: the assignment is global.

\cs_gset_protected:Npn

\cs_gset_protected:Npn (function) (parameters) {(code)}

: (cpn|Npx|cpx)

Globally sets (function) to expand to (code) as replacement text. Within the (code),
the (parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
assignment of a meaning to the (function) is not restricted to the current TEX group level:
the assignment is global. The (function) will not expand within an x-type argument.

12

\cs_gset_protected_nopar:Npn \cs_gset_protected_nopar:Npn (function) (parameters) {(code)}

: (cpn|Npx|cpx)

\cs_new:Nn
: (cn|Nx|cx)

\cs_new_nopar:Nn
: (cn|Nx|cx)

\cs_new_protected:Nn
: (cn|Nx|cx)

Globally sets (function) to expand to (code) as replacement text. Within the (code),
the (parameters) (#1, #2, etc.) will be replaced by those absorbed by the function.
When the (function) is used the (parameters) absorbed cannot contain \par tokens. The
assignment of a meaning to the {function) is not restricted to the current TEX group level:
the assignment is global. The (function) will not expand within an x-type argument.

3.3 Defining new functions using the signature

\cs_new:Nn (function) {({code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
definition is global and an error will result if the (function) is already defined.

\cs_new_nopar:Nn (function) {(code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When the
(function) is used the (parameters) absorbed cannot contain \par tokens. The definition
is global and an error will result if the (function) is already defined.

\cs_new_protected:Nn (function) {{code)}

Creates (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. The
(function) will not expand within an x-type argument. The definition is global and an
error will result if the (function) is already defined.

\cs_new_protected_nopar:Nn \cs_new_protected_nopar:Nn (function) {{code)}

: (cn|Nx|cx)

Creates (function) to expand to (code) as replacement text. Within the (code), the
number of (parameters) is detected automatically from the function signature. These
(parameters) (#1, #2, etc.) will be replaced by those absorbed by the function. When the
(function) is used the (parameters) absorbed cannot contain \par tokens. The (function)
will not expand within an x-type argument. The definition is global and an error will
result if the (function) is already defined.

13

\cs_set:Nn
: (cn|Nx|cx)

\cs_set_nopar:Nn
: (cn|Nx|cx)

\cs_set_protected:Nn

\cs_set:Nn (function) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. The assignment of a
meaning to the (function) is restricted to the current TEX group level.

\cs_set_nopar:Nn (function) {(code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. When the (function)
is used the (parameters) absorbed cannot contain \par tokens. The assignment of a
meaning to the {function) is restricted to the current TEX group level.

\cs_set_protected:Nn (function) {(code)}

 (cn|Nx|cx) Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. The (function) will
not expand within an x-type argument. The assignment of a meaning to the (function)
is restricted to the current TEX group level.

\cs_set_protected_nopar:Nn \cs_set_protected_nopar:Nn (function) {({code)}
: (cn|Nx|cx)
Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. When the (function)
is used the (parameters) absorbed cannot contain \par tokens. The (function) will not
expand within an x-type argument. The assignment of a meaning to the (function) is
restricted to the current TEX group level.
\cs_gset:Nn \cs_gset:Nn (function) {(code)}
: (cn|Nx|cx)

\cs_gset_nopar:Nn
: (cn|Nx|cx)

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. The assignment of a
meaning to the {function) is global.

\cs_gset_nopar:Nn (function) {{code)}

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. When the (function)
is used the (parameters) absorbed cannot contain \par tokens. The assignment of a
meaning to the {function) is global.

14

\cs_gset_protected:Nn

\cs_gset_protected:Nn (function) {(code)}

: (cn|Nx|cx)

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. The (function) will
not expand within an x-type argument. The assignment of a meaning to the (function)
is global.

\cs_gset_protected_nopar:Nn \cs_gset_protected_nopar:Nn (function) {({code)}

: (cn|Nx|cx)

Sets (function) to expand to (code) as replacement text. Within the (code), the number of
(parameters) is detected automatically from the function signature. These (parameters)
(#1, #2, etc.) will be replaced by those absorbed by the function. When the (function)
is used the (parameters) absorbed cannot contain \par tokens. The (function) will not
expand within an x-type argument. The assignment of a meaning to the (function) is
global.

\cs_generate_from_arg_count :NNnn \cs_generate_from_arg_count:NNnn (function) (creator) (number)

:(cNnn|Ncnn) (code)

Updated: 2012-01-14

\cs_new_eq:NN
: (Nc|cN|cc)

Uses the (creator) function (which should have signature Npn, for example \cs_new:Npn)
to define a (function) which takes (number) arguments and has (code) as replacement
text. The (number) of arguments is an integer expression, evaluated as detailed for
\int_eval:n.

3.4 Copying control sequences

Control sequences (not just functions as defined above) can be set to have the same
meaning using the functions described here. Making two control sequences equivalent
means that the second control sequence is a copy of the first (rather than a pointer to
it). Thus the old and new control sequence are not tied together: changes to one are not
reflected in the other.

In the following text “cs” is used as an abbreviation for “control sequence”.

\cs_new_eq:NN (cs1) (cs2)
\cs_new_eq:NN (cs1) (token)

Globally creates (control sequence;) and sets it to have the same meaning as (control
sequences) or (token). The second control sequence may subsequently be altered without
affecting the copy.

15

\cs_set_eq:NN
:(Nc|cN|ec)

\cs_gset_eq:NN
: (Nc|cN|cc)

\cs_undefine:N

:C

Updated: 2011-09-15

\cs_meaning:N x
ic oK

Updated: 2011-12-22

\cs_show:N
ic

Updated: 2012-09-09

\cs_set_eq:NN (cs1) (cs2)
\cs_set_eq:NN (csi1) (token)

Sets (control sequence;) to have the same meaning as (control sequences) (or (token)).
The second control sequence may subsequently be altered without affecting the copy.
The assignment of a meaning to the (control sequence;) is restricted to the current TEX
group level.

\cs_gset_eq:NN (cs1) (cs2)

\cs_gset_eq:NN (csi) (token)

Globally sets (control sequence;) to have the same meaning as {control sequences) (or
(token)). The second control sequence may subsequently be altered without affecting the
copy. The assignment of a meaning to the (control sequence;) is not restricted to the
current TEX group level: the assignment is global.

3.5 Deleting control sequences

There are occasions where control sequences need to be deleted. This is handled in a
very simple manner.

\cs_undefine:N (control sequence)

Sets (control sequence) to be globally undefined.

3.6 Showing control sequences

\cs_meaning:N (control sequence)

This function expands to the meaning of the (control sequence) control sequence. This
will show the (replacement text) for a macro.

TEXhackers note: This is TEX’s \meaning primitive. The c variant correctly reports
undefined arguments.

\cs_show:N (control sequence)

Displays the definition of the (control sequence) on the terminal.

TEXhackers note: This is similar to the TEX primitive \show, wrapped to a fixed number
of characters per line.

16

\use:c *

\cs_if_exist_use:NTF
:cTF

New: 2012-11-10

\cs_if_exist_use:NTF x
:cTF *

New: 2012-11-10

\cs:w *
\cs_end: *

3.7 Converting to and from control sequences

\use:c {(control sequence name)}

Converts the given (control sequence name) into a single control sequence token. This
process requires two expansions. The content for (control sequence name) may be literal
material or from other expandable functions. The (control sequence name) must, when
fully expanded, consist of character tokens which are not active: typically, they will be
of category code 10 (space), 11 (letter) or 12 (other), or a mixture of these.

As an example of the \use:c function, both

\use:c { abc }
and

\tl_new:N \l_my_tl
\tl_set:Nn \1_my_tl { abc}
\use:c { \tl_use:N \1l_my_t1l }

would be equivalent to
\abc

after two expansions of \use:c.

\cs_if_exist_use:N (control sequence)

Tests whether the (control sequence) is currently defined (whether as a function or another
control sequence type), and if it does inserts the {control sequence) into the input stream.

\cs_if_exist_use:NTF (control sequence) {(true code)} {(false code)}

Tests whether the (control sequence) is currently defined (whether as a function or another
control sequence type), and if it does inserts the (control sequence) into the input stream
followed by the (true code).

\cs:w {control sequence name) \cs_end:

Converts the given (control sequence name) into a single control sequence token. This
process requires one expansion. The content for {control sequence name) may be literal
material or from other expandable functions. The (control sequence name) must, when
fully expanded, consist of character tokens which are not active: typically, they will be
of category code 10 (space), 11 (letter) or 12 (other), or a mixture of these.

TEXhackers note: These are the TEX primitives \csname and \endcsname.
As an example of the \cs:w and \cs_end: functions, both
\cs:w a b ¢ \cs_end:

and

17

\cs_to_str:N %

\use:n *
: (nn|nnn|nnnn) *

\tl_new:N \l_my_tl
\tl_set:Nn \1_my_tl { abc}
\cs:w \tl_use:N \1_my_tl \cs_end:

would be equivalent to
\abc

after one expansion of \cs:w.

\cs_to_str:N (control sequence)

Converts the given (control sequence) into a series of characters with category code 12
(other), except spaces, of category code 10. The sequence will not include the current
escape token, cf. \token_to_str:N. Full expansion of this function requires exactly 2
expansion steps, and so an x-type expansion, or two o-type expansions will be required
to convert the (control sequence) to a sequence of characters in the input stream. In most
cases, an f-expansion will be correct as well, but this loses a space at the start of the
result.

4 Using or removing tokens and arguments

Tokens in the input can be read and used or read and discarded. If one or more tokens
are wrapped in braces then in absorbing them the outer set will be removed. At the same
time, the category code of each token is set when the token is read by a function (if it is
read more than once, the category code is determined by the the situation in force when
first function absorbs the token).

\use:n {(group1)}

\use:nn {(group:1)} {(groupz)}

\use:nnn {(group:)} {{group:)} {(groups)}

\use:nnnn {(group:i)} {(group:)} {(groups)} {(groups)’}

As illustrated, these functions will absorb between one and four arguments, as indicated
by the argument specifier. The braces surrounding each argument will be removed leaving
the remaining tokens in the input stream. The category code of these tokens will also be
fixed by this process (if it has not already been by some other absorption). All of these
functions require only a single expansion to operate, so that one expansion of

\use:nn { abc } { { def } }
will result in the input stream containing
abc { def }

i.e. only the outer braces will be removed.

18

\use_i:nn «

\use_ii:nn x
\use_i:nnn *
\use_ii:nnn «
\use_iii:nnn *
\use_i:nnnn *
\use_ii:nnnn *
\use_iii:nnnn x
\use_iv:nnnn *
\use_i_ii:nnn «*

\use_i:nn {(argi)} {(arg:)}

These functions absorb two arguments from the input stream. The function \use_i:nn
discards the second argument, and leaves the content of the first argument in the input
stream. \use_ii:nn discards the first argument and leaves the content of the second
argument in the input stream. The category code of these tokens will also be fixed (if
it has not already been by some other absorption). A single expansion is needed for the
functions to take effect.

\use_i:nnn {(arg:)} {(arge)} {(args)}

These functions absorb three arguments from the input stream. The function \use_i :nnn
discards the second and third arguments, and leaves the content of the first argument in
the input stream. \use_ii:nnn and \use_iii:nnn work similarly, leaving the content of
second or third arguments in the input stream, respectively. The category code of these
tokens will also be fixed (if it has not already been by some other absorption). A single
expansion is needed for the functions to take effect.

\use_i:nnnn {(argi)} {(arg:)} {(args)} {(args)}

These functions absorb four arguments from the input stream. The function \use_-
i:nnnn discards the second, third and fourth arguments, and leaves the content of the
first argument in the input stream. \use_ii:nnnn, \use_iii:nnnn and \use_iv:nnnn
work similarly, leaving the content of second, third or fourth arguments in the input
stream, respectively. The category code of these tokens will also be fixed (if it has not
already been by some other absorption). A single expansion is needed for the functions
to take effect.

\use_i_ii:nnn {(argi)} {(arg:)} {(args)}

This functions will absorb three arguments and leave the content of the first and second
in the input stream. The category code of these tokens will also be fixed (if it has not
already been by some other absorption). A single expansion is needed for the functions
to take effect. An example:

\use_i_ii:nnn { abc } { { def } } { ghi }
will result in the input stream containing
abc { def }

i.e. the outer braces will be removed and the third group will be removed.

\use_none:n

* \use_none:n {(group:)}

: (nn|nnn|nnnn|nnnnn|nnnnnn|nnnnnnn [nnnnnnnn [nnnnnnnnn)

These functions absorb between one and nine groups from the input stream, leaving
nothing on the resulting input stream. These functions work after a single expansion.
One or more of the n arguments may be an unbraced single token (i.e. an N argument).

19

\use:x \use:x {(expandable tokens)}

Updated: 2011-12-31 Fully expands the {ezpandable tokens) and inserts the result into the input stream at the
current location. Any hash characters (#) in the argument must be doubled.
4.1 Selecting tokens from delimited arguments

A different kind of function for selecting tokens from the token stream are those that use
delimited arguments.

\use_none_delimit_by_q_nil:w % \use_none_delimit_by_q_nil:w (balanced text) \g_nil
\use_none_delimit_by_q_stop:w % \use_none_delimit_by_q_stop:w (balanced text) \g_stop
\use_none_delimit_by_q_recursion_stop:w % \use_none_delimit_by_q_recursion_stop:w (balanced text)
\g_recursion_stop

Absorb the (balanced text) form the input stream delimited by the marker given in the
function name, leaving nothing in the input stream.

\use_i_delimit_by_q_nil:nw % \use_i_delimit_by_q_nil:nw {(inserted tokens)} (balanced text)
\use_i_delimit_by_q_stop:nw % \q_nil

\use_i_delimit_by_q_recursion_stop:nw * \use_i_delimit_by_q_stop:nw {(inserted tokens)} (balanced
text) \g_stop

\use_i_delimit_by_q_recursion_stop:nw {(inserted tokens)}
(balanced text) \g_recursion_stop

Absorb the (balanced text) form the input stream delimited by the marker given in the
function name, leaving (inserted tokens) in the input stream for further processing.

5 Predicates and conditionals

IXTREX3 has three concepts for conditional flow processing:

Branching conditionals Functions that carry out a test and then execute, depending
on its result, either the code supplied as the {true code) or the (false code). These
arguments are denoted with T and F, respectively. An example would be

\cs_if_free:cTF {abcl} {{true code)} {(false code)}

a function that will turn the first argument into a control sequence (since it’s marked
as c) then checks whether this control sequence is still free and then depending on
the result carry out the code in the second argument (true case) or in the third
argument (false case).

These type of functions are known as “conditionals”; whenever a TF function is
defined it will usually be accompanied by T and F functions as well. These are
provided for convenience when the branch only needs to go a single way. Package
writers are free to choose which types to define but the kernel definitions will always
provide all three versions.

20

\c_true_bool
\c_false_bool

\cs_if_eq_p:NN
\cs_if_eq:NNTF

* %

\cs_if_exist_p:N
:c
\cs_if_exist:NTF
:cTF

D R S

Important to note is that these branching conditionals with (frue code) and/or
(false code) are always defined in a way that the code of the chosen alternative can
operate on following tokens in the input stream.

These conditional functions may or may not be fully expandable, but if they are
expandable they will be accompanied by a “predicate” for the same test as described
below.

Predicates “Predicates” are functions that return a special type of boolean value which
can be tested by the boolean expression parser. All functions of this type are
expandable and have names that end with _p in the description part. For example,

\cs_if_free_p:N

would be a predicate function for the same type of test as the conditional described
above. It would return “true” if its argument (a single token denoted by N) is still
free for definition. It would be used in constructions like

\bool_if:nTF {
\cs_if_free_p:N \1_tmpz_tl || \cs_if_free_p:N \g_tmpz_tl
} {(true code)} {(false code)}

For each predicate defined, a “branching conditional” will also exist that behaves
like a conditional described above.

Primitive conditionals There is a third variety of conditional, which is the original
concept used in plain TEX and ITEX 2¢. Their use is discouraged in expl3 (although
still used in low-level definitions) because they are more fragile and in many cases
require more expansion control (hence more code) than the two types of conditionals
described above.

Constants that represent true and false, respectively. Used to implement predicates.

5.1 Tests on control sequences

\cs_if_eq_p:NN {(cs1)} {(cs2)}
\cs_if_eq:NNTF {(csi1)} {(cs2)} {(true code)} {(false code)}

Compares the definition of two (control sequences) and is logically true the same, i.e. if
they have exactly the same definition when examined with \cs_show:N.

\cs_if_exist_p:N (control sequence)
\cs_if_exist:NTF (control sequence) {(true code)} {(false code)}

Tests whether the (control sequence) is currently defined (whether as a function or another
control sequence type). Any valid definition of (control sequence) will evaluate as true.

21

\cs_if_free_p:N
e
\cs_if_free:NTF
:cTF

* ot % %

\cs_if_free_p:N (control sequence)
\cs_if_free:NTF (control sequence) {(true code)} {(false code)}

Tests whether the (control sequence) is currently free to be defined. This test will be
false if the (control sequence) currently exists (as defined by \cs_if_exist:N).

5.2 Testing string equality

\str_if_eq_p:nn

: (Vn|on|no|nV|VV)

\str_if_eq:nnTF

: (Vn|on|no|nV|VV)TF

\str_if_eq_p:nn {(tl1)
\str_if_eq:nnTF {(tl;)

¥} {(t12)}
} {(t12)} {(true code)} {(false code)}

*
*
*
*

\str_if_eq_x_p:nn *
\str_if_eq_x:nnTF *

New: 2012-06-05

\str_case:nnTF *
:onTF *

New: 2013-07-24

Compares the two (token lists) on a character by character basis, and is true if the two
lists contain the same characters in the same order. Thus for example

\str_if_eq_p:no { abc } { \tl_to_str:n { abc } }
is logically true.

\str_if_eq_x_p:nn {(t1:)} {(tl2)}
\str_if_eq_x:nnTF {(tI1:)} {(tl2)} {(true code)} {(false code)}

Compares the full expansion of two (token lists) on a character by character basis, and
is true if the two lists contain the same characters in the same order. Thus for example

\str_if_eq_x_p:nn { abc } { \tl_to_str:n { abc } }

is logically true.

\str_case:nnTF {(test string)}
{

{(string case1)

{(string cases)

} {(code casei)?}

} {(code cases)?}
%(.s.tring casen)} {(code case,)?}

}

{(true code)}

{(false code)}

This function compares the (test string) in turn with each of the (string cases). If the
two are equal (as described for \str_if_eq:nnTF then the associated (code) is left in
the input stream. If any of the cases are matched, the (true code) is also inserted into
the input stream (after the code for the appropriate case), while if none match then the
(false code) is inserted. The function \str_case:nn, which does nothing if there is no
match, is also available.

22

\str_case_x:nnTF x

New: 2013-07-24

\luatex_if_engine_p: *
\luatex_if_engine:TF *

Updated: 2011-09-06

\pdftex_if_engine_p: *
\pdftex_if_engine:TF *

Updated: 2011-09-06

\xetex_if_engine_p: «*
\xetex_if_engine:TF *

Updated: 2011-09-06

\str_case_x:nnn {(test string)}

(code case1)}
(code casez)}

{(string casei)
{(string cases)

}{
AL

{(string case,)} {(code case,)}
}
{(true code)}
{(false code)}

This function compares the full expansion of the (test string) in turn with the full ex-
pansion of the (string cases). If the two full expansions are equal (as described for
\str_if_eq:nnTF then the associated (code) is left in the input stream. If any of the
cases are matched, the (true code) is also inserted into the input stream (after the code
for the appropriate case), while if none match then the (false code) is inserted. The
function \str_case_x:nn, which does nothing if there is no match, is also available. The
(test string) is expanded in each comparison, and must always yield the same result: for
example, random numbers must not be used within this string.

5.3 Engine-specific conditionals

\luatex_if_engine:TF {(true code)} {(false code)}

Detects is the document is being compiled using LuaTgX.

\pdftex_if_engine:TF {(true code)} {(false code)}

Detects is the document is being compiled using pdfTEX.

\xetex_if_engine:TF {(true code)} {(false code)}

Detects is the document is being compiled using XHTEX.

5.4 Primitive conditionals

The e-TEX engine itself provides many different conditionals. Some expand whatever
comes after them and others don’t. Hence the names for these underlying functions will
often contain a :w part but higher level functions are often available. See for instance
\int_compare_p:nNn which is a wrapper for \if _int_compare:w.

Certain conditionals deal with specific data types like boxes and fonts and are de-
scribed there. The ones described below are either the universal conditionals or deal with
control sequences. We will prefix primitive conditionals with \if _.

23

\if_true: *
\if_false: *

\or: *

\else: *

\fi: *
\reverse_if:N x

\if _meaning:w *

\if:w *
\if_charcode:w *
\if_catcode:w *
\if_cs_exist:N x

Wk
\if_mode_horizontal: *
\if_mode_vertical: *
\if_mode_math: *
\if _mode_inner: *
__chk_if_exist_cs:N

\if_true: (true code) \else: (false code) \fi:
\if_false: (true code) \else: (false code) \fi:
\reverse_if:N (primitive conditional)

\if_true: always executes (true code), while \if_false: always executes (false code).
\reverse_if:N reverses any two-way primitive conditional. \else: and \fi: delimit
the branches of the conditional. \or: is used in case switches, see [3int for more.

TEXhackers note: These are equivalent to their corresponding TEX primitive conditionals;
\reverse_if:N is e-TEX’s \unless.

\if_meaning:w (argi) (arge) (true code) \else: (false code) \fi:

\if_meaning:w executes (true code) when (arg;) and (args) are the same, otherwise it
executes (false code). (arg,) and (args) could be functions, variables, tokens; in all cases
the unexpanded definitions are compared.

TEXhackers note: This is TEX’s \ifx.

\if:w (tokem) (tokenz) (true code) \else: (false code) \fi:
\if_catcode:w (tokeni) (tokens) (true code) \else: (false code) \fi:

These conditionals will expand any following tokens until two unexpandable tokens are
left. If you wish to prevent this expansion, prefix the token in question with \exp_not:N.
\if_catcode:w tests if the category codes of the two tokens are the same whereas \if :w
tests if the character codes are identical. \if_charcode:w is an alternative name for
\if :w.

\if_cs_exist:N (cs) (true code) \else: (false code) \fi:

\if_cs_exist:w (tokens) \cs_end: (true code) \else: (false code) \fi:

Check if (cs) appears in the hash table or if the control sequence that can be formed
from (tokens) appears in the hash table. The latter function does not turn the control
sequence in question into \scan_stop:! This can be useful when dealing with control
sequences which cannot be entered as a single token.

\if_mode_horizontal: (true code) \else: (false code) \fi:

Execute (true code) if currently in horizontal mode, otherwise execute (false code). Sim-
ilar for the other functions.

6 Internal kernel functions

__chk_if_exist_cs:N (cs)

This function checks that (cs) exists according to the criteria for \cs_if_exist_p:N, and
if not raises a kernel-level error.

24

__chk_if_free_cs:N

__chk_if_exist_var:N

__cs_count_signature:N
ic K

*

__cs_split_function:NN x

__chk_if_free_cs:N (cs)

This function checks that (cs) is free according to the criteria for \cs_if_free_p:N, and
if not raises a kernel-level error.

__chk_if_exist_var:N (var)

This function checks that (var) is defined according to the criteria for \cs_if_free_p:N,
and if not raises a kernel-level error. This function is only created if the package option
check-declarations is active.

__cs_count_signature:N (function)

Splits the (function) into the (name) (i.e. the part before the colon) and the (signature)
(i.e. after the colon). The (number) of tokens in the (signature) is then left in the input
stream. If there was no (signature) then the result is the marker value —1.

__cs_split_function:NN (function) (processor)

Splits the (function) into the (name) (i.e. the part before the colon) and the (signature)
(i.e. after the colon). This information is then placed in the input stream after the
(processor) function in three parts: the (name), the (signature) and a logic token indi-
cating if a colon was found (to differentiate variables from function names). The (name)
will not include the escape character, and both the (name) and (signature) are made
up of tokens with category code 12 (other). The (processor) should be a function with
argument specification :nnN (plus any trailing arguments needed).

__cs_get_function_name:N * __cs_get_function_name:N (function)

Splits the (function) into the (name) (i.e. the part before the colon) and the (signature)
(i.e. after the colon). The (name) is then left in the input stream without the escape
character present made up of tokens with category code 12 (other).

__cs_get_function_signature:N x __cs_get_function_signature:N <function>

__cs_tmp:w

__kernel_register_show:N
i

Splits the (function) into the (name) (i.e. the part before the colon) and the (signature)
(i.e. after the colon). The (signature) is then left in the input stream made up of tokens
with category code 12 (other).

Function used for various short-term usages, for instance defining functions whose defini-
tion involves tokens which are hard to insert normally (spaces, characters with category
other).

__kernel_register_show:N (register)

Used to show the contents of a TEX register at the terminal, formatted such that internal
parts of the mechanism are not visible.

25

__prg_case_end:nw

\

str_if_eq_x_return:nn

__prg_case_end:nw {(code)} (tokens) \q_mark {(true code)} \q_mark {(false code)}
\q_stop

Used to terminate case statements (\int_case:nnTF, efc.) by removing trailing (tokens)
and the end marker \q_stop, inserting the (code) for the successful case (if one is found)
and either the true code or false code for the over all outcome, as appropriate.

\

Compares the full expansion of two (token lists) on a character by character basis, and
is true if the two lists contain the same characters in the same order. Either \prg_-
return_true: or \prg_return_false: is then left in the input stream. This is a version
of \str_if_eq_x:nn(TF) coded for speed.

str_if_eq_x_return:nn {(t11)} {(tl2)}

26

Part V
The 13expan package
Argument expansion

This module provides generic methods for expanding TEX arguments in a systematic
manner. The functions in this module all have prefix exp.

Not all possible variations are implemented for every base function. Instead only
those that are used within the I¥TEX3 kernel or otherwise seem to be of general interest
are implemented. Consult the module description to find out which functions are actually
defined. The next section explains how to define missing variants.

1 Defining new variants

The definition of variant forms for base functions may be necessary when writing new
functions or when applying a kernel function in a situation that we haven’t thought of
before.

Internally preprocessing of arguments is done with functions from the \exp_ mod-
ule. They all look alike, an example would be \exp_args:NNo. This function has three
arguments, the first and the second are a single tokens, while the third argument should
be given in braces. Applying \exp_args:NNo will expand the content of third argument
once before any expansion of the first and second arguments. If \seq_gpush:No was not
defined it could be coded in the following way:

\exp_args:NNo \seq_gpush:Nn
\g_file_name_stack
\1_tmpa_tl

In other words, the first argument to \exp_args:NNo is the base function and the other
arguments are preprocessed and then passed to this base function. In the example the
first argument to the base function should be a single token which is left unchanged
while the second argument is expanded once. From this example we can also see how the
variants are defined. They just expand into the appropriate \exp_ function followed by
the desired base function, e.g.

\cs_new_nopar:Npn \seq_gpush:No { \exp_args:NNo \seq_gpush:Nn }

Providing variants in this way in style files is uncritical as the \cs_new_nopar:Npn func-
tion will silently accept definitions whenever the new definition is identical to an already
given one. Therefore adding such definition to later releases of the kernel will not make
such style files obsolete.

The steps above may be automated by using the function \cs_generate_-
variant:Nn, described next.

27

\cs_generate_variant:Nn

Updated: 2013-07-09

2 Methods for defining variants

\cs_generate_variant:Nn (parent control sequence) {(variant argument specifiers)}

This function is used to define argument-specifier variants of the (parent control sequence)
for XTEX3 code-level macros. The (parent control sequence) is first separated into the
(base name) and (original argument specifier). The comma-separated list of (variant
argument specifiers) is then used to define variants of the (original argument specifier)
where these are not already defined. For each (variant) given, a function is created which
will expand its arguments as detailed and pass them to the (parent control sequence). So
for example

\cs_set:Npn \foo:Nn #1#2 { code here }
\cs_generate_variant:Nn \foo:Nn { c }

will create a new function \foo:cn which will expand its first argument into a control
sequence name and pass the result to \foo:Nn. Similarly

\cs_generate_variant:Nn \foo:Nn { NV , cV }

would generate the functions \foo:NV and \foo:cV in the same way. The \cs_-
generate_variant:Nn function can only be applied if the (parent control sequence) is
already defined. If the (parent control sequence) is protected then the new sequence will
also be protected. The (variant) is created globally, as is any \exp_args:N(variant)
function needed to carry out the expansion.

3 Introducing the variants

The available internal functions for argument expansion come in two flavours, some of
them are faster then others. Therefore it is usually best to follow the following guidelines
when defining new functions that are supposed to come with variant forms:

¢ Arguments that might need expansion should come first in the list of arguments to
make processing faster.

e Arguments that should consist of single tokens should come first.

e Arguments that need full expansion (i.e., are denoted with x) should be avoided if
possible as they can not be processed expandably, i.e., functions of this type will
not work correctly in arguments that are themselves subject to x expansion.

e In general, unless in the last position, multi-token arguments n, £, and o will need
special processing which is not fast. Therefore it is best to use the optimized
functions, namely those that contain only N, c, V, and v, and, in the last position,
o, £, with possible trailing N or n, which are not expanded.

The V type returns the value of a register, which can be one of t1, num, int, skip,
dim, toks, or built-in TEX registers. The v type is the same except it first creates a

28

control sequence out of its argument before returning the value. This recent addition to
the argument specifiers may shake things up a bit as most places where o is used will be
replaced by V. The documentation you are currently reading will therefore require a fair
bit of re-writing.

In general, the programmer should not need to be concerned with expansion control.
When simply using the content of a variable, functions with a V specifier should be used.
For those referred to by (cs)name, the v specifier is available for the same purpose. Only
when specific expansion steps are needed, such as when using delimited arguments, should
the lower-level functions with o specifiers be employed.

The £ type is so special that it deserves an example. Let’s pretend we want to set
the control sequence whose name is given by b \1_tmpa_t1l b equal to the list of tokens
\aaa a. Furthermore we want to store the execution of it in a (¢! var). In this example
we assume \1_tmpa_t1 contains the text string lur. The straightforward approach is

\tl_set:No \1_tmpb_tl { \tl_set:cn { b \1_tmpa_tl b } { \aaa a } }

Unfortunately this only puts \exp_args:Nc \tl_set:Nn {b \1_tmpa_tl b} { \aaa a }
into \1_tmpb_t1l and not \tl_set:Nn \blurb { \aaa a } as we probably wanted. Us-
ing \t1l_set:Nx is not an option as that will die horribly. Instead we can do a

\tl_set:Nf \1_tmpb_tl { \tl_set:cn { b \1_tmpa_tl b } { \aaa a } }
which puts the desired result in \1_tmpb_t1. It requires \t1l_set:Nf to be defined as
\cs_set_nopar:Npn \tl_set:Nf { \exp_args:NNf \tl_set:Nn }

If you use this type of expansion in conditional processing then you should stick to using
TF type functions only as it does not try to finish any \if... \fi: itself!

4 Manipulating the first argument

These functions are described in detail: expansion of multiple tokens follows the same
rules but is described in a shorter fashion.

\exp_args:No * \exp_args:No (function) {(tokens)} ...

This function absorbs two arguments (the (function) name and the (tokens)). The
(tokens) are expanded once, and the result is inserted in braces into the input stream af-
ter reinsertion of the (function). Thus the (function) may take more than one argument:
all others will be left unchanged.

\exp_args:Nc * \exp_args:Nc (function) {(tokens)}

“°© * This function absorbs two arguments (the {(function) name and the (tokens)). The

(tokens) are expanded until only characters remain, and are then turned into a con-
trol sequence. (An internal error will occur if such a conversion is not possible). The
result is inserted into the input stream after reinsertion of the (function). Thus the
(function) may take more than one argument: all others will be left unchanged.

The :cc variant constructs the (function) name in the same manner as described for
the (tokens).

29

\exp_args:NV * \exp_args:NV (function) (variable)

This function absorbs two arguments (the names of the (function) and the (variable)).
The content of the (variable) are recovered and placed inside braces into the input stream
after reinsertion of the (function). Thus the (function) may take more than one argument:
all others will be left unchanged.

\exp_args:Nv x \exp_args:Nv (function) {(tokens)}

This function absorbs two arguments (the (function) name and the (tokens)). The
(tokens) are expanded until only characters remain, and are then turned into a con-
trol sequence. (An internal error will occur if such a conversion is not possible). This
control sequence should be the name of a (variable). The content of the (variable) are re-
covered and placed inside braces into the input stream after reinsertion of the (function).
Thus the {function) may take more than one argument: all others will be left unchanged.

\exp_args:Nf * \exp_args:Nf (function) {(tokens)}

This function absorbs two arguments (the (function) name and the (tokens)). The
(tokens) are fully expanded until the first non-expandable token or space is found, and
the result is inserted in braces into the input stream after reinsertion of the (function).
Thus the (function) may take more than one argument: all others will be left unchanged.

\exp_args:Nx \exp_args:Nx (function) {(tokens)}

This function absorbs two arguments (the (function) name and the (tokens)) and ex-
haustively expands the (tokens) second. The result is inserted in braces into the input
stream after reinsertion of the (function). Thus the (function) may take more than one
argument: all others will be left unchanged.

5 Manipulating two arguments

\exp_args:NNo * \exp_args:NNc (tokeni) (tokens) {(tokens)}
: (NNc|NNv|NNV|NNf [Nco|Ncf [Ncc|NVV) *

These optimized functions absorb three arguments and expand the second and third as
detailed by their argument specifier. The first argument of the function is then the next
item on the input stream, followed by the expansion of the second and third arguments.

\exp_args:Nno * \exp_args:Noo (token) {(tokensi)} {(tokensz)}
: (NnV|Nnf |Noo|Nof |Noc|Nff|Nfo|Nnc) *

Updated: 2012-01-14

These functions absorb three arguments and expand the second and third as detailed by
their argument specifier. The first argument of the function is then the next item on
the input stream, followed by the expansion of the second and third arguments. These
functions need special (slower) processing.

30

\exp_args:NNx \exp_args:NNx (token;) (tokens) {(tokens)}
: (Nnx|Ncx|Nox|Nxo|Nxx)

These functions absorb three arguments and expand the second and third as detailed by
their argument specifier. The first argument of the function is then the next item on
the input stream, followed by the expansion of the second and third arguments. These
functions are not expandable.

6 Manipulating three arguments

\exp_args:NNNo * \exp_args:NNNo (tokeni) (tokens) (tokens) {(tokens)}
: (NNNV|Ncee|NeNe|NeNo|Neco) *

These optimized functions absorb four arguments and expand the second, third and
fourth as detailed by their argument specifier. The first argument of the function is then
the next item on the input stream, followed by the expansion of the second argument,
etc.

\exp_args:NNoo * \exp_args:NNNo (token;) (tokenz) (tokens) {(tokens)}
: (NNno|Nnno|Nnnc|Nooo) *

These functions absorb four arguments and expand the second, third and fourth as de-
tailed by their argument specifier. The first argument of the function is then the next
item on the input stream, followed by the expansion of the second argument, etc. These
functions need special (slower) processing.

\exp_args:NNnx \exp_args:NNnx (token:) (tokenz) {(tokensi)} {(tokenss)}
: (NNox|Nnnx|Nnox|Noox|Ncnx|Ncex)

These functions absorb four arguments and expand the second, third and fourth as de-
tailed by their argument specifier. The first argument of the function is then the next
item on the input stream, followed by the expansion of the second argument, etc.

31

7 Unbraced expansion

\exp_last_unbraced:Nf

%« \exp_last_unbraced:Nno (token)

: (NV|No|Nv|Nco|NcV|NNV|NNo|Nno|Noo|Nfo|NNNV|NNNo|NnNo) % (tokens:) (tokensz)

Updated: 2012-02-12

\exp_last_unbraced:Nx

These functions absorb the number of arguments given by their specification, carry out
the expansion indicated and leave the results in the input stream, with the last argument
not surrounded by the usual braces. Of these, the :Nno, :Noo, and :Nfo variants need
special (slower) processing.

TEXhackers note: As an optimization, the last argument is unbraced by some of those
functions before expansion. This can cause problems if the argument is empty: for instance,
\exp_last_unbraced:Nf \mypkg_foo:w { } \q_stop leads to an infinite loop, as the quark is
f-expanded.

\exp_last_unbraced:Nx (function) {(tokens)}

This functions fully expands the (tokens) and leaves the result in the input stream after
reinsertion of (function). This function is not expandable.

\exp_last_two_unbraced:Noo * \exp_last_two_unbraced:Noo (token) (tokensi) {(tokenss)}

\exp_after:wN x

This function absorbs three arguments and expand the second and third once. The first
argument of the function is then the next item on the input stream, followed by the
expansion of the second and third arguments, which are not wrapped in braces. This
function needs special (slower) processing.

\exp_after:wN (token;) (tokens)

Carries out a single expansion of (tokens) (which may consume arguments) prior to
the expansion of (tokeni). If (tokeng) is a TEX primitive, it will be executed rather
than expanded, while if (tokens) has not expansion (for example, if it is a character)
then it will be left unchanged. It is important to notice that (token;) may be any single
token, including group-opening and -closing tokens ({ or } assuming normal TEX category
codes). Unless specifically required, expansion should be carried out using an appropriate
argument specifier variant or the appropriate \exp_arg:N function.

TEXhackers note: This is the TEX primitive \expandafter renamed.

8 Preventing expansion
Despite the fact that the following functions are all about preventing expansion, they’re

designed to be used in an expandable context and hence are all marked as being ‘expand-
able’ since they themselves will not appear after the expansion has completed.

32

\exp_not:N x

\exp_not:c *

\exp_not:n *

\exp_not:V x

\exp_not:v *

\exp_not:o *

\exp_not:f *

\exp_stop_£f: *

Updated: 2011-06-03

\exp_not:N (token)
Prevents expansion of the (token) in a context where it would otherwise be expanded,

for example an x-type argument.

TEXhackers note: This is the TEX \noexpand primitive.

\exp_not:c {(tokens)}

Expands the (tokens) until only unexpandable content remains, and then converts this
into a control sequence. Further expansion of this control sequence is then inhibited.

\exp_not:n {(tokens)}
Prevents expansion of the (tokens) in a context where they would otherwise be expanded,

for example an x-type argument.

TEXhackers note: This is the e-TEX \unexpanded primitive. Hence its argument must
be surrounded by braces.

\exp_not:V (variable)

Recovers the content of the (variable), then prevents expansion of this material in a
context where it would otherwise be expanded, for example an x-type argument.

\exp_not:v {(tokens)}

Expands the (tokens) until only unexpandable content remains, and then converts this
into a control sequence (which should be a (variable) name). The content of the (variable)
is recovered, and further expansion is prevented in a context where it would otherwise
be expanded, for example an x-type argument.

\exp_not:o {(tokens)}

Expands the (tokens) once, then prevents any further expansion in a context where they
would otherwise be expanded, for example an x-type argument.

\exp_not:f {(tokens)}

Expands (tokens) fully until the first unexpandable token is found. Expansion then
stops, and the result of the expansion (including any tokens which were not expanded)
is protected from further expansion.

\function:f (tokens) \exp_stop_f: (more tokens)

This function terminates an f-type expansion. Thus if a function \function:f starts
an f-type expansion and all of (tokens) are expandable \exp_stop:f will terminate the
expansion of tokens even if (more tokens) are also expandable. The function itself is an
implicit space token. Inside an x-type expansion, it will retain its form, but when typeset
it produces the underlying space ().

33

9 Internal functions and variables

\1__exp_internal t1 The \exp_ module has its private variables to temporarily store results of the argument
expansion. This is done to avoid interference with other functions using temporary
variables.

\cs_set_nopar:Npn \exp_args:Ncof { \::c \::o \::f \::: }

Internal forms for the base expansion types. These names do not conform to the general
XTEX3 approach as this makes them more readily visible in the log and so forth.

P A A
T4 d M moom =B

34

\prg_new_conditional:Npnn
:Nnn

\prg_set_conditional:Npnn
:Nnn

Updated: 2012-02-06

Part VI
The 13prg package
Control structures

Conditional processing in IATEX3 is defined as something that performs a series of tests,
possibly involving assignments and calling other functions that do not read further ahead
in the input stream. After processing the input, a state is returned. The typical states
returned are (true) and (false) but other states are possible, say an (error) state for
erroneous input, e.g., text as input in a function comparing integers.

ETEX3 has two forms of conditional flow processing based on these states. The firs
form is predicate functions that turn the returned state into a boolean (true) or (false).
For example, the function \cs_if_free_p:N checks whether the control sequence given
as its argument is free and then returns the boolean (true) or (false) values to be used in
testing with \if_predicate:w or in functions to be described below. The second form
is the kind of functions choosing a particular argument from the input stream based on
the result of the testing as in \cs_if_free:NTF which also takes one argument (the N)
and then executes either true or false depending on the result. Important to note here
is that the arguments are executed after exiting the underlying \if...\fi: structure.

1 Defining a set of conditional functions

\prg_new_conditional:Npnn \(name):(arg spec) (parameters) {(conditions)} {(code)}
\prg_new_conditional:Nnn \(name):(arg spec) {(conditions)} {(code)}

These functions create a family of conditionals using the same {(code)} to perform the
test created. Those conditionals are expandable if (code) is. The new versions will
check for existing definitions and perform assignments globally (cf. \cs_new:Npn) whereas
the set versions do no check and perform assignments locally (c¢f. \cs_set:Npn). The
conditionals created are dependent on the comma-separated list of (conditions), which
should be one or more of p, T, F and TF.

\prg_new_protected_conditional:Npnn \prg_new_protected_conditional:Npnn \(name):(arg spec) (parameters)

:Nnn {(conditions)} {(code)}

\prg_set_protected_conditional:Npnn \prg_new_protected_conditional:Nnn \(name):(arg spec)

:Non {(conditions)} {{code)}

Updated: 2012-02-06

These functions create a family of protected conditionals using the same {(code)} to
perform the test created. The (code) does not need to be expandable. The new version will
check for existing definitions and perform assignments globally (cf. \cs_new:Npn) whereas
the set version will not (c¢f. \cs_set:Npn). The conditionals created are depended on
the comma-separated list of (conditions), which should be one or more of T, F and TF

(not p).

35

The conditionals are defined by \prg_new_conditional:Npnn and friends as:

e \(name)_p:(arg spec) — a predicate function which will supply either a logical
true or logical false. This function is intended for use in cases where one or more
logical tests are combined to lead to a final outcome. This function will not work
properly for protected conditionals.

e \(name):(arg spec)T — a function with one more argument than the original {arg
spec) demands. The (true branch) code in this additional argument will be left on
the input stream only if the test is true.

e \(name):(arg spec)F — a function with one more argument than the original (arg
spec) demands. The (false branch) code in this additional argument will be left on
the input stream only if the test is false.

e \(name):(arg spec)TF — a function with two more argument than the original
(arg spec) demands. The (true branch) code in the first additional argument will
be left on the input stream if the test is true, while the (false branch) code in the
second argument will be left on the input stream if the test is false.

The (code) of the test may use (parameters) as specified by the second argument to \prg_-
set_conditional:Npnn: this should match the (argument specification) but this is not
enforced. The Nnn versions infer the number of arguments from the argument specification
given (cf. \cs_new:Nn, etc.). Within the (code), the functions \prg_return_true: and
\prg_return_false: are used to indicate the logical outcomes of the test.

An example can easily clarify matters here:

\prg_set_conditional:Npnn \foo_if_bar:NN #1#2 { p , T , TF }
{
\if _meaning:w \1_tmpa_tl #1
\prg_return_true:
\else:
\if _meaning:w \1_tmpa_tl #2
\prg_return_true:
\else:
\prg_return_false:
\fi:
\fi:
}

This defines the function \foo_if_bar_p:NN, \foo_if_bar:NNTF and \foo_if_bar:NNT
but not \foo_if_bar:NNF (because F is missing from the (conditions) list). The return
statements take care of resolving the remaining \else: and \fi: before returning the
state. There must be a return statement for each branch; failing to do so will result in
erroneous output if that branch is executed.

36

\prg_new_eq_conditional:NNn \prg_new_eq_conditional:NNn \(name:):(arg speci) \(namey):(arg specz)
\prg_set_eq_conditional:NNn {(conditions)}

\prg_return_true: x
\prg_return_false: x

\bool_new:N
e

\bool_set_false:N

ic
\bool_gset_false:N
e

These functions copies a family of conditionals. The new version will check for existing
definitions (¢f. \cs_new:Npn) whereas the set version will not (¢f. \cs_set:Npn). The
conditionals copied are depended on the comma-separated list of (conditions), which
should be one or more of p, T, F and TF.

\prg_return_true:

\prg_return_false:

These ‘return’ functions define the logical state of a conditional statement. They appear
within the code for a conditional function generated by \prg_set_conditional:Npnn,
etc, to indicate when a true or false branch has been taken. While they may appear
multiple times each within the code of such conditionals, the execution of the conditional
must result in the expansion of one of these two functions exactly once.

The return functions trigger what is internally an f-expansion process to complete the
evaluation of the conditional. Therefore, after \prg_return_true: or \prg_return_-
false: there must be no non-expandable material in the input stream for the remainder
of the expansion of the conditional code. This includes other instances of either of these
functions.

2 The boolean data type

This section describes a boolean data type which is closely connected to conditional
processing as sometimes you want to execute some code depending on the value of a
switch (e.g., draft/final) and other times you perhaps want to use it as a predicate
function in an \if_predicate:w test. The problem of the primitive \if _false: and
\if_true: tokens is that it is not always safe to pass them around as they may interfere
with scanning for termination of primitive conditional processing. Therefore, we employ
two canonical booleans: \c_true_bool or \c_false_bool. Besides preventing problems
as described above, it also allows us to implement a simple boolean parser supporting
the logical operations And, Or, Not, etc. which can then be used on both the boolean
type and predicate functions.

All conditional \bool_ functions except assignments are expandable and expect the
input to also be fully expandable (which will generally mean being constructed from
predicate functions, possibly nested).

\bool_new:N (boolean)

Creates a new (boolean) or raises an error if the name is already taken. The declaration
is global. The (boolean) will initially be false.

\bool_set_false:N (boolean)

Sets (boolean) logically false.

37

\bool_set_true:N

:C

\bool_gset_true:N

:c
\bool_set_eq:NN
: (cN|Nc|cc)
\bool_gset_eq:NN
:(cN|N¢|ec)

\bool_set:Nn

icn
\bool_gset:Nn
icn

Updated: 2012-07-08

\bool_if_p:N
c
\bool if:NTF
:cTF

D R S

\bool_show:N
:c

New: 2012-02-09

\bool_show:n

New: 2012-02-09
Updated: 2012-07-08

\bool_if_exist_p:N

\bool_if_exist:NTF

*
iC %
*
*

:cTF

New: 2012-03-03

\1_tmpa_bool
\1_tmpb_bool

\g_tmpa_bool
\g_tmpb_bool

\bool_set_true:N (boolean)

Sets (boolean) logically true.

\bool_set_eq:NN (booleani) (booleans)

Sets the content of (boolean;) equal to that of (booleans).

\bool_set:Nn (boolean) {(boolexpr)}

Evaluates the (boolean expression) as described for \bool_if:n(TF), and sets the
(boolean) variable to the logical truth of this evaluation.

\bool_if_p:N (boolean)
\bool_if:NTF (boolean) {(true code)} {(false code)}

Tests the current truth of (boolean), and continues expansion based on this result.

\bool_show:N (boolean)

Displays the logical truth of the (boolean) on the terminal.

\bool_show:n {(boolean expression)}

Displays the logical truth of the (boolean expression) on the terminal.

\bool_if_exist_p:N (boolean)
\bool_if_exist:NTF (boolean) {(true code)} {(false code)}

Tests whether the (boolean) is currently defined. This does not check that the (boolean)
really is a boolean variable.

A scratch boolean for local assignment. It is never used by the kernel code, and so is
safe for use with any I¥TEX3-defined function. However, it may be overwritten by other
non-kernel code and so should only be used for short-term storage.

A scratch boolean for global assignment. It is never used by the kernel code, and so is
safe for use with any IXTEX3-defined function. However, it may be overwritten by other
non-kernel code and so should only be used for short-term storage.

38

\bool_if_p:n *
\bool_if:nTF *

Updated: 2012-07-08

3 Boolean expressions

As we have a boolean datatype and predicate functions returning boolean (true) or (false)
values, it seems only fitting that we also provide a parser for (boolean expressions).

A boolean expression is an expression which given input in the form of predicate
functions and boolean variables, return boolean (true) or (false). It supports the logical
operations And, Or and Not as the well-known infix operators &&, || and ! with their
usual precedences. In addition to this, parentheses can be used to isolate sub-expressions.
For example,

\int_compare_p:n { 1 =1 } &&
(
\int_compare _p:n { 2 = 3 } ||
\int_compare _p:n { 4 = 4 } ||
\int_compare_p:n { 1 = \error } 7 is skipped

) &&
! (\int_compare_p:n { 2

43})

is a valid boolean expression. Note that minimal evaluation is carried out whenever
possible so that whenever a truth value cannot be changed any more, the remaining tests
within the current group are skipped.

\bool_if_p:n {(boolean expression)}

\bool_if :nTF {(boolean expression)} {(true code)} {(false code)}

Tests the current truth of (boolean expression), and continues expansion based on this
result. The (boolean expression) should consist of a series of predicates or boolean vari-
ables with the logical relationship between these defined using && (“And”), || (“Or”), !
(“Not”) and parentheses. Minimal evaluation is used in the processing, so that once a
result is defined there is not further expansion of the tests. For example

\bool_if_p:n

{

\int_compare_p:nNn { 1 } = { 1 }

&&

(
\int_compare_p:nNn { 2 } = { 3 } ||
\int_compare_p:nNn { 4 } = { 4 } ||
\int_compare_p:nNn { 1 } = { \error } % is skipped

)

&&

! \int_compare_p:nNn { 2 } = { 4 }

3

will be true and will not evaluate \int_compare_p:nNn { 1 } = { \error }. The
logical Not applies to the next predicate or group.

39

\bool_not_p:n *

Updated: 2012-07-08

\bool_xor_p:nn *

Updated: 2012-07-08

\bool_do_until:
:cn

Nn

\bool_do_while:
:cn

Nn

RS

\bool_until_do:
:cn

Nn

=

”
b

\bool_while_do:
:cn

Nn

)
s

st

\bool_do_until:

nn

Updated: 2012-07-08

\bool_do_while:nn 3

Updated: 2012-07-08

\bool_not_p:n {(boolean expression)}

Function version of ! ({boolean expression)) within a boolean expression.

\bool_xor_p:nn {(boolexpr:)} {(boolexpra)}

Implements an “exclusive or” operation between two boolean expressions. There is no
infix operation for this logical operator.

4 Logical loops

Loops using either boolean expressions or stored boolean values.

\bool_do_until:Nn (boolean) {(code)}

Places the (code) in the input stream for TEX to process, and then checks the logical value
of the (boolean). If it is false then the (code) will be inserted into the input stream again
and the process will loop until the (boolean) is true.

\bool_do_while:Nn (boolean) {{code)}

Places the (code) in the input stream for TEX to process, and then checks the logical
value of the (boolean). If it is true then the (code) will be inserted into the input stream
again and the process will loop until the (boolean) is false.

\bool_until_do:Nn (boolean) {({code)}

This function firsts checks the logical value of the (boolean). If it is false the (code) is
placed in the input stream and expanded. After the completion of the (code) the truth
of the (boolean) is re-evaluated. The process will then loop until the (boolean) is true.

\bool_while_do:Nn (boolean) {{code)}

This function firsts checks the logical value of the (boolean). If it is true the (code) is
placed in the input stream and expanded. After the completion of the (code) the truth
of the (boolean) is re-evaluated. The process will then loop until the (boolean) is false.

\bool_do_until:nn {(boolean expression)} {(code)}

Places the (code) in the input stream for TEX to process, and then checks the logical
value of the (boolean expression) as described for \bool_if :nTF. If it is false then the
(code) will be inserted into the input stream again and the process will loop until the
(boolean expression) evaluates to true.

\bool_do_while:nn {(boolean expression)} {(code)}

Places the (code) in the input stream for TEX to process, and then checks the logical
value of the (boolean expression) as described for \bool_if:nTF. If it is true then the
(code) will be inserted into the input stream again and the process will loop until the
(boolean expression) evaluates to false.

40

\bool_until_do:nn 3

Updated: 2012-07-08

\bool_while_do:nn 3¢

Updated: 2012-07-08

\prg_replicate:nn *

Updated: 2011-07-04

>*

\mode_if_horizontal_p:
\mode_if_horizontal:TF x

*

\mode_if_inner_p:
\mode_if_inner:TF

>*

\mode_if_math_p: «*
\mode_if_math:TF *

Updated: 2011-09-05

\mode_if_vertical_p: *
\mode_if_vertical:TF x

\bool_until_do:nn {(boolean expression)} {(code)}

This function firsts checks the logical value of the (boolean expression) (as described for
\bool_if:nTF). If it is false the (code) is placed in the input stream and expanded.
After the completion of the (code) the truth of the (boolean expression) is re-evaluated.
The process will then loop until the (boolean expression) is true.

\bool_while_do:nn {(boolean expression)} {(code)}

This function firsts checks the logical value of the (boolean expression) (as described for
\bool_if:nTF). If it is true the (code) is placed in the input stream and expanded. After
the completion of the (code) the truth of the (boolean expression) is re-evaluated. The
process will then loop until the (boolean expression) is false.

5 Producing n copies

\prg_replicate:nn {(integer expression)} {(tokens)}

Evaluates the (integer expression) (which should be zero or positive) and creates the
resulting number of copies of the (tokens). The function is both expandable and safe for
nesting. It yields its result after two expansion steps.

6 Detecting TEX’s mode

\mode_if_horizontal_p:
\mode_if_horizontal:TF {(true code)} {(false code)}

Detects if TEX is currently in horizontal mode.

\mode_if_inner_p:
\mode_if_inner:TF {({true code)} {(false code)}

Detects if TEX is currently in inner mode.

\mode_if_math:TF {(true code)} {(false code)}

Detects if TEX is currently in maths mode.

\mode_if_vertical_p:
\mode_if_vertical:TF {(true code)} {(false code)}

Detects if TEX is currently in vertical mode.

41

\if_predicate:w *

\if_bool:N x

\group_align_safe_begin: *
\group_align_safe_end: *

Updated: 2011-08-11

\scan_align_safe_stop:

Updated: 2011-09-06

7 Primitive conditionals

\if_predicate:w (predicate) (true code) \else: (false code) \fi:

This function takes a predicate function and branches according to the result. (In practice
this function would also accept a single boolean variable in place of the (predicate) but
to make the coding clearer this should be done through \if_bool:N.)

\if_bool:N (boolean) (true code) \else: (false code) \fi:

This function takes a boolean variable and branches according to the result.

8 Internal programming functions

\group_align_safe_begin:

\group_align_safe_end:

These functions are used to enclose material in a TEX alignment environment within a
specially-constructed group. This group is designed in such a way that it does not add
brace groups to the output but does act as a group for the & token inside \halign. This
is necessary to allow grabbing of tokens for testing purposes, as TEX uses group level
to determine the effect of alignment tokens. Without the special grouping, the use of a
function such as \peek_after:Nw will result in a forbidden comparison of the internal
\endtemplate token, yielding a fatal error. Each \group_align_safe_begin: must be
matched by a \group_align_safe_end:, although this does not have to occur within
the same function.

\scan_align_safe_stop:

Stops TEX’s scanner looking for expandable control sequences at the beginning of an
alignment cell. This function is required, for example, to obtain the expected output
when testing \mode_if_math:TF at the start of a math array cell: placing \scan_-
align_safe_stop: before \mode_if_math:TF will give the correct result. This function
does not destroy any kerning if used in other locations, but does render functions non-
expandable.

TEXhackers note: This is a protected version of \prg_do_nothing:, which therefore stops
TEX’s scanner in the circumstances described without producing any affect on the output.

__prg_variable_get_scope:N * __prg_variable_get_scope:N (variable)

Returns the scope (g for global, blank otherwise) for the (variable).

__prg_variable_get_type:N * __prg_variable_get_type:N (variable)

Returns the type of (variable) (t1, int, etc.)

42

__prg_break_point:Nn *

__prg_map_break:Nn *

\g__prg_map_int

__prg_break_point: =%

__prg_break:

n

*
*

__prg_break_point:Nn \(type)_map_break: (tokens)

Used to mark the end of a recursion or mapping: the functions \(type)_map_break: and
\(type)_map_break:n use this to break out of the loop. After the loop ends, the (tokens)
are inserted into the input stream. This occurs even if the break functions are not applied:
__prg_break_point:Nn is functionally-equivalent in these cases to \use_ii:nn.

__prg_map_break:Nn \(type)_map_break: {(user code)}

__prg_break_point:Nn \(type)_map_break: {(ending code)}

Breaks a recursion in mapping contexts, inserting in the input stream the (user code)
after the (ending code) for the loop. The function breaks loops, inserting their (ending
code), until reaching a loop with the same (type) as its first argument. This \(type)_-
map_break: argument is simply used as a recognizable marker for the (type).

This integer is used by non-expandable mapping functions to track the level of nesting
in force. The functions __prg_map_1:w, __prg_map_2:w, etc., labelled by \g__prg_-
map_int hold functions to be mapped over various list datatypes in inline and variable
mappings.

This copy of \prg_do_nothing: is used to mark the end of a fast short-term recursions:
the function __prg_break:n uses this to break out of the loop.

__prg_break:n {(tokens)} ... __prg_break_point:

Breaks a recursion which has no (ending code) and which is not a user-breakable mapping
(see for instance \prop_get:Nn), and inserts (tokens) in the input stream.

43

Part VII
The 13quark package
Quarks

1 Introduction to quarks and scan marks

Two special types of constants in I&TEX3 are “quarks” and “scan marks”. By convention
all constants of type quark start out with \q_, and scan marks start with \s_. Scan
marks are for internal use by the kernel: they are not intended for more general use.

1.1 Quarks

Quarks are control sequences that expand to themselves and should therefore never be
executed directly in the code. This would result in an endless loop!

They are meant to be used as delimiter in weird functions, with the most command
use case as the ‘stop token’ (i.e. \q_stop). For example, when writing a macro to parse
a user-defined date

\date_parse:n {19/June/1981}
one might write a command such as

\cs_new:Npn \date_parse:n #1 { \date_parse_aux:w #1 \g_stop }
\cs_new:Npn \date_parse_aux:w #1 / #2 / #3 \qg_stop
{ <do something with the date> }

Quarks are sometimes also used as error return values for functions that receive
erroneous input. For example, in the function \prop_get:NnN to retrieve a value stored
in some key of a property list, if the key does not exist then the return value is the quark
\g_no_value. As mentioned above, such quarks are extremely fragile and it is imperative
when using such functions that code is carefully written to check for pathological cases
to avoid leakage of a quark into an uncontrolled environment.

Quarks also permit the following ingenious trick when parsing tokens: when you
pick up a token in a temporary variable and you want to know whether you have picked
up a particular quark, all you have to do is compare the temporary variable to the quark
using \t1_if_eq:NNTF. A set of special quark testing functions is set up below. All the
quark testing functions are expandable although the ones testing only single tokens are
much faster. An example of the quark testing functions and their use in recursion can
be seen in the implementation of \clist_map_function:NN.

44

\quark_new:N

\q_stop

\q_mark

\q_no_value

\quark_if_nil_p:N
\quark_if_nil:NTF

\quark_if_nil_p:n
:(o]V)

\quark_if_nil:nTF
:(o|V)TF

D R R S

\quark_if_no_value_p:N
e
\quark_if_no_value:NTF
:cTF

* o o o

\quark_if_no_value_p:n
\quark_if_no_value:nTF

*

2 Defining quarks

\quark_new:N (quark)

Creates a new (quark) which expands only to (quark). The (quark) will be defined
globally, and an error message will be raised if the name was already taken.

Used as a marker for delimited arguments, such as

\cs_set:Npn \tmp:w #1#2 \q_stop {#1}

Used as a marker for delimited arguments when \q_stop is already in use.

Quark to mark a null value in structured variables or functions. Used as an end delimiter
when this may itself may need to be tested (in contrast to \q_stop, which is only ever
used as a delimiter).

A canonical value for a missing value, when one is requested from a data structure. This
is therefore used as a “return” value by functions such as \prop_get:NnN if there is no
data to return.

3 Quark tests

The method used to define quarks means that the single token (N) tests are faster than
the multi-token (n) tests. The later should therefore only be used when the argument
can definitely take more than a single token.

\quark_if_nil_p:N (token)

\quark_if_nil:NTF (token) {(true code)} {(false code)}

Tests if the (token) is equal to \q_nil.

\quark_if_nil_p:n {(token list)}

\quark_if_nil:nTF {({token 1list)} {(true code)} {(false code)}

Tests if the (token list) contains only \q_nil (distinct from (token list) being empty or
containing \q_nil plus one or more other tokens).

\quark_if_no_value_p:N (token)
\quark_if_no_value:NTF (token) {(true code)} {(false code)}

Tests if the (token) is equal to \q_no_value.

\quark_if_no_value_p:n {(token list)}
\quark_if_no_value:nTF {(token list)} {(true code)} {(false code)}

Tests if the (token list) contains only \q_no_value (distinct from (token list) being empty
or containing \q_no_value plus one or more other tokens).

45

4 Recursion

This module provides a uniform interface to intercepting and terminating loops as when
one is doing tail recursion. The building blocks follow below and an example is shown in
Section 6.

\q_recursion_tail This quark is appended to the data structure in question and appears as a real element
there. This means it gets any list separators around it.

\q_recursion_stop This quark is added after the data structure. Its purpose is to make it possible to
terminate the recursion at any point easily.

\quark_if_recursion_tail_stop:N \quark_if_recursion_tail_stop:N (token)

Tests if (token) contains only the marker \q_recursion_tail, and if so terminates the
recursion this is part of using \use_none_delimit_by_q_recursion_stop:w. The recur-
sion input must include the marker tokens \q_recursion_tail and \q_recursion_stop
as the last two items.

\quark_if_recursion_tail_stop:n \quark_if_recursion_tail_stop:n {(token list)}
0

Updated: 2011-09-06

Tests if the (token list) contains only \q_recursion_tail, and if so terminates the recur-
sion this is part of using \use_none_delimit_by_q_recursion_stop:w. The recursion
input must include the marker tokens \q_recursion_tail and \q_recursion_stop as
the last two items.

\quark_if_recursion_tail_stop_do:Nn \quark_if_recursion_tail_stop_do:Nn (token) {(insertion)}

Tests if (token) contains only the marker \q_recursion_tail, and if so terminates the
recursion this is part of using \use_none_delimit_by_q_recursion_stop:w. The recur-
sion input must include the marker tokens \q_recursion_tail and \gq_recursion_stop
as the last two items. The (insertion) code is then added to the input stream after the
recursion has ended.

\quark_if_recursion_tail_stop_do:nn \quark_if_recursion_tail_stop_do:nn {(token list)} {(insertion)}
ton

Updated: 2011-09-06

Tests if the (token list) contains only \q_recursion_tail, and if so terminates the recur-
sion this is part of using \use_none_delimit_by_q_recursion_stop:w. The recursion
input must include the marker tokens \q_recursion_tail and \q_recursion_stop as
the last two items. The (insertion) code is then added to the input stream after the
recursion has ended.

46

5 Clearing quarks away

\use_none_delimit_by_q_recursion_stop:w \use_none_delimit_by_q_recursion_stop:w (tokens)
\g_recursion_stop

Used to prematurely terminate a recursion using \q_recursion_stop as the end marker,
removing any remaining (tokens) from the input stream.

\use_i_delimit_by_q_recursion_stop:nw \use_i_delimit_by_q_recursion_stop:nw {(insertion)}
(tokens) \g_recursion_stop

Used to prematurely terminate a recursion using \q_recursion_stop as the end marker,
removing any remaining (tokens) from the input stream. The (insertion) is then made
into the input stream after the end of the recursion.

6 An example of recursion with quarks

Quarks are mainly used internally in the expl3 code to define recursion functions such
as \tl_map_inline:nn and so on. Here is a small example to demonstrate how to
use quarks in this fashion. We shall define a command called \my_map_dbl:nn which
takes a token list and applies an operation to every pair of tokens. For example,
\my_map_dbl:nn {abcd} {[--#1--#2--]1~} would produce “[-a-b-] [-c-d-] ". Us-
ing quarks to define such functions simplifies their logic and ensures robustness in many
cases.

Here’s the definition of \my_map_dbl:nn. First of all, define the function that will
do the processing based on the inline function argument #2. Then initiate the recursion
using an internal function. The token list #1 is terminated using \q_recursion_tail,
with delimiters according to the type of recursion (here a pair of \q_recursion_tail),
concluding with \q_recursion_stop. These quarks are used to mark the end of the
token list being operated upon.

1 \cs_new:Npn \my_map_dbl:nn #1#2

> o
3 \cs_set:Npn __my_map_dbl_fn:nn ##1 ##2 {#2}

4 __my_map_dbl:nn #1 \q_recursion_tail \q_recursion_tail \q_recursion_stop
ER

The definition of the internal recursion function follows. First check if either of the
input tokens are the termination quarks. Then, if not, apply the inline function to the
two arguments.

6 \cs_new:Nn __my_map_dbl:nn

7 {

8 \quark_if_recursion_tail_stop:n {#1}
9 \quark_if_recursion_tail_stop:n {#2}
10 __my_map_dbl_fn:nn {#1} {#2}

Finally, recurse:

11 __my_map_dbl:nn
12 }

47

Note that contrarily to ITEX3 built-in mapping functions, this mapping function cannot
be nested, since the second map will overwrite the definition of __my_map_dbl_fn:nn.

7 Internal quark functions

__quark_if_recursion_tail_break:NN __quark_if_recursion_tail_break:nN {(token list)}
:nN \(type)_map_break:

Tests if (token list) contains only \q_recursion_tail, and if so terminates the recursion
using \(type)_map_break:. The recursion end should be marked by \prg_break_-
point:Nn \(type)_map_break:.

8 Scan marks

Scan marks are control sequences set equal to \scan_stop:, hence will never expand in an
expansion context and will be (largely) invisible if they are encountered in a typesetting
context.

Like quarks, they can be used as delimiters in weird functions and are often safer to
use for this purpose. Since they are harmless when executed by TEX in non-expandable
contexts, they can be used to mark the end of a set of instructions. This allows to skip
to that point if the end of the instructions should not be performed (see 13regex).

The scan marks system is only for internal use by the kernel team in a small number
of very specific places. These functions should not be used more generally.

__scan_new:N __scan_new:N (scan mark)

Creates a new (scan mark) which is set equal to \scan_stop:. The (scan mark) will be
defined globally, and an error message will be raised if the name was already taken by
another scan mark.

\s__stop Used at the end of a set of instructions, as a marker that can be jumped to using __-
use_none_delimit_by_s__stop:w.

__use_none_delimit_by_s__stop:w __use_none_delimit_by_s__stop:w (tokens) \s__stop

Removes the (tokens) and \s__stop from the input stream. This leads to a low-level
TEX error if \s__stop is absent.

48

Part VIII
The 13token package
Token manipulation

This module deals with tokens. Now this is perhaps not the most precise description so
let’s try with a better description: When programming in TgX, it is often desirable to
know just what a certain token is: is it a control sequence or something else. Similarly
one often needs to know if a control sequence is expandable or not, a macro or a primitive,
how many arguments it takes etc. Another thing of great importance (especially when it
comes to document commands) is looking ahead in the token stream to see if a certain
character is present and maybe even remove it or disregard other tokens while scanning.
This module provides functions for both and as such will have two primary function
categories: \token_ for anything that deals with tokens and \peek_ for looking ahead
in the token stream.

Most of the time we will be using the term “token” but most of the time the function
we’re describing can equally well by used on a control sequence as such one is one token
as well.

We shall refer to list of tokens as t1lists and such lists represented by a single control
sequence is a “token list variable” t1 var. Functions for these two types are found in
the 13tl module.

1 All possible tokens

Let us start by reviewing every case that a given token can fall into. It is very important
to distinguish two aspects of a token: its meaning, and what it looks like.

For instance, \if :w, \if_charcode:w, and \tex_if:D are three for the same internal
operation of TEX, namely the primitive testing the next two characters for equality of their
character code. They behave identically in many situations. However, TEX distinguishes
them when searching for a delimited argument. Namely, the example function \show_-
until_if:w defined below will take everything until \if :w as an argument, despite the
presence of other copies of \if :w under different names.

\cs_new:Npn \show_until_if:w #1 \if:w { \tl_show:n {#1} }
\show_until_if:w \tex_if:D \if_charcode:w \if:w

49

2 Character tokens

\char_set_catcode_escape:N \char_set_catcode_letter:N (character)
\char_set_catcode_group_begin:N
\char_set_catcode_group_end:N
\char_set_catcode_math_toggle:N
\char_set_catcode_alignment:N
\char_set_catcode_end_line:N
\char_set_catcode_parameter:N
\char_set_catcode_math_superscript:N
\char_set_catcode_math_subscript:N
\char_set_catcode_ignore:N
\char_set_catcode_space:N
\char_set_catcode_letter:N
\char_set_catcode_other:N
\char_set_catcode_active:N
\char_set_catcode_comment:N
\char_set_catcode_invalid:N

Sets the category code of the (character) to that indicated in the function name. De-
pending on the current category code of the (token) the escape token may also be needed:

\char_set_catcode_other:N \%

The assignment is local.

\char_set_catcode_escape:n \char_set_catcode_letter:n {(integer expression)}
\char_set_catcode_group_begin:n
\char_set_catcode_group_end:n
\char_set_catcode_math_toggle:n
\char_set_catcode_alignment:n
\char_set_catcode_end_line:n
\char_set_catcode_parameter:n
\char_set_catcode_math_superscript:n
\char_set_catcode_math_subscript:n
\char_set_catcode_ignore:n
\char_set_catcode_space:n
\char_set_catcode_letter:n
\char_set_catcode_other:n
\char_set_catcode_active:n
\char_set_catcode_comment:n
\char_set_catcode_invalid:n

Sets the category code of the (character) which has character code as given by the (integer
expression). This version can be used to set up characters which cannot otherwise be
given (cf. the N-type variants). The assignment is local.

50

\char_set_catcode:nn

\char_value_catcode:n *

\char_show_value_catcode:n

\char_set_lccode:nn

\char_value_lccode:n *

\char_show_value_lccode:n

\char_set_catcode:nn {(intexpr:)} {(intexprs)}

These functions set the category code of the (character) which has character code as
given by the (integer expression). The first (integer expression) is the character code
and the second is the category code to apply. The setting applies within the current
TEX group. In general, the symbolic functions \char_set_catcode_{type) should be
preferred, but there are cases where these lower-level functions may be useful.

\char_value_catcode:n {(integer expression)}

Expands to the current category code of the {character) with character code given by
the (integer expression).

\char_show_value_catcode:n {(integer expression)}

Displays the current category code of the (character) with character code given by the
(integer expression) on the terminal.

\char_set_lcode:nn {(intexpri)} {(intexprs)}

This function set up the behaviour of (character) when found inside \t1_to_lowercase:n,
such that (character;) will be converted into (characters). The two (characters) may be
specified using an (integer expression) for the character code concerned. This may in-
clude the TEX ¢(character) method for converting a single character into its character
code:

\char_set_lccode:nn { ‘\A } { ‘\a } % Standard behaviour
\char_set_lccode:nn { ‘\A } { ‘\A + 32 }
\char_set_lccode:nn { 50 } { 60 }

The setting applies within the current TEX group.

\char_value_lccode:n {(integer expression)}

Expands to the current lower case code of the (character) with character code given by
the (integer expression).

\char_show_value_lccode:n {(integer expression)}

Displays the current lower case code of the {character) with character code given by the
(integer expression) on the terminal.

ol

\char_set_uccode:nn \char_set_uccode:nn {(intexpri)} {(intexprs)}

This function set up the behaviour of (character) when found inside \t1_to_uppercase:n,
such that (character;) will be converted into (characters). The two (characters) may be
specified using an (integer expression) for the character code concerned. This may in-
clude the TEX ‘(character) method for converting a single character into its character
code:

\char_set_uccode:nn { ‘\a } { ‘\A } % Standard behaviour
\char_set_uccode:nn { ‘\A } { ‘\A - 32 }
\char_set_uccode:nn { 60 } { 50 }

The setting applies within the current TEX group.

\char_value_uccode:n x \char_value_uccode:n {(integer expression)}

Expands to the current upper case code of the (character) with character code given by
the (integer expression).

\char_show_value_uccode:n \char_show_value_uccode:n {(integer expression)}

Displays the current upper case code of the (character) with character code given by the
(integer expression) on the terminal.

\char_set_mathcode:nn \char_set_mathcode:nn {(intexpri)} {({intexprs)}

This function sets up the math code of (character). The (character) is specified as an
(integer expression) which will be used as the character code of the relevant character.
The setting applies within the current TEX group.

\char_value_mathcode:n * \char_value_mathcode:n {(integer expression)}

Expands to the current math code of the (character) with character code given by the
(integer expression).

\char_show_value_mathcode:n \char_show_value_mathcode:n {(integer expression)}

Displays the current math code of the (character) with character code given by the
(integer expression) on the terminal.

\char_set_sfcode:nn \char_set_sfcode:nn {(intexpr;)} {(intexpr:)}

This function sets up the space factor for the {character). The (character) is specified as
an (integer expression) which will be used as the character code of the relevant character.
The setting applies within the current TEX group.

\char_value_sfcode:n x \char_value_sfcode:n {(integer expression)}

Expands to the current space factor for the (character) with character code given by the
(integer expression).

92

\char_show_value_sfcode:n

\1_char_active_seq

New: 2012-01-23

\1_char_special_seq

New: 2012-01-23

\token_new:Nn

\c_group_begin_token
\c_group_end_token
\c_math_toggle_token
\c_alignment_token
\c_parameter_token
\c_math_superscript_token
\c_math_subscript_token
\c_space_token

\c_catcode_letter_token
\c_catcode_other_token

\c_catcode_active_tl

\char_show_value_sfcode:n {(integer expression)}

Displays the current space factor for the (character) with character code given by the
(integer expression) on the terminal.

Used to track which tokens will require special handling at the document level as they
are of category (active) (catcode 13). Each entry in the sequence consists of a single
active character. Active tokens should be added to the sequence when they are defined
for general document use.

Used to track which tokens will require special handling when working with verbatim-
like material at the document level as they are not of categories (letter) (catcode 11) or
(other) (catcode 12). Each entry in the sequence consists of a single escaped token, for
example \\ for the backslash or \{ for an opening brace.Escaped tokens should be added
to the sequence when they are defined for general document use.

3 Generic tokens

\token_new:Nn (token;) {(tokens)}

Defines (token) to globally be a snapshot of (tokeny). This will be an implicit represen-
tation of (tokens).

These are implicit tokens which have the category code described by their name. They
are used internally for test purposes but are also available to the programmer for other
uses.

These are implicit tokens which have the category code described by their name. They
are used internally for test purposes and should not be used other than for category code
tests.

A token list containing an active token. This is used internally for test purposes and
should not be used other than in appropriately-constructed category code tests.

93

\token_to_meaning:N %
ic %

\token_to_str:N *
iC %

4 Converting tokens

\token_to_meaning:N (token)

Inserts the current meaning of the (token) into the input stream as a series of characters
of category code 12 (other). This will be the primitive TEX description of the (token),
thus for example both functions defined by \cs_set_nopar:Npn and token list variables
defined using \t1l_new:N will be described as macros.

TEXhackers note: This is the TEX primitive \meaning.

\token_to_str:N (token)

Converts the given (token) into a series of characters with category code 12 (other). The
current escape character will be the first character in the sequence, although this will
also have category code 12 (the escape character is part of the (token)). This function
requires only a single expansion.

TEXhackers note: \token_to_str:N is the TEX primitive \string renamed.

5 Token conditionals

\token_if_group_begin_p:N » \token_if_group_begin_p:N (token)
\token_if_group_begin:NTF % \token_if_group_begin:NTF (token) {(true code)} {(false code)}

\token_if_group_end_p:N x
\token_if_group_end:NTF *

Tests if (token) has the category code of a begin group token ({ when normal TEX
category codes are in force). Note that an explicit begin group token cannot be tested in
this way, as it is not a valid N-type argument.

\token_if_group_end_p:N (token)
\token_if_group_end:NTF (token) {(true code)} {(false code)}

Tests if (token) has the category code of an end group token (} when normal TEX category
codes are in force). Note that an explicit end group token cannot be tested in this way,
as it is not a valid N-type argument.

\token_if_math_toggle_p:N » \token_if_math_toggle_p:N (token)
\token_if_math_toggle:NTF » \token_if_math_toggle:NTF (token) {(true code)} {(false code)}

\token_if_alignment_p:N x
\token_if_alignment:NTF *

Tests if (token) has the category code of a math shift token ($ when normal TEX category
codes are in force).

\token_if_alignment_p:N (token)
\token_if_alignment:NTF (token) {(true code)} {(false code)}

Tests if (token) has the category code of an alignment token (& when normal TEX category
codes are in force).

o4

\token_if_parameter_p:N
\token_if_parameter:NTF

*
*

\token_if_parameter_p:N (token)
\token_if_alignment:NTF (token) {(true code)} {(false code)}

Tests if (token) has the category code of a macro parameter token (# when normal TEX
category codes are in force).

\token_if_math_superscript_p:N x \token_if math_superscript_p:N (token)
\token_if_math_superscript:NTF x \token_if math_superscript:NTF (token) {(true code)} {(false code)}

Tests if (token) has the category code of a superscript token (= when normal TEX category
codes are in force).

\token_if_math_subscript_p:N % \token_if math_subscript_p:N (token)
\token_if_math_subscript:NTF % \token_if_math_subscript:NTF (token) {(true code)} {(false code)}

\token_if_space_p:N
\token_if_space:NTF

*

\token_if_letter_p:N
\token_if_letter:NTF

\token_if_other_p:N
\token_if_other:NTF

>*

\token_if_active_p:N
\token_if_active:NTF

x>

Tests if (token) has the category code of a subscript token (_ when normal TEX category
codes are in force).

\token_if_space_p:N (token)
\token_if_space:NTF (token) {(true code)} {(false code)}

Tests if (token) has the category code of a space token. Note that an explicit space token
with character code 32 cannot be tested in this way, as it is not a valid N-type argument.

\token_if_letter_p:N (token)
\token_if_letter:NTF (token) {(true code)} {(false code)}

Tests if (token) has the category code of a letter token.

\token_if_other_p:N (token)
\token_if_other:NTF (token) {(true code)} {(false code)}

Tests if (token) has the category code of an “other” token.

\token_if_active_p:N (token)
\token_if_active:NTF (token) {(true code)} {(false code)}

Tests if (token) has the category code of an active character.

\token_if_eq_catcode_p:NN % \token_ if_eq_catcode_p:NN (token:) (tokeny)
\token_if_eq_catcode:NNTF » \token_if_eq_ catcode:NNTF (tokem) (tokenz) {(true code)} {(false code)}

Tests if the two (tokens) have the same category code.

\token_if_eq_charcode_p:NN % \token_if_eq_charcode_p:NN (tokem) (tokeny)
\token_if_eq_charcode:NNTF % \token_if_eq_charcode:NNTF (tokem) (tokenz) {(true code)} {(false code)}

Tests if the two (tokens) have the same character code.

%)

\token_if_eq_meaning p:NN * \token_ if_eq_meaning p:NN (token:) (tokeny)
\token_if_eq_meaning:NNTF % \token_if_eq_meaning:NNTF (token;) (tokenz) {(true code)} {(false code)}

Tests if the two (tokens) have the same meaning when expanded.

\token_if_macro_p:N % \token_if macro_p:N (token)
\token_if macro:NTF x \token_if_macro:NTF (token) {(true code)} {(false code)}

Updated: 2011-05-23 Lests if the (token) is a TEX macro.

\token_if_cs_p:N (token)
\token_if_cs:NTF (token) {(true code)} {(false code)}

>*

\token_if_cs_p:N
\token_if_cs:NTF

*

Tests if the (token) is a control sequence.

\token_if_expandable_p:N (token)
\token_if_expandable:NTF (token) {(true code)} {(false code)}

\token_if_expandable_p:N
\token_if_expandable:NTF

x>

Tests if the (token) is expandable. This test returns (false) for an undefined token.

\token_if_long_macro_p:N » \token_if_long_macro_p:N (token)
\token_if_long_macro:NTF » \token_if_long_macro:NTF (token) {(true code)} {(false code)}

Updated: 2012-01-20 Lests if the (token) is a long macro.

\token_if_protected_macro_p:N % \token_if_protected_macro_p:N (token)
\token_if_protected_macro:NTF % \token_if_protected_macro:NTF (token) {(true code)} {(false code)}

Updated: 2012-01-20

Tests if the (token) is a protected macro: a macro which is both protected and long will
return logical false.

\token_if_protected_long_macro_p:N % \token_if_protected_long_macro_p:N (token)
\token_if_protected_long macro:NTF \token_if_protected_long _macro:NTF (token) {(true code)} {(false
code)}

Updated: 2012-01-20

Tests if the (token) is a protected long macro.

\token_if_chardef_p:N + \token_if_chardef_ p:N (token)
\token_if_chardef:NTF + \token_if_chardef:NTF (token) {(true code)} {(false code)}

Updated: 2012-01-20 Lests if the (token) is defined to be a chardef.

TgEXhackers note: Booleans, boxes and small integer constants are implemented as chard-
efs.

96

\token_if_mathchardef_p:N * \token_if_mathchardef_p:N (token)
\token_if_mathchardef:NTF % \token_if_mathchardef:NTF (token) {(true code)} {(false code)}

Updated: 2012-01-20

Tests if the (token) is defined to be a mathchardef.

\token_if_dim_register_p:N % \token_if_dim_register_p:N (token)
\token_if_dim_register:NTF * \token_if_dim_register:NTF (token) {(true code)} {(false code)}

Updated: 2012-01-20

Tests if the (token) is defined to be a dimension register.

\token_if_int_register_p:N * \token_ if_int_register_p:N (token)
\token_if_int_register:NTF \token_if_int_register:NTF (token) {(true code)} {(false code)}

Updated: 2012-01-20

Tests if the (token) is defined to be a integer register.

TEXhackers note: Constant integers may be implemented as integer registers, chardefs,
or mathchardefs depending on their value.

\token_if_muskip_register_p:N x \token_if muskip_register_p:N (token)
\token_if_muskip_register:NTF % \token_if muskip_register:NTF (token) {(true code)} {(false code)}

New: 2012-02-15

Tests if the (token) is defined to be a muskip register.

\token_if_skip_register_p:N % \token_if_skip_register_p:N (token)
\token_if_skip_register:NTF \token_if_skip_register:NTF (token) {(true code)} {(false code)}

Updated: 2012-01-20

Tests if the (token) is defined to be a skip register.

\token_if_toks_register_p:N % \token_if_toks_register_p:N (token)
\token_if_toks_register:NTF \token_if_toks_register:NTF (token) {(true code)} {(false code)}

Updated: 2012-01-20

Tests if the (token) is defined to be a toks register (not used byITEX3).

\token_if_primitive_p:N » \token_ if_ primitive_p:N (token)
\token_if_primitive:NTF » \token_if_ primitive:NTF (token) {(true code)} {(false code)}

Updated: 2011-05-23 Lests if the (foken) is an engine primitive.

o7

6 Peeking ahead at the next token

There is often a need to look ahead at the next token in the input stream while leaving
it in place. This is handled using the “peek” functions. The generic \peek_after:Nw is
provided along with a family of predefined tests for common cases. As peeking ahead does
not skip spaces the predefined tests include both a space-respecting and space-skipping
version.

\peek_after:Nw \peek_after:Nw (function) (token)

Locally sets the test variable \1_peek_token equal to (token) (as an implicit token, not
as a token list), and then expands the (function). The (token) will remain in the input
stream as the next item after the (function). The (token) here may be ., { or } (assuming
normal TEX category codes), i.e. it is not necessarily the next argument which would be
grabbed by a normal function.

\peek_gafter:Nw \peek_gafter:Nw (function) (token)

Globally sets the test variable \g_peek_token equal to (token) (as an implicit token,
not as a token list), and then expands the (function). The (token) will remain in the
input stream as the next item after the (function). The (token) here may be ., { or }
(assuming normal TEX category codes), i.e. it is not necessarily the next argument which
would be grabbed by a normal function.

\1_peek_token Token set by \peek_after:Nw and available for testing as described above.

\g_peek_token Token set by \peek_gafter:Nw and available for testing as described above.

\peek_catcode:NTF \peek_catcode:NTF (test token) {{true code)} {(false code)}

Updated: 2012-12-20 Tests if the next (token) in the input stream has the same category code as the (test
token) (as defined by the test \token_if_eq_catcode:NNTF). Spaces are respected by
the test and the (token) will be left in the input stream after the (true code) or (false
code) (as appropriate to the result of the test).

\peek_catcode_ignore_spaces:NTF \peek_catcode_ignore_spaces:NTF (test token) {(true code)} {(false
code)?}

Updated: 2012-12-20

Tests if the next non-space (token) in the input stream has the same category code as the
(test token) (as defined by the test \token_if_eq_catcode:NNTF). Explicit and implicit
space tokens (with character code 32 and category code 10) are ignored and removed by
the test and the (token) will be left in the input stream after the (true code) or (false
code) (as appropriate to the result of the test).

98

\peek_catcode_remove:NTF

Updated: 2012-12-20

\peek_catcode_remove:NTF (test token) {(true code)} {(false code)}

Tests if the next (token) in the input stream has the same category code as the (test
token) (as defined by the test \token_if_eq_catcode:NNTF). Spaces are respected by
the test and the (token) will be removed from the input stream if the test is true. The
function will then place either the (true code) or (false code) in the input stream (as
appropriate to the result of the test).

\peek_catcode_remove_ignore_spaces:NTF \peek_catcode_remove_ignore_spaces:NTF (test token) {(true

code)} {(false code)}
Updated: 2012-12-20

\peek_charcode:NTF

Updated: 2012-12-20

Tests if the next non-space (token) in the input stream has the same category code as the
(test token) (as defined by the test \token_if_eq_catcode:NNTF). Explicit and implicit
space tokens (with character code 32 and category code 10) are ignored and removed
by the test and the (token) will be removed from the input stream if the test is true.
The function will then place either the (true code) or (false code) in the input stream (as
appropriate to the result of the test).

\peek_charcode:NTF (test token) {(true code)} {(false code)}

Tests if the next (token) in the input stream has the same character code as the (test
token) (as defined by the test \token_if_eq_charcode:NNTF). Spaces are respected by
the test and the (token) will be left in the input stream after the (true code) or (false
code) (as appropriate to the result of the test).

\peek_charcode_ignore_spaces:NTF \peek_charcode_ignore_spaces:NTF (test token) {(true code)} {(false

code)}

Updated: 2012-12-20

\peek_charcode_remove:NTF

Updated: 2012-12-20

Tests if the next non-space (token) in the input stream has the same character code as the
(test token) (as defined by the test \token_if_eq_charcode:NNTF). Explicit and implicit
space tokens (with character code 32 and category code 10) are ignored and removed by
the test and the (token) will be left in the input stream after the (true code) or (false
code) (as appropriate to the result of the test).

\peek_charcode_remove:NTF (test token) {(true code)} {(false code)}

Tests if the next (token) in the input stream has the same character code as the (test
token) (as defined by the test \token_if_eq_charcode:NNTF). Spaces are respected by
the test and the (token) will be removed from the input stream if the test is true. The
function will then place either the (true code) or (false code) in the input stream (as
appropriate to the result of the test).

99

\peek_charcode_remove_ignore_spaces:NTF \peek_charcode_remove_ignore_spaces:NTF (test token)

{(true code)} {(false code)}
Updated: 2012-12-20

\peek_meaning:NTF

Updated: 2011-07-02

Tests if the next non-space (token) in the input stream has the same character code as the
(test token) (as defined by the test \token_if_eq_charcode:NNTF). Explicit and implicit
space tokens (with character code 32 and category code 10) are ignored and removed by
the test and the (token) will be removed from the input stream if the test is true. The
function will then place either the (true code) or (false code) in the input stream (as
appropriate to the result of the test).

\peek_meaning:NTF (test token) {(true code)} {(false code)}

Tests if the next (token) in the input stream has the same meaning as the (test token)
(as defined by the test \token_if_eq_meaning:NNTF). Spaces are respected by the test
and the (token) will be left in the input stream after the (true code) or (false code) (as
appropriate to the result of the test).

\peek_meaning_ignore_spaces:NTF \peek_meaning_ignore_spaces:NTF (test token) {(true code)} {(false

code)?}

Updated: 2012-12-05

\peek_meaning_remove:NTF

Updated: 2011-07-02

Tests if the next non-space (token) in the input stream has the same meaning as the (test
token) (as defined by the test \token_if_eq_meaning:NNTF). Explicit and implicit space
tokens (with character code 32 and category code 10) are ignored and removed by the
test and the (token) will be left in the input stream after the (true code) or (false code)
(as appropriate to the result of the test).

\peek_meaning_remove:NTF (test token) {(true code)} {(false code)}

Tests if the next (token) in the input stream has the same meaning as the (test token)
(as defined by the test \token_if_eq meaning:NNTF). Spaces are respected by the test
and the (token) will be removed from the input stream if the test is true. The function
will then place either the (true code) or (false code) in the input stream (as appropriate
to the result of the test).

\peek_meaning_remove_ignore_spaces:NTF \peek_meaning_remove_ignore_spaces:NTF (test token)

{(true code)} {(false code)}
Updated: 2012-12-05

Tests if the next non-space (token) in the input stream has the same meaning as the
(test token) (as defined by the test \token_if_eq_meaning:NNTF). Explicit and implicit
space tokens (with character code 32 and category code 10) are ignored and removed
by the test and the (token) will be removed from the input stream if the test is true.
The function will then place either the (true code) or (false code) in the input stream (as
appropriate to the result of the test).

60

\token_get_arg_spec:N *

7 Decomposing a macro definition

These functions decompose TEX macros into their constituent parts: if the (token) passed
is not a macro then no decomposition can occur. In the later case, all three functions
leave \scan_stop: in the input stream.

\token_get_arg_spec:N (token)

If the (token) is a macro, this function will leave the primitive TEX argument specification
in input stream as a string of tokens of category code 12 (with spaces having category
code 10). Thus for example for a token \next defined by

\cs_set:Npn \next #1#2 { x #1 y #2 }

will leave #1#2 in the input stream. If the (token) is not a macro then \scan_stop: will
be left in the input stream

TEXhackers note: If the arg spec. contains the string ->, then the spec function will
produce incorrect results.

\token_get_replacement_spec:N x \token_get_replacement_spec:N (token)

\token_get_prefix_spec:N x

If the (token) is a macro, this function will leave the replacement text in input stream as
a string of tokens of category code 12 (with spaces having category code 10). Thus for
example for a token \next defined by

\cs_set:Npn \next #1#2 { x #1~y #2 }
will leave x#1 y#2 in the input stream. If the (token) is not a macro then \scan_stop:

will be left in the input stream

\token_get_prefix_spec:N (token)

If the (token) is a macro, this function will leave the TEX prefixes applicable in input
stream as a string of tokens of category code 12 (with spaces having category code 10).
Thus for example for a token \next defined by

\cs_set:Npn \next #1#2 { x #1~y #2 }

will leave \long in the input stream. If the (token) is not a macro then \scan_stop:
will be left in the input stream

61

\int_eval:n *

\int_abs:n *

Updated: 2012-09-26

\int_div_round:nn *

Updated: 2012-09-26

Part IX
The 13int package
Integers

Calculation and comparison of integer values can be carried out using literal numbers, int
registers, constants and integers stored in token list variables. The standard operators
+, -, / and * and parentheses can be used within such expressions to carry arithmetic
operations. This module carries out these functions on integer expressions (“intexpr”).

1 Integer expressions

\int_eval:n {(integer expression)}

Evaluates the (integer expression), expanding any integer and token list variables within
the (expression) to their content (without requiring \int_use:N/\t1l_use:N) and apply-
ing the standard mathematical rules. For example both

\int_eval:n { 6+ 4 %3 - (3+4x*x5)}
and

\tl_new:N \l_my_tl

\tl_set:Nn \1_my_tl { 5 }

\int_new:N \1l_my_int

\int_set:Nn \1_my_int { 4 }

\int_eval:n { \1_my_tl + \l_my_int * 3 - (3 +4 %5) }

both evaluate to —6. The {(integer ezpression)} may contain the operators +, -, * and
/, along with parenthesis (and). After two expansions, \int_eval:n yields an (integer
denotation) which is left in the input stream. This is not an (internal integer), and
therefore requires suitable termination if used in a TEX-style integer assignment.

\int_abs:n {(integer expression)}

Evaluates the (integer expression) as described for \int_eval:n and leaves the absolute
value of the result in the input stream as an (integer denotation) after two expansions.

\int_div_round:nn {(intexpr:)} {(intexprs)}

Evaluates the two (integer expressions) as described earlier, then calculates the result of
dividing the first value by the second, rounding any remainder. Ties are rounded away
from zero. Note that this is identical to using / directly in an (integer expression). The
result is left in the input stream as an (integer denotation) after two expansions.

62

\int_div_truncate:nn *

Updated: 2012-02-09

\int_max:nn *
\int_min:nn %

Updated: 2012-09-26

\int_mod:nn %

Updated: 2012-09-26

\int_new:N
e

\int_const:Nn
:cn

Updated: 2011-10-22

\int_zero:N

ic
\int_gzero:N
c

\int_zero_new:N

:c
\int_gzero_new:N
e

New: 2011-12-13

\int_set_eq:NN
: (cN|Nc|cc)
\int_gset_eq:NN
:(cN|N¢|ec)

\int_div_truncate:nn {(intexpr:)} {(intexprs)}

Evaluates the two (integer expressions) as described earlier, then calculates the result of
dividing the first value by the second, truncating any remainder. Note that division using
/ rounds the result. The result is left in the input stream as an (integer denotation) after
two expansions.

\int_max:nn {(intexpr:)} {(intexprs)}
\int_min:nn {(intexpr:)} {(intexprs)}

Evaluates the (integer expressions) as described for \int_eval:n and leaves either the
larger or smaller value in the input stream as an (integer denotation) after two expansions.

\int_mod:nn {(intexpr:)} {(intexprs)}

Evaluates the two (integer expressions) as described earlier, then calculates the integer
remainder of dividing the first expression by the second. This is left in the input stream
as an (integer denotation) after two expansions.

2 Creating and initialising integers

\int_new:N (integer)

Creates a new (integer) or raises an error if the name is already taken. The declaration
is global. The (integer) will initially be equal to 0.

\int_const:Nn (integer) {(integer expression)}

Creates a new constant (integer) or raises an error if the name is already taken. The
value of the (integer) will be set globally to the (integer expression).

\int_zero:N (integer)

Sets (integer) to 0.

\int_zero_new:N (integer)

Ensures that the (integer) exists globally by applying \int_new:N if necessary, then
applies \int_(g)zero:N to leave the (integer) set to zero.

\int_set_eq:NN (integeri) (integers)

Sets the content of (integer;) equal to that of (integers).

63

\int_if_exist_p:N

\int_if_exist:NTF

*
iC ox
*
*

:cTF

New: 2012-03-03

\int_add:Nn

rcn
\int_gadd:Nn
icn

Updated: 2011-10-22

\int_decr:N

ic
\int_gdecr:N
:c

\int_incr:N

ic
\int_gincr:N
c

\int_set:Nn

icn
\int_gset:Nn
icn

Updated: 2011-10-22

\int_sub:Nn

icn
\int_gsub:Nn
icn

Updated: 2011-10-22

\int_if_exist_p:N (int)
\int_if_exist:NTF (int) {(true code)} {(false code)}

Tests whether the (int) is currently defined. This does not check that the (int) really is
an integer variable.

3 Setting and incrementing integers
\int_add:Nn (integer) {(integer expression)}

Adds the result of the (integer expression) to the current content of the (integer).

\int_decr:N (integer)

Decreases the value stored in (integer) by 1.

\int_incr:N (integer)

Increases the value stored in (integer) by 1.

\int_set:Nn (integer) {(integer expression)}

Sets (integer) to the value of (integer expression), which must evaluate to an integer (as
described for \int_eval:n).

\int_sub:Nn (integer) {(integer expression)}

Subtracts the result of the (integer expression) from the current content of the (integer).

64

\int_use:N *

:C *

Updated: 2011-10-22

\int_compare_p:nNn *
\int_compare:nNnTF *

4 Using integers

\int_use:N (integer)

Recovers the content of an (integer) and places it directly in the input stream. An
error will be raised if the variable does not exist or if it is invalid. Can be omitted
in places where an (integer) is required (such as in the first and third arguments of
\int_compare:nNnTF).

TEXhackers note: \int_use:N is the TEX primitive \the: this is one of several XTEX3
names for this primitive.

5 Integer expression conditionals

\int_compare_p:nNn {(intexpri)} (relation) {(intexpra)}
\int_compare:nNnTF

{(intexpri)} (relation) {(intexprs)}

{(true code)} {(false code)}

This function first evaluates each of the (integer expressions) as described for \int_-
eval:n. The two results are then compared using the (relation):

Equal
Greater than
Less than

ANV

65

\int_compare_p:n *
\int_compare:nTF *

Updated: 2013-01-13

\int_compare_p:n
{

intexpri relation;
P.

(intexpryn) (relationy)

(intexprn41)
}
\int_compare:nTF
{

(intexpri) (relation)

(intexprn) (relationn)
(intexprn41)

}

{(true code)} {(false code)}

This function evaluates the (integer expressions) as described for \int_eval:n and com-
pares consecutive result using the corresponding (relation), namely it compares (intexpr;)
and (intexprs) using the (relation), then (intexprs) and (intexprs) using the (relations),
until finally comparing (intezpry) and (intezpry 1) using the (relationy). The test yields
true if all comparisons are true. Each (integer expression) is evaluated only once, and
the evaluation is lazy, in the sense that if one comparison is false, then no other (integer
expression) is evaluated and no other comparison is performed. The (relations) can be
any of the following:

Equal =or ==
Greater than or equal to >=
Greater than >

Less than or equal to <=
Less than <

Not equal 1=

66

\int_case:nnTF *

New: 2013-07-24

\int_if_even_p:n *
\int_if_even:nTF x
\int_if_odd_p:n «*
\int_if_odd:nTF *

\int_do_until:nNnn 3¢

\int_case:nnTF {(test integer expression)}

{(intexpr case;)} {{code casei)}
{(intexpr cases)} {{code cases)}

{(intexpr case,)} {{code case,)}
}
{(true code)}
{(false code)}

This function evaluates the (test integer expression) and compares this in turn to each
of the (integer expression cases). If the two are equal then the associated (code) is left
in the input stream. If any of the cases are matched, the (true code) is also inserted into
the input stream (after the code for the appropriate case), while if none match then the
(false code) is inserted. The function \int_case:nn, which does nothing if there is no
match, is also available. For example

\int_case:nnF

{2%*573}
{
{5} { Small }
{4+62} { Medium }
{ -2 * 10 } { Negative }
}
{ No idea! }

will leave “Medium” in the input stream.

\int_if_odd_p:n {(integer expression)}
\int_if_odd:nTF {(integer expression)}
{(true code)} {(false code)}

This function first evaluates the (integer expression) as described for \int_eval:n. It
then evaluates if this is odd or even, as appropriate.

6 Integer expression loops

\int_do_until:nNnn {(intexpri)} (relation) {(intexpr:)} {(code)}

Places the (code) in the input stream for TEX to process, and then evaluates the rela-
tionship between the two (integer expressions) as described for \int_compare :nNnTF. If
the test is false then the (code) will be inserted into the input stream again and a loop
will occur until the (relation) is true.

67

\int_do_while:nNnn 3¢

\int_until_do:nNnn 3¢

\int_while_do:nNnn 3¢

\int_do_until:nn W

Updated: 2013-01-13

\int_do_while:nn 5

Updated: 2013-01-13

\int_until_do:nn

Updated: 2013-01-13

\int_while_do:nn 3

Updated: 2013-01-13

\int_do_while:nNnn {(intexpri)} (relation) {(intexpr:)} {(code)}

Places the (code) in the input stream for TEX to process, and then evaluates the rela-
tionship between the two (integer expressions) as described for \int_compare :nNnTF. If
the test is true then the (code) will be inserted into the input stream again and a loop
will occur until the (relation) is false.

\int_until_do:nNnn {(intexpri)} (relation) {(intexprs)} {{code)}

Evaluates the relationship between the two (integer expressions) as described for \int_-
compare :nNnTF, and then places the (code) in the input stream if the (relation) is false.
After the (code) has been processed by TEX the test will be repeated, and a loop will
occur until the test is true.

\int_while_do:nNnn {(intexpri)} (relation) {(intexprs)} {{code)}

Evaluates the relationship between the two (integer expressions) as described for \int_-
compare:nNnTF, and then places the (code) in the input stream if the (relation) is true.
After the (code) has been processed by TEX the test will be repeated, and a loop will
occur until the test is false.

\int_do_until:nn {(integer relation)} {(code)}

Places the {code) in the input stream for TEX to process, and then evaluates the (integer
relation) as described for \int_compare:nTF. If the test is false then the (code) will be
inserted into the input stream again and a loop will occur until the (relation) is true.

\int_do_while:nn {(integer relation)} {(code)}

Places the (code) in the input stream for TEX to process, and then evaluates the (integer
relation) as described for \int_compare:nTF. If the test is true then the (code) will be
inserted into the input stream again and a loop will occur until the (relation) is false.

\int_until_do:nn {(integer,elation)} {(code)}

Evaluates the (integer relation) as described for \int_compare:nTF, and then places the
(code) in the input stream if the (relation) is false. After the (code) has been processed
by TEX the test will be repeated, and a loop will occur until the test is true.

\int_while_do:nn {(integer relation)} {(code)}

Evaluates the (integer relation) as described for \int_compare:nTF, and then places the
(code) in the input stream if the (relation) is true. After the (code) has been processed
by TEX the test will be repeated, and a loop will occur until the test is false.

68

\int_step_function:nnnN

New: 2012-06-04
Updated: 2012-06-29

\int_step_inline:nnnn

New: 2012-06-04
Updated: 2012-06-29

\int_step_variable:nnnNn

New: 2012-06-04
Updated: 2012-06-29

\int_to_arabic:n *

Updated: 2011-10-22

7 Integer step functions

\int_step_function:nnnN {(initial value)} {(step)} {(final value)} (functionm)

This function first evaluates the (initial value), (step) and (final value), all of which
should be integer expressions. The (function) is then placed in front of each (value) from
the (initial value) to the {final value) in turn (using (step) between each (value)). Thus
(function) should absorb one numerical argument. For example

\cs_set:Npn \my_func:n #1 { [I~saw~#1] \quad }
\int_step_function:nnnN { 1 } { 1 } { 5 } \my_func:n

would print

[[saw 1] [Isaw 2] [Isaw 3] [Isaw 4] [Isaw 5]

\int_step_inline:nnnn {(initial value)} {(step)} {(final value)} {(code)}

This function first evaluates the (initial value), (step) and (final value), all of which
should be integer expressions. The (code) is then placed in front of each (value) from the
(initial value) to the (final value) in turn (using (step) between each (value)). Thus the
(code) should define a function of one argument (#1).

\int_step_variable:nnnNn
{(initial value)} {(step)} {(final value)} (tl var) {(code)}

This function first evaluates the (initial value), (step) and (final value), all of which
should be integer expressions. The (code) is inserted into the input stream, with the
(tl var) defined as the current (value). Thus the (code) should make use of the (¢l var).

8 Formatting integers

Integers can be placed into the output stream with formatting. These conversions apply
to any integer expressions.

\int_to_arabic:n {(integer expression)}

Places the value of the (integer expression) in the input stream as digits, with category
code 12 (other).

69

\int_to_alph:n + \int_to_alph:n {(integer expression)}

\int_to_Alph:n Evaluates the (integer expression) and converts the result into a series of letters, which

Updated: 2011-09-17 are then left in the input stream. The conversion rule uses the 26 letters of the English
alphabet, in order, adding letters when necessary to increase the total possible range of
representable numbers. Thus

\int_to_alph:n { 1 }
places a in the input stream,

\int_to_alph:n { 26 }
is represented as z and

\int_to_alph:n { 27 }

is converted to aa. For conversions using other alphabets, use \int_to_symbols:nnn to
define an alphabet-specific function. The basic \int_to_alph:n and \int_to_Alph:n
functions should not be modified.

\int_to_symbols:nnn % \int_to_symbols:nnn
{(integer expression)} {(total symbols)}
(value to symbol mapping)

Updated: 2011-09-17

This is the low-level function for conversion of an (integer expression) into a symbolic
form (which will often be letters). The (total symbols) available should be given as an
integer expression. Values are actually converted to symbols according to the (value to
symbol mapping). This should be given as (total symbols) pairs of entries, a number and
the appropriate symbol. Thus the \int_to_alph:n function is defined as

\cs_new:Npn \int_to_alph:n #1

{
\int_to_symbols:nnn {#1} { 26 }
{
{ 1}r¥{a?}
{ 23{bv1?
{26Y{=z1%
}
}

\int_to_bin:n x \int_to_bin:n {(integer expression)}

New: 2014-02-11 Calculates the value of the (integer expression) and places the binary representation of
the result in the input stream.

70

\int_to_hex:n *
\int_to_Hex:n *

New: 2014-02-11

\int_to_oct:n x

New: 2014-02-11

\int_to_base:nn *
\int_to_Base:nn «*

Updated: 2014-02-11

\int_to_roman:n 3
\int_to_Roman:n

Updated: 2011-10-22

\int_from_alph:n *

\int_from_bin:n *

New: 2014-02-11

\int_from_hex:n x

New: 2014-02-11

\int_to_hex:n {(integer expression)}

Calculates the value of the (integer expression) and places the hexadecimal (base 16)
representation of the result in the input stream. Letters are used for digits beyond 9:
lower case letters for \int_to_hex:n and upper case ones for \int_to_Hex:n.

\int_to_octal:n {(integer expression)}

Calculates the value of the (integer expression) and places the octal (base 8) representa-
tion of the result in the input stream.

\int_to_base:nn {(integer expression)} {(base)}

Calculates the value of the (integer expression) and converts it into the appropriate
representation in the (base); the later may be given as an integer expression. For bases
greater than 10 the higher “digits” are represented by letters from the English alphabet:
lower case letters for \int_to_base:n and upper case ones for \int_to_Base:n. The
maximum (base) value is 36.

TEXhackers note: This is a generic version of \int_to_bin:n, etc.

\int_to_roman:n {(integer expression)}

Places the value of the (integer expression) in the input stream as Roman numerals,
either lower case (\int_to_roman:n) or upper case (\int_to_Roman:n). The Roman
numerals are letters with category code 11 (letter).

9 Converting from other formats to integers

\int_from_alph:n {(letters)}

Converts the (letters) into the integer (base 10) representation and leaves this in the
input stream. The (letters) are treated using the English alphabet only, with “a” equal
to 1 through to “z” equal to 26. Either lower or upper case letters may be used. This is
the inverse function of \int_to_alph:n.

\int_from_bin:n {(binary number)}

Converts the (binary number) into the integer (base 10) representation and leaves this in
the input stream.

\int_from_hex:n {(hexadecimal number)}

Converts the (hezadecimal number) into the integer (base 10) representation and leaves
this in the input stream. Digits greater than 9 may be represented in the (hezadecimal
number) by upper or lower case letters.

71

\int_from_oct:n *

New: 2014-02-11

\int_from_roman:n x

\int_from_base:nn *

\int_show:N
ic

\int_show:n

New: 2011-11-22

Updated: 2012-05-27

\int_from_oct:n {({octal number)}

Converts the (octal number) into the integer (base 10) representation and leaves this in
the input stream.

\int_from_roman:n {(roman numeral)}

Converts the (roman numeral) into the integer (base 10) representation and leaves this
in the input stream. The (roman numeral) may be in upper or lower case; if the numeral
is not valid then the resulting value will be —1.

\int_from_base:nn {(number)} {(base)}

Converts the (number) in (base) into the appropriate value in base 10. The (number)
should consist of digits and letters (either lower or upper case), plus optionally a leading
sign. The maximum (base) value is 36.

10 Viewing integers
\int_show:N (integer)
Displays the value of the (integer) on the terminal.

\int_show:n (integer expression)

Displays the result of evaluating the (integer expression) on the terminal.

72

\c_minus_one
\c_zero
\c_one
\c_two
\c_three
\c_four
\c_five
\c_six
\c_seven
\c_eight
\c_nine
\c_ten
\c_eleven
\c_twelve
\c_thirteen
\c_fourteen
\c_fifteen
\c_sixteen
\c_thirty_two

\c_one_hundred
\c_two_hundred_fifty_five
\c_two_hundred_fifty_six
\c_one_thousand
\c_ten_thousand

\c_max_int

\c_max_register_int

\1_tmpa_int
\1_tmpb_int

\g_tmpa_int
\g_tmpb_int

11 Constant integers

Integer values used with primitive tests and assignments: self-terminating nature makes
these more convenient and faster than literal numbers.

The maximum value that can be stored as an integer.
Maximum number of registers.

12 Scratch integers

Scratch integer for local assignment. These are never used by the kernel code, and so
are safe for use with any I#TEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

Scratch integer for global assignment. These are never used by the kernel code, and so
are safe for use with any I4TEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

73

\if_int_compare:w *

\if_case:w *
\or: *

\if_int_odd:w *

__int_to_roman:w x

13 Primitive conditionals

\if_int_compare:w (integer;) (relation) (integers)
(true code)
\else:
(false code)
\fi:
Compare two integers using (relation), which must be one of =, < or > with category code
12. The \else: branch is optional.

TgEXhackers note: These are both names for the TEX primitive \ifnum.

\if_case:w (integer) (caseop)

\or: (casei)

\or:

\else: (default)
\fi:
Selects a case to execute based on the value of the (integer). The first case ((casep)) is
executed if (integer) is 0, the second ({case;)) if the (integer) is 1, etc. The (integer)
may be a literal, a constant or an integer expression (e.g. using \int_eval:n).

TEXhackers note: These are the TEX primitives \ifcase and \or.

\if_int_odd:w (tokens) (optional space)
(true code)
\else:
(true code)
\fi:
Expands (tokens) until a non-numeric token or a space is found, and tests whether the
resulting (integer) is odd. If so, (true code) is executed. The \else: branch is optional.

TEXhackers note: This is the TEX primitive \ifodd.

14 Internal functions

__int_to_roman:w (integer) (space) or (non-expandable token)

Converts (integer) to it lower case Roman representation. Expansion ends when a space
or non-expandable token is found. Note that this function produces a string of letters with
category code 12 and that protected functions are expanded by this process. Negative
(integer) values result in no output, although the function does not terminate expansion
until a suitable endpoint is found in the same way as for positive numbers.

TEXhackers note: This is the TEX primitive \romannumeral renamed.

74

__int_value:w x __int_value:w (integer)
__int_value:w (tokens) (optional space)

Expands (tokens) until an (integer) is formed. One space may be gobbled in the process.

TEXhackers note: This is the TEX primitive \number.

__int_eval:w % __int_eval:w (intexpr) __int_eval_end:

\._int_eval end: * Evaluates (integer expression) as described for \int_eval:n. The evaluation stops when

an unexpandable token which is not a valid part of an integer is read or when __int_-
eval_end: is reached. The latter is gobbled by the scanner mechanism: __int_eval_-
end: itself is unexpandable but used correctly the entire construct is expandable.

TEXhackers note: This is the e-TEX primitive \numexpr.

__prg_compare_error: __prg_compare_error:
:Nw __prg_compare_error:Nw (token)

These are used within \int_compare:n(TF), \dim_compare:n(TF) and so on to recover
correctly if the n-type argument does not contain a properly-formed relation.

()

\dim_new:N
:c

\dim_const:Nn
icn

New: 2012-03-05

\dim_zero:N

:c
\dim_gzero:N
e

\dim_zero_new:N

:c
\dim_gzero_new:N
:c

New: 2012-01-07

\dim_if_exist_p:N *
ico*
\dim_if_exist:NTF
:cTF *

New: 2012-03-03

Part X
The 13skip package
Dimensions and skips

ITREX3 provides two general length variables: dim and skip. Lengths stored as dim
variables have a fixed length, whereas skip lengths have a rubber (stretch/shrink) com-
ponent. In addition, the muskip type is available for use in math mode: this is a special
form of skip where the lengths involved are determined by the current math font (in
mu). There are common features in the creation and setting of length variables, but for
clarity the functions are grouped by variable type.

1 Creating and initialising dim variables

\dim_new:N (dimension)

Creates a new (dimension) or raises an error if the name is already taken. The declaration
is global. The (dimension) will initially be equal to 0pt.

\dim_const:Nn (dimension) {(dimension expression)}

Creates a new constant (dimension) or raises an error if the name is already taken. The
value of the (dimension) will be set globally to the (dimension expression).

\dim_zero:N (dimension)

Sets (dimension) to 0pt.

\dim_zero_new:N (dimension)

Ensures that the (dimension) exists globally by applying \dim_new:N if necessary, then
applies \dim_(g)zero:N to leave the (dimension) set to zero.

\dim_if_exist_p:N (dimension)
\dim_if_exist:NTF (dimension) {(true code)} {(false code)}

Tests whether the (dimension) is currently defined. This does not check that the
(dimension) really is a dimension variable.

76

\dim_add:Nn

:cn
\dim_gadd:Nn
cn

Updated: 2011-10-22

\dim_set:Nn

icn
\dim_gset:Nn
icn

Updated: 2011-10-22

\dim_set_eq:NN

: (cN|Nclec)

\dim_gset_eq:NN

: (cN|Nc|ec)

\dim_sub:Nn

icn
\dim_gsub:Nn
icn

Updated: 2011-10-22

\dim_abs:n *

Updated: 2012-09-26

\dim_max:nn *
\dim_min:nn *

New: 2012-09-09
Updated: 2012-09-26

2 Setting dim variables

\dim_add:Nn (dimension) {(dimension expression)}

Adds the result of the (dimension expression) to the current content of the (dimension).

\dim_set:Nn (dimension) {(dimension expression)}

Sets (dimension) to the value of {dimension expression), which must evaluate to a length
with units.

\dim_set_eq:NN (dimension;) (dimensions)

Sets the content of (dimension;) equal to that of (dimensions).

\dim_sub:Nn (dimension) {(dimension expression)}

Subtracts the result of the (dimension expression) from the current content of the
(dimension).

3 Utilities for dimension calculations

\dim_abs:n {(dimexpr)}

Converts the (dimezpr) to its absolute value, leaving the result in the input stream as a
(dimension denotation).

\dim_max:nn {(dimexpr:)} {(dimexprs)}
\dim_min:nn {(dimexpr:)} {(dimexpra)}

Evaluates the two (dimension expressions) and leaves either the maximum or minimum
value in the input stream as appropriate, as a (dimension denotation).

(i

\dim_ratio:nn 3

Updated: 2011-10-22

\dim_compare_p:nNn *
\dim_compare:nNnTF *

\dim_ratio:nn {(dimexpri)} {(dimexprs)}

Parses the two (dimension expressions) and converts the ratio of the two to a form
suitable for use inside a (dimension expression). This ratio is then left in the input
stream, allowing syntax such as

\dim_set:Nn \1_my_dim
{ 10 pt * \dim_ratio:nn { 5 pt } { 10 pt } }

The output of \dim_ratio:nn on full expansion is a ration expression between two
integers, with all distances converted to scaled points. Thus

\tl_set:Nx \l_my_tl { \dim_ratio:nn { 5 pt } { 10 pt } }
\tl_show:N \1_my_tl

will display 327680/655360 on the terminal.

4 Dimension expression conditionals

\dim_compare_p:nNn {(dimexpri)} (relation) {(dimexpr:)}
\dim_compare :nNnTF

{(dimexpri)} (relation) {(dimexprs)}

{(true code)} {(false code)}

This function first evaluates each of the (dimension expressions) as described for \dim_-
eval:n. The two results are then compared using the (relation):

Equal
Greater than
Less than

NV

78

\dim_compare_p:n *
\dim_compare:nTF *

Updated: 2013-01-13

\dim_compare_p:n
{

dimexpri relation;
P.

(dimexprn) (relationn)
(dimexprn41)
}
\dim_compare:nTF
{

(dimexpri) (relation;)

(dimexprn) (relationn)
(dimexprn41)

}

{(true code)} {(false code)}

This function evaluates the (dimension expressions) as described for \dim_eval:n and
compares consecutive result using the corresponding (relation), namely it compares
(dimexpr) and (dimexpry) using the (relation,), then (dimezprs) and (dimexprs) us-
ing the (relations), until finally comparing (dimexpry) and (dimexpryy1) using the
(relationy). The test yields true if all comparisons are true. FEach (dimension
expression) is evaluated only once, and the evaluation is lazy, in the sense that if one
comparison is false, then no other (dimension expression) is evaluated and no other
comparison is performed. The (relations) can be any of the following:

Equal =or ==
Greater than or equal to >=
Greater than >

Less than or equal to <=
Less than <

Not equal 1=

79

\dim_case:nnTF *

New: 2013-07-24

\dim_do_until:nNnn ¥

\dim_do_while:nNnn 3%

\dim_case:nnTF {(test dimension expression)}

{(dimexpr case;)} {{code casei)}
{(dimexpr cases)} {{code casez)}

{(dimexpr case,)} {(code case,)}
}
{(true code)}
{(false code)}

This function evaluates the (test dimension expression) and compares this in turn to each
of the (dimension expression cases). If the two are equal then the associated (code) is
left in the input stream. If any of the cases are matched, the (true code) is also inserted
into the input stream (after the code for the appropriate case), while if none match then
the (false code) is inserted. The function \dim_case:nn, which does nothing if there is
no match, is also available. For example

\dim_set:Nn \1_tmpa_dim { 5 pt }
\dim_case:nnF
{ 2 \1_tmpa_dim }

{
{5pt? { Small }
{4 pt+6pt} {Medium }
{ - 10 pt %} { Negative }
}
{ No idea! }

will leave “Medium” in the input stream.

5 Dimension expression loops

\dim_do_until:nNnn {(dimexpri)} (relation) {(dimexprs)} {{code)}

Places the (code) in the input stream for TEX to process, and then evaluates the relation-
ship between the two (dimension expressions) as described for \dim_compare :nNnTF. If
the test is false then the (code) will be inserted into the input stream again and a loop
will occur until the (relation) is true.

\dim_do_while:nNnn {(dimexpri)} (relation) {(dimexpr:)} {(code)}

Places the (code) in the input stream for TEX to process, and then evaluates the relation-
ship between the two (dimension expressions) as described for \dim_compare:nNnTF. If
the test is true then the (code) will be inserted into the input stream again and a loop
will occur until the (relation) is false.

80

\dim_until_do:nNnn 3¢

\dim_while_do:nNnn 3¢

\dim_do_until:nn

Updated: 2013-01-13

\dim_do_while:nn 3¢

Updated: 2013-01-13

\dim_until_do:nn

Updated: 2013-01-13

\dim_while_do:nn

Updated: 2013-01-13

\dim_eval:n *

Updated: 2011-10-22

\dim_until_do:nNnn {(dimexpri)} (relation) {(dimexpr:)} {(code)}

Evaluates the relationship between the two (dimension expressions) as described for
\dim_compare:nNnTF, and then places the (code) in the input stream if the (relation) is
false. After the (code) has been processed by TEX the test will be repeated, and a loop
will occur until the test is true.

\dim_while_do:nNnn {(dimexpri)} (relation) {(dimexpr:)} {(code)}

Evaluates the relationship between the two (dimension expressions) as described for
\dim_compare:nNnTF, and then places the (code) in the input stream if the (relation) is
true. After the (code) has been processed by TEX the test will be repeated, and a loop
will occur until the test is false.

\dim_do_until:nn {(dimension relation)} {(code)}

Places the (code) in the input stream for TEX to process, and then evaluates the
(dimension relation) as described for \dim_compare:nTF. If the test is false then the
(code) will be inserted into the input stream again and a loop will occur until the (relation)
is true.

\dim_do_while:nn {(dimension relation)} {(code)}

Places the (code) in the input stream for TEX to process, and then evaluates the
(dimension relation) as described for \dim_compare:nTF. If the test is true then the
(code) will be inserted into the input stream again and a loop will occur until the (relation)
is false.

\dim_until_do:nn {(dimension relation)} {(code)}

Evaluates the (dimension relation) as described for \dim_compare:nTF, and then places
the (code) in the input stream if the (relation) is false. After the (code) has been
processed by TEX the test will be repeated, and a loop will occur until the test is true.

\dim_while_do:nn {(dimension relation)} {(code)}

Evaluates the (dimension relation) as described for \dim_compare:nTF, and then places
the (code) in the input stream if the (relation) is true. After the (code) has been processed
by TEX the test will be repeated, and a loop will occur until the test is false.

6 Using dim expressions and variables

\dim_eval:n {(dimension expression)}

Evaluates the (dimension expression), expanding any dimensions and token list variables
within the (expression) to their content (without requiring \dim_use:N/\t1_use:N) and
applying the standard mathematical rules. The result of the calculation is left in the
input stream as a {dimension denotation) after two expansions. This will be expressed
in points (pt), and will require suitable termination if used in a TEX-style assignment as
it is not an (internal dimension).

81

\dim_use:N x
c ox

\dim_show:N
e

\dim_show:n

New: 2011-11-22
Updated: 2012-05-27

\c_max_dim

\c_zero_dim

\1_tmpa_dim
\1_tmpb_dim

\g_tmpa_dim
\g_tmpb_dim

\dim_use:N (dimension)

Recovers the content of a (dimension) and places it directly in the input stream. An
error will be raised if the variable does not exist or if it is invalid. Can be omitted in
places where a (dimension) is required (such as in the argument of \dim_eval:n).

TEXhackers note: \dim_use:N is the TEX primitive \the: this is one of several IXTEX3
names for this primitive.

7 Viewing dim variables
\dim_show:N (dimension)

Displays the value of the (dimension) on the terminal.

\dim_show:n (dimension expression)

Displays the result of evaluating the (dimension expression) on the terminal.

8 Constant dimensions

The maximum value that can be stored as a dimension. This can also be used as a
component of a skip.

A zero length as a dimension. This can also be used as a component of a skip.

9 Scratch dimensions

Scratch dimension for local assignment. These are never used by the kernel code, and so
are safe for use with any I4TEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

Scratch dimension for global assignment. These are never used by the kernel code, and
so are safe for use with any IXTEX3-defined function. However, they may be overwritten
by other non-kernel code and so should only be used for short-term storage.

82

\skip_new:N
ic

\skip_const:Nn
icn

New: 2012-03-05

\skip_zero:N

i
\skip_gzero:N
:c

\skip_zero_new:N

:c
\skip_gzero_new:N
:c

New: 2012-01-07

\skip_if_exist_p:N x
ic o
\skip_if_exist:NTF x
:cTF *

New: 2012-03-03

\skip_add:Nn

icn
\skip_gadd:Nn
icn

Updated: 2011-10-22

\skip_set:Nn

icn
\skip_gset:Nn
icn

Updated: 2011-10-22

10 Creating and initialising skip variables

\skip_new:N (skip)

Creates a new (skip) or raises an error if the name is already taken. The declaration is
global. The (skip) will initially be equal to 0 pt.

\skip_const:Nn (skip) {(skip expression)}

Creates a new constant (skip) or raises an error if the name is already taken. The value
of the (skip) will be set globally to the (skip expression).

\skip_zero:N (skip)
Sets (skip) to 0pt.

\skip_zero_new:N (skip)

Ensures that the (skip) exists globally by applying \skip_new:N if necessary, then applies
\skip_(g)zero:N to leave the (skip) set to zero.

\skip_if_exist_p:N (skip)
\skip_if_exist:NTF (skip) {(true code)} {(false code)}

Tests whether the (skip) is currently defined. This does not check that the (skip) really
is a skip variable.

11 Setting skip variables
\skip_add:Nn (skip) {(skip expression)}

Adds the result of the (skip expression) to the current content of the (skip).

\skip_set:Nn (skip) {(skip expression)}

Sets (skip) to the value of (skip expression), which must evaluate to a length with units
and may include a rubber component (for example 1 cm plus 0.5 cm.

83

\skip_set_eq:NN
: (cN|Nc|cc)
\skip_gset_eq:NN
:(cN|Nc|ec)

\skip_sub:Nn

icn
\skip_gsub:Nn
icn

Updated: 2011-10-22

\skip_if_eq_p:nn *
\skip_if_eq:nnTF *

\skip_if_finite_p:n *
\skip_if_finite:nTF %

New: 2012-03-05

\skip_eval:n *

Updated: 2011-10-22

\skip_set_eq:NN (skip:1) (skip2)
Sets the content of (skip;) equal to that of (skips).

\skip_sub:Nn (skip) {(skip expression)}

Subtracts the result of the (skip expression) from the current content of the (skip).

12 Skip expression conditionals

\skip_if_eq_p:nn {(skipexpr:i)} {(skipexprs)}
\dim_compare:nTF

{(skipexpri)} {(skipexpr:)}

{(true code)} {(false code)}
This function first evaluates each of the (skip expressions) as described for \skip_-
eval:n. The two results are then compared for exact equality, i.e. both the fixed and
rubber components must be the same for the test to be true.

\skip_if_finite_p:n {(skipexpr)}

\skip_if_finite:nTF {(skipexpr)} {(true code)} {(false code)}

Evaluates the (skip expression) as described for \skip_eval:n, and then tests if all of
its components are finite.

13 Using skip expressions and variables

\skip_eval:n {(skip expression)}

Evaluates the (skip expression), expanding any skips and token list variables within the
(expression) to their content (without requiring \skip_use:N/\t1l_use:N) and applying
the standard mathematical rules. The result of the calculation is left in the input stream
as a (glue denotation) after two expansions. This will be expressed in points (pt), and
will require suitable termination if used in a TEX-style assignment as it is not an (internal
glue).

84

\skip_use:N «*
ic ok

\skip_show:N
ic

\skip_show:n

New: 2011-11-22
Updated: 2012-05-27

\c_max_skip

Updated: 2012-11-02

\c_zero_skip

Updated: 2012-11-01

\1_tmpa_skip
\1_tmpb_skip

\g_tmpa_skip
\g_tmpb_skip

\skip_use:N (skip)

Recovers the content of a (skip) and places it directly in the input stream. An error will
be raised if the variable does not exist or if it is invalid. Can be omitted in places where
a (dimension) is required (such as in the argument of \skip_eval:n).

TEXhackers note: \skip_use:N is the TEX primitive \the: this is one of several IXTEX3
names for this primitive.

14 Viewing skip variables

\skip_show:N (skip)
Displays the value of the (skip) on the terminal.

\skip_show:n (skip expression)

Displays the result of evaluating the (skip expression) on the terminal.

15 Constant skips

The maximum value that can be stored as a skip (equal to \c_max_dim in length), with
no stretch nor shrink component.

A zero length as a skip, with no stretch nor shrink component.

16 Scratch skips

Scratch skip for local assignment. These are never used by the kernel code, and so are
safe for use with any I¥TEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

Scratch skip for global assignment. These are never used by the kernel code, and so are
safe for use with any I4TEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

85

\skip_horizontal:N
:(c[n)

Updated: 2011-10-22

\skip_vertical:N
:(c|n)

Updated: 2011-10-22

\muskip_new:N
ic

\muskip_const:Nn
rcn

New: 2012-03-05

\muskip_zero:N

ic
\muskip_gzero:N
:c

\muskip_zero_new:N

:c
\muskip_gzero_new:N
:c

New: 2012-01-07

\muskip_if_exist_p:N
:c
\muskip_if_exist:NTF
:cTF

b S S

New: 2012-03-03

17 Inserting skips into the output

\skip_horizontal:N (skip)
\skip_horizontal:n {(skipexpr)}

Inserts a horizontal (skip) into the current list.

TEXhackers note: \skip_horizontal:N is the TEX primitive \hskip renamed.

\skip_vertical:N (skip)
\skip_vertical:n {(skipexpr)}

Inserts a vertical (skip) into the current list.

TEXhackers note: \skip_vertical:N is the TEX primitive \vskip renamed.

18 Creating and initialising muskip variables

\muskip_new:N (muskip)

Creates a new (muskip) or raises an error if the name is already taken. The declaration
is global. The (muskip) will initially be equal to 0 mu.

\muskip_const:Nn (muskip) {(muskip expression)}

Creates a new constant (muskip) or raises an error if the name is already taken. The
value of the (muskip) will be set globally to the (muskip expression).

\skip_zero:N (muskip)
Sets (muskip) to 0 mu.

\muskip_zero_new:N (muskip)

Ensures that the (muskip) exists globally by applying \muskip_new:N if necessary, then
applies \muskip_(g)zero:N to leave the (muskip) set to zero.

\muskip_if_exist_p:N (muskip)
\muskip_if_exist:NTF (muskip) {(true code)} {(false code)}

Tests whether the (muskip) is currently defined. This does not check that the (muskip)
really is a muskip variable.

86

\muskip_add:Nn

icn
\muskip_gadd:Nn
icn

Updated: 2011-10-22

\muskip_set:Nn

icn
\muskip_gset:Nn
rcn

Updated: 2011-10-22

\muskip_set_eq:NN
: (cN|Nclcc)
\muskip_gset_eq:NN
: (cN|Nc|cc)

\muskip_sub:Nn

icn
\muskip_gsub:Nn
icn

Updated: 2011-10-22

\muskip_eval:n *

Updated: 2011-10-22

\muskip_use:N x
ic %

19 Setting muskip variables

\muskip_add:Nn (muskip) {(muskip expression)}

Adds the result of the (muskip expression) to the current content of the (muskip).

\muskip_set:Nn (muskip) {(muskip expression)}

Sets (muskip) to the value of (muskip expression), which must evaluate to a math length
with units and may include a rubber component (for example 1 mu plus 0.5 mu.

\muskip_set_eq:NN (muskip:) (muskips)
Sets the content of (muskip;) equal to that of (muskips).

\muskip_sub:Nn (muskip) {(muskip expression)}

Subtracts the result of the (muskip expression) from the current content of the (skip).

20 Using muskip expressions and variables

\muskip_eval:n {<muskip expression>}

Evaluates the (muskip expression), expanding any skips and token list variables within
the (expression) to their content (without requiring \muskip_use:N/\tl_use:N) and
applying the standard mathematical rules. The result of the calculation is left in the
input stream as a (muglue denotation) after two expansions. This will be expressed in
mu, and will require suitable termination if used in a TEX-style assignment as it is not an
(internal muglue).

\muskip_use:N (muskip)

Recovers the content of a (skip) and places it directly in the input stream. An error will
be raised if the variable does not exist or if it is invalid. Can be omitted in places where
a (dimension) is required (such as in the argument of \muskip_eval:n).

TEXhackers note: \muskip_use:N is the TEX primitive \the: this is one of several IXTEX3
names for this primitive.

87

\muskip_show:N
:c

\muskip_show:n

New: 2011-11-22
Updated: 2012-05-27

\c_max_muskip

\c_zero_muskip

\1_tmpa_muskip
\1_tmpb_muskip

\g_tmpa_muskip
\g_tmpb_muskip

\if_dim:w

21 Viewing muskip variables

\muskip_show:N (muskip)
Displays the value of the (muskip) on the terminal.

\muskip_show:n (muskip expression)

Displays the result of evaluating the (muskip expression) on the terminal.

22 Constant muskips

The maximum value that can be stored as a muskip, with no stretch nor shrink compo-
nent.

A zero length as a muskip, with no stretch nor shrink component.

23 Scratch muskips

Scratch muskip for local assignment. These are never used by the kernel code, and so
are safe for use with any XTEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

Scratch muskip for global assignment. These are never used by the kernel code, and so
are safe for use with any ITEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

24 Primitive conditional

\if_dim:w (dimen;) (relation) (dimens)
(true code)

\else:
(false)

\fi:

Compare two dimensions. The (relation) is one of <, = or > with category code 12.

TEXhackers note: This is the TEX primitive \ifdim.

88

__dim_eval:w *
__dim_eval_end: *

__dim_strip_bp:n *
__dim_strip_pt:n *

New: 2011-11-11

25 Internal functions

__dim_eval:w (dimexpr) __dim_eval_end:

Evaluates (dimension expression) as described for \dim_eval:n. The evaluation stops
when an unexpandable token which is not a valid part of a dimension is read or when _-
_dim_eval_end: is reached. The latter is gobbled by the scanner mechanism: __dim_-
eval_end: itself is unexpandable but used correctly the entire construct is expandable.

TEXhackers note: This is the e-TEX primitive \dimexpr.

__dim_strip_bp:n {(dimension expression)}
__dim_strip_pt:n {(dimension expression)}
Evaluates the (dimension expression), expanding any dimensions and token list variables
within the (expression) to their content (without requiring \dim_use:N/\t1_use:N) and
applying the standard mathematical rules. The magnitude of the result, expressed in big
points (bp) or points (pt), will be left in the input stream with no units. If the decimal
part of the magnitude is zero, this will be omitted.

If the {(dimension expression)} contains additional units, these will be ignored, so
for example

__dim_strip_pt:n { 1 bp pt }

will leave 1.00374 in the input stream (i.e. the magnitude of one “big point” when
converted to points).

89

Part XI
The 13tl package
Token lists

TEX works with tokens, and IATEX3 therefore provides a number of functions to deal with
lists of tokens. Token lists may be present directly in the argument to a function:

\foo:n { a collection of \tokens }

or may be stored in a so-called “token list variable”, which have the suffix t1: a token
list variable can also be used as the argument to a function, for example

\foo:N \1_some_t1

In both cases, functions are available to test an manipulate the lists of tokens, and these
have the module prefix t1. In many cases, function which can be applied to token list
variables are paired with similar functions for application to explicit lists of tokens: the
two “views” of a token list are therefore collected together here.

A token list (explicit, or stored in a variable) can be seen either as a list of “items”,
or a list of “tokens”. An item is whatever \use:n would grab as its argument: a single
non-space token or a brace group, with optional leading explicit space characters (each
item is thus itself a token list). A token is either a normal N argument, or .,, {, or }
(assuming normal TEX category codes). Thus for example

{ Hello } ~ world

contains six items (Hello, w, o, r, 1 and d), but thirteen tokens ({, H, e, 1, 1, o, }, o, w,
o, r, 1 and d). Functions which act on items are often faster than their analogue acting
directly on tokens.

TEXhackers note: When TEX fetches an undelimited argument from the input stream,
explicit character tokens with character code 32 (space) and category code 10 (space), which we
here call “explicit space characters”, are ignored. If the following token is an explicit character
token with category code 1 (begin-group) and an arbitrary character code, then TEX scans ahead
to obtain an equal number of explicit character tokens with category code 1 (begin-group) and 2
(end-group), and the resulting list of tokens (with outer braces removed) becomes the argument.
Otherwise, a single token is taken as the argument for the macro: we call such single tokens
“N-type”, as they are suitable to be used as an argument for a function with the signature :N.

When TgX reads a character of category code 10 for the first time, it is converted to an
explicit space character, with character code 32, regardless of the initial character code. “Funny”
spaces with a different category code, can be produced using \t1l_to_lowercase:n or \tl_to_-
uppercase:n. FExplicit space characters are also produced as a result of \token_to_str:N,
\tl_to_str:n, etc.

90

\tl_new:N
e

\tl_const:Nn
:(Nx|cn|ex)

\tl_clear:N

ic
\tl_gclear:N
c

\tl_clear_new:N

e
\tl_gclear_new:N
e

\tl_set_eq:NN
: (cN|Nc|cc)
\tl_gset_eq:NN
:(cN|N¢|ec)

\t1l_concat :NNN

tcce
\tl_gconcat : NNN
icce

New: 2012-05-18

\tl_if_exist_p:N =%
ic oK
\tl_if_exist:NTF x
:cTF *

New: 2012-03-03

1 Creating and initialising token list variables

\tl_new:N (tl1 var)

Creates a new (tl var) or raises an error if the name is already taken. The declaration is
global. The (¢l var) will initially be empty.

\tl_const:Nn (tl var) {(token list)}

Creates a new constant (t/ var) or raises an error if the name is already taken. The value
of the (¢l var) will be set globally to the (token list).

\tl_clear:N (tl1 var)

Clears all entries from the (¢ var).

\tl_clear_new:N (tl var)

Ensures that the (¢l var) exists globally by applying \t1_new:N if necessary, then applies
\tl_(g)clear:N to leave the (tl var) empty.

\tl_set_eq:NN (t1 var;) (tl vary)

Sets the content of (¢ vari) equal to that of (tl vary).

\tl_concat:NNN (tl1 var;) (tl varz) (tl vars)

Concatenates the content of (¢l vars) and (¢l vars) together and saves the result in
(tl vary). The (¢l vare) will be placed at the left side of the new token list.

\tl_if_exist_p:N (t1 var)
\tl_if_exist:NTF (tl var) {(true code)} {(false code)}

Tests whether the (tl var) is currently defined. This does not check that the (¢ var)
really is a token list variable.

91

2 Adding data to token list variables

\tl_set:Nn

\tl_set:Nn (t1 var) {(tokens)}

: (NV|Nv|No|Nf |Nx|cn|cV|cv|co|cf|cx)

\tl_gset:Nn

: (NV|Nv|No|Nf |Nx|cn|cV|cv|co|cf|cx)

Sets (tl var) to contain (tokens), removing any previous content from the variable.

\tl_put_left:Nn

\tl_put_left:Nn (tl var) {(tokens)}

: (NV|No|Nx|cn|cV|co|cx)

\tl_gput_left:Nn

: (NV|No|Nx|cn|cV|co|cx)

Appends (tokens) to the left side of the current content of (¢l var).

\tl_put_right:Nn

\tl_put_right:Nn (tl1 var) {(tokens)}

: (NV|No|Nx|cn|cV|co|cx)

\tl_gput_right:Nn

: (NV|No|Nx|cn|cV|co|cx)

\tl_replace_once:Nnn

:cnn
\tl_greplace_once:Nnn
:cnn

Updated: 2011-08-11

\tl_replace_all:Nnn

:cnn
\tl_greplace_all:Nnn
:cnn

Updated: 2011-08-11

\tl_remove_once:Nn

:cn
\tl_gremove_once:Nn
:cn

Updated: 2011-08-11

Appends (tokens) to the right side of the current content of (¢ var).

3 Modifying token list variables

\tl_replace_once:Nnn (tl var) {(old tokens)} {(new tokens)}

Replaces the first (leftmost) occurrence of {old tokens) in the (tl var) with (new tokens).
(Old tokens) cannot contain {, } or # (more precisely, explicit character tokens with
category code 1 (begin-group) or 2 (end-group), and tokens with category code 6).

\tl_replace_all:Nnn (tl var) {(old tokens)} {(new tokens)}

Replaces all occurrences of (old tokens) in the (tl var) with (new tokens). (Old tokens)
cannot contain {, } or # (more precisely, explicit character tokens with category code
1 (begin-group) or 2 (end-group), and tokens with category code 6). As this function
operates from left to right, the pattern (old tokens) may remain after the replacement
(see \t1l_remove_all:Nn for an example).

\tl_remove_once:Nn (tl1 var) {(tokens)}

Removes the first (leftmost) occurrence of (tokens) from the (¢l var). (Tokens) cannot
contain {, } or # (more precisely, explicit character tokens with category code 1 (begin-
group) or 2 (end-group), and tokens with category code 6).

92

\tl_remove_all:Nn

:cn
\tl_gremove_all:Nn
icn

Updated: 2011-08-11

\tl_remove_all:Nn (tl var) {(tokens)}

Removes all occurrences of (tokens) from the (¢ var). (Tokens) cannot contain {, } or #
(more precisely, explicit character tokens with category code 1 (begin-group) or 2 (end-
group), and tokens with category code 6). As this function operates from left to right,
the pattern (tokens) may remain after the removal, for instance,

\tl_set:Nn \1_tmpa_tl {abbccd} \tl_remove_all:Nn \1_tmpa_tl {bc}

will result in \1_tmpa_t1 containing abcd.

4 Reassigning token list category codes

\tl_set_rescan:Nnn

\tl_set_rescan:Nnn (tl var) {(setup)} {(tokens)}

: (Nno|Nnx|cnn|cno|cnx)

\tl_gset_rescan:Nnn

: (Nno|Nnx|cnn|cno|cnx)

Updated: 2011-12-18

\tl_rescan:nn

Updated: 2011-12-18

\tl_to_lowercase:n

Updated: 2012-09-08

Sets (tl var) to contain (tokens), applying the category code régime specified in the
(setup) before carrying out the assignment. This allows the (¢l var) to contain material
with category codes other than those that apply when (tokens) are absorbed. Trailing
spaces at the end of the (tokens) are discarded in the rescanning process. The (setup)
is not limited to changes of category code but may contain any valid input, for example
assignment of the expansion of active tokens. See also \tl_rescan:nn.

\tl_rescan:nn {(setup)} {(tokens)}

Rescans (tokens) applying the category code régime specified in the (setup), and leaves
the resulting tokens in the input stream. Trailing spaces at the end of the (tokens) are
discarded in the rescanning process. The (setup) is not limited to changes of category
code but may contain any valid input, for example assignment of the expansion of active
tokens. See also \t1l_set_rescan:Nnn.

5 Reassigning token list character codes

\tl_to_lowercase:n {(tokens)}

Works through all of the (tokens), replacing each character token with the lower case
equivalent as defined by \char_set_lccode:nn. Characters with no defined lower case
character code are left unchanged. This process does not alter the category code assigned
to the (tokens).

TEXhackers note: This is a wrapper around the TEX primitive \lowercase.

93

\tl_to_uppercase:n

Updated: 2012-09-08

\tl_if_blank_p:n
:(V]o)

\tl_if_blank:nTF
:(V]|o)TF

b S S

\tl_if_empty_p:N
H]
\tl_if_empty:NTF
:cTF

* o o o

\tl_if_empty_p:n *
:(V]o) *
\tl_if_empty:nTF *
:(V|o)TF *

New: 2012-05-24
Updated: 2012-06-05

\tl_if_eq_p:NN
:(Nc|cN|ec)

\tl_if_eq:NNTF
: (Nc|eN|ce)TF

* o o o

\tl_if_eq:nnTF

\tl_to_uppercase:n {(tokens)}

Works through all of the (tokens), replacing each character token with the upper case
equivalent as defined by \char_set_uccode:nn. Characters with no defined upper case
character code are left unchanged. This process does not alter the category code assigned
to the (tokens).

TgXhackers note: This is a wrapper around the TEX primitive \uppercase.

6 Token list conditionals

\tl_if_blank_p:n {(token list)}
\tl_if_blank:nTF {(token list)} {(true code)} {(false code)}

Tests if the (token list) consists only of blank spaces (i.e. contains no item). The test is
true if (token list) is zero or more explicit space characters (explicit tokens with character
code 32 and category code 10), and is false otherwise.

\tl_if_empty_p:N (tl var)
\tl_if_empty:NTF (tl var) {(true code)} {(false code)}

Tests if the (token list variable) is entirely empty (i.e. contains no tokens at all).

\tl_if_empty_p:n {(token list)}
\tl_if_empty:nTF {(token list)} {(true code)} {(false code)}

Tests if the (token list) is entirely empty (i.e. contains no tokens at all).

\tl_if_eq_p:NN {(t1 vari)} {(t1 var:)}
\tl_if_eq:NNTF {(t1 vari)} {(t1 vars)} {(true code)} {(false code)}

Compares the content of two (token list variables) and is logically true if the two contain
the same list of tokens (i.e. identical in both the list of characters they contain and the
category codes of those characters). Thus for example

\tl_set:Nn \1_tmpa_tl { abc }
\tl_set:Nx \1_tmpb_tl { \tl_to_str:n { abc } }
\tl_if_eq:NNTF \1_tmpa_tl \1_tmpb_tl { true } { false }

yields false.

\tl_if_eq:nnTF (token listi) {(token lists)} {(true code)} {(false code)}

Tests if (token list;) and (token listy) contain the same list of tokens, both in respect of
character codes and category codes.

94

\tl_if_in:NnTF
:cnTF

\tl_if_in:nnTF
: (Vn|on|no) TF

\tl_if_single_p:N *
ic o*
\tl_if_single:NTF %
:cTF *

Updated: 2011-08-13

\tl_if_single_p:n *
\tl_if_single:nTF *

Updated: 2011-08-13

\tl_case:NnTF x
enTF %

New: 2013-07-24

\tl_if_in:NnTF (t1 var) {(token 1list)} {(true code)} {(false code)}

Tests if the (token list) is found in the content of the (¢l var). The (token list) cannot
contain the tokens {, } or # (more precisely, explicit character tokens with category code
1 (begin-group) or 2 (end-group), and tokens with category code 6).

\tl_if_in:nnTF {(token listi)} {(token listq)} {(true code)} {(false code)}

Tests if (token listy) is found inside (token list;). The (token listy) cannot contain the
tokens {, } or # (more precisely, explicit character tokens with category code 1 (begin-
group) or 2 (end-group), and tokens with category code 6).

\tl_if_single_p:N (tl1 var)

\tl_if_single:NTF (t1 var) {(true code)} {(false code)}

Tests if the content of the (¢l var) consists of a single item, i.e. is a single normal token
(neither an explicit space character nor a begin-group character) or a single brace group,
surrounded by optional spaces on both sides. In other words, such a token list has token
count 1 according to \t1_count:N.

\tl_if_single_p:n {(token list)}

\tl_if_single:nTF {(token 1list)} {(true code)} {(false code)}

Tests if the (token list) has exactly one item, i.e. is a single normal token (neither an
explicit space character nor a begin-group character) or a single brace group, surrounded
by optional spaces on both sides. In other words, such a token list has token count 1
according to \t1l_count:n.

\tl_case:NnTF (test token list variable)
{
(token list variable case;) {(code case;)}
(token list variable cases) {({code cases)}

(token list variable case,) {(code case,)}

}
{(true code)}
{(false code)}

This function compares the (test token list variable) in turn with each of the (token
list variable cases). If the two are equal (as described for \t1l_if_eq:NNTF) then the
associated (code) is left in the input stream. If any of the cases are matched, the (true
code) is also inserted into the input stream (after the code for the appropriate case),
while if none match then the (false code) is inserted. The function \t1l_case:Nn, which
does nothing if there is no match, is also available.

95

\tl_map_function:NN v
:cN &

Updated: 2012-06-29

\tl_map_function:nN ¢

Updated: 2012-06-29

\tl_map_inline:Nn
:cn

Updated: 2012-06-29

\tl_map_inline:nn

Updated: 2012-06-29

\tl_map_variable:NNn
:cNn

Updated: 2012-06-29

\tl_map_variable:nNn

Updated: 2012-06-29

7 Mapping to token lists

\tl_map_function:NN (tl var) (function)

Applies (function) to every (item) in the (¢l var). The (function) will receive one ar-
gument for each iteration. This may be a number of tokens if the (item) was stored
within braces. Hence the (function) should anticipate receiving n-type arguments. See
also \t1l_map_function:nN.

\tl_map_function:nN (token list) (function)

Applies (function) to every (item) in the (token list), The (function) will receive one
argument for each iteration. This may be a number of tokens if the (item) was stored
within braces. Hence the (function) should anticipate receiving n-type arguments. See
also \tl_map_function:NN.

\tl_map_inline:Nn (tl1 var) {(inline function)}

Applies the (inline function) to every (item) stored within the (¢l var). The (inline
function) should consist of code which will receive the (item) as #1. One in line mapping
can be nested inside another. See also \t1_map_function:NN.

\tl_map_inline:nn (token list) {(inline functiomn)}

Applies the (inline function) to every (item) stored within the (token list). The (inline
function) should consist of code which will receive the (item) as #1. One in line mapping
can be nested inside another. See also \t1_map_function:nN.

\tl_map_variable:NNn (t1 var) (variable) {(function)}

Applies the (function) to every (item) stored within the (¢l var). The (function) should
consist of code which will receive the (item) stored in the (variable). One variable map-
ping can be nested inside another. See also \t1l_map_inline:Nn.

\tl_map_variable:nNn (token list) (variable) {(function)}

Applies the (function) to every (item) stored within the (token list). The (function)
should consist of code which will receive the (item) stored in the (variable). One variable
mapping can be nested inside another. See also \t1_map_inline:nn.

96

\tl_map_break: % \tl_map_break:

Updated: 2012-06-20 Used to terminate a \t1_map_... function before all entries in the (token list variable)
have been processed. This will normally take place within a conditional statement, for
example

\tl_map_inline:Nn \1_my_tl
{
\str_if_eq:nnT { #1 } { bingo } { \tl_map_break: }
% Do something useful

3

See also \t1_map_break:n. Use outside of a \t1_map_. .. scenario will lead to low level

TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted by the
internal macro __prg_break_point:Nn before the (tokens) are inserted into the input stream.
This will depend on the design of the mapping function.

\tl_map_break:n ¥ \tl_map_break:n {(tokens)}

Updated: 2012-06-20 Used to terminate a \t1_map_... function before all entries in the (token list variable)
have been processed, inserting the (tokens) after the mapping has ended. This will
normally take place within a conditional statement, for example

\tl_map_inline:Nn \1_my_tl
{
\str_if_eq:nnT { #1 } { bingo }
{ \tl_map_break:n { <tokens> } }
% Do something useful

}
Use outside of a \t1l_map_... scenario will lead to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted by the
internal macro __prg_break_point:Nn before the (tokens) are inserted into the input stream.
This will depend on the design of the mapping function.

97

\tl_to_str:n *

\tl_to_str:N

*
ico*

\tl_use:N x

ic o*
\tl_count:n *
:(V]o) *

New: 2012-05-13

8 Using token lists

\tl_to_str:n {(token list)}

Converts the (token list) to a (string), leaving the resulting character tokens in the input
stream. A (string) is a series of tokens with category code 12 (other) with the exception
of spaces, which retain category code 10 (space).

TEXhackers note: Converting a (token list) to a (string) yields a concatenation of the
string representations of every token in the (token list). The string representation of a control
sequence is

o an escape character, whose character code is given by the internal parameter \escapechar,
absent if the \escapechar is negative;

e the control sequence name, as defined by \cs_to_str:N;

e a space, unless the control sequence name is a single character whose category at the time
of expansion of \tl_to_str:n is not “letter”.

The string representation of an explicit character token is that character, doubled in the case
of (explicit) macro parameter characters (normally #). In particular, the string representation
of a token list may depend on the category codes in effect when it is evaluated, and the value
of the \escapechar: for instance \tl_to_str:n {\a} normally produces the three character
“backslash”, “lower-case a”, “space”, but it may also produce a single “lower-case a” if the
escape character is negative and a is currently not a letter.

\tl_to_str:N (tl1 var)

Converts the content of the (¢l var) into a series of characters with category code 12
(other) with the exception of spaces, which retain category code 10 (space). This (string)
is then left in the input stream. For low-level details, see the notes given for \tl_to_-
str:n.

\tl_use:N (t1 var)

Recovers the content of a (¢l var) and places it directly in the input stream. An error
will be raised if the variable does not exist or if it is invalid. Note that it is possible to
use a (tl var) directly without an accessor function.

9 Working with the content of token lists

\tl_count:n {(tokens)}

Counts the number of (items) in (tokens) and leaves this information in the input stream.
Unbraced tokens count as one element as do each token group ({...}). This process will
ignore any unprotected spaces within (tokens). See also \tl_count:N. This function
requires three expansions, giving an (integer denotation).

98

\tl_count:N «*
ic ox

New: 2012-05-13

\tl_reverse:n *
:(V]o) *

Updated: 2012-01-08

\tl_reverse:N

ic
\tl_greverse:N
ic

Updated: 2012-01-08

\tl_reverse_items:n *

New: 2012-01-08

\tl_trim_spaces:n *

New: 2011-07-09
Updated: 2012-06-25

\tl_count:N (tl1 var)

Counts the number of token groups in the (¢ wvar) and leaves this information in the
input stream. Unbraced tokens count as one element as do each token group ({...}).
This process will ignore any unprotected spaces within the (¢ var). See also \t1_count:n.
This function requires three expansions, giving an (integer denotation).

\tl_reverse:n {(token list)}

Reverses the order of the (items) in the (token list), so that (item;)(items)(items)
... (item,) becomes (item,,). .. (items)(itemz) (item;). This process will preserve unpro-
tected space within the (token list). Tokens are not reversed within braced token groups,
which keep their outer set of braces. In situations where performance is important,
consider \tl_reverse_items:n. See also \t1l_reverse:N.

TgXhackers note: The result is returned within \exp_not:n, which means that the token
list will not expand further when appearing in an x-type argument expansion.

\tl_reverse:N (tl var)

Reverses the order of the (items) stored in (¢ wvar), so that (itemy)(items)(items)
... {itemy) becomes (item,,). .. (itemg){items)(item;). This process will preserve unpro-
tected spaces within the (token list variable). Braced token groups are copied without
reversing the order of tokens, but keep the outer set of braces. See also \t1l_reverse:n,
and, for improved performance, \tl_reverse_items:n.

\tl_reverse_items:n {(token list)}

Reverses the order of the (items) stored in (tl var), so that {(item) (items)I{(items)}
... {(item,,)} becomes {(item,)} ... {(items)}{(itemo)}{(itemy)}. This process will
remove any unprotected space within the (token list). Braced token groups are copied
without reversing the order of tokens, and keep the outer set of braces. Items which are
initially not braced are copied with braces in the result. In cases where preserving spaces
is important, consider the slower function \tl_reverse:n.

TEXhackers note: The result is returned within \exp_not:n, which means that the token
list will not expand further when appearing in an x-type argument expansion.

\tl_trim_spaces:n {(token list)}

Removes any leading and trailing explicit space characters (explicit tokens with character
code 32 and category code 10) from the (token list) and leaves the result in the input
stream.

TEXhackers note: The result is returned within \exp_not:n, which means that the token
list will not expand further when appearing in an x-type argument expansion.

99

\tl_trim_spaces:N

:c
\tl_gtrim_spaces:N
e

New: 2011-07-09

\tl_head:N *
((n|V|v|E) *

Updated: 2012-09-09

\tl_head:w *

\tl_trim_spaces:N (tl var)

Removes any leading and trailing explicit space characters (explicit tokens with character
code 32 and category code 10) from the content of the (¢ var). Note that this therefore
resets the content of the variable.

10 The first token from a token list

Functions which deal with either only the very first item (balanced text or single normal
token) in a token list, or the remaining tokens.

\tl_head:n {(token list)}

Leaves in the input stream the first (item) in the (token list), discarding the rest of the
(token list). All leading explicit space characters (explicit tokens with character code 32
and category code 10) are discarded; for example

\tl_head:n { abc }
and
\tl_head:n { ~ abc }

will both leave a in the input stream. If the “head” is a brace group, rather than a single
token, the braces will be removed, and so

\tl_head:n { ~ { ~ab } c }

yields ab. A blank (token list) (see \t1_if_blank:nTF) will result in \t1_head:n leaving
nothing in the input stream.

TgXhackers note: The result is returned within \exp_not :n, which means that the token
list will not expand further when appearing in an x-type argument expansion.

\tl_head:w (token list) { } \q_stop

Leaves in the input stream the first (item) in the (token list), discarding the rest of
the (token list). All leading explicit space characters (explicit tokens with character
code 32 and category code 10) are discarded. A blank (token list) (which consists only
of space characters) will result in a low-level TEX error, which may be avoided by the
inclusion of an empty group in the input (as shown), without the need for an explicit
test. Alternatively, \t1l_if_blank:nF may be used to avoid using the function with a
“blank” argument. This function requires only a single expansion, and thus is suitable
for use within an o-type expansion. In general, \t1_head:n should be preferred if the
number of expansions is not critical.

100

\tl_tail:N % \tl_tail:n {(token list)}
:(n|V]v]E) *

Discards all leading explicit space characters (explicit tokens with character code 32 and
Updated: 2012-09-01 category code 10) and the first (item) in the (token list), and leaves the remaining tokens
in the input stream. Thus for example

\tl_tail:n { a ~ {bc} d }
and
\tl_tail:n { ~ a ~ {bc} d }

will both leave ,{bc}d in the input stream. A blank (token list) (see \t1_if_blank:nTF)
will result in \t1l_tail:n leaving nothing in the input stream.

TgXhackers note: The result is returned within \exp_not :n, which means that the token
list will not expand further when appearing in an x-type argument expansion.

\str_head:n * \str_head:n {(token list)}
\str_tail:n * \str_tail:n {(token list)}

New: 2011-08-10 Converts the (token list) into a string, as described for \tl_to_str:n. The \str_-
head:n function then leaves the first character of this string in the input stream. The
\str_tail:n function leaves all characters except the first in the input stream. The first
character may be a space. If the (token list) argument is entirely empty, nothing is left
in the input stream.

\t1l_if_head_eq_catcode_p:nN % \tl_if_head_eq_catcode_p:nN {(token list)
\tl_if_head_eq_catcode:nNTF \tl_if_head_eq_catcode:nNTF {(token list)
{(true code)} {(false code)}

(test token)

}
} (test token)

Updated: 2012-07-09

Tests if the first (token) in the (token list) has the same category code as the (test token).
In the case where the (token list) is empty, the test will always be false.

\t1l_if_head_eq_charcode_p:nN % \tl_if_head_eq_charcode_p:nN {(token list)} (test token)
:fN « \tl_if_head_eq_charcode:nNTF {(token list)} (test token)
\tl_if_head_eq_charcode:nNTF x {(true code)} {(false code)}
ENTF *

Updated: 2012-07-09

Tests if the first (token) in the (token list) has the same character code as the (test token).
In the case where the (token list) is empty, the test will always be false.

\tl_if_head_eq_meaning p:nN \tl_if_head_eq_meaning p:nN {(token list)} (test token)
\tl_if_head_eq_meaning:nNTF \tl_if_head_eq_meaning:nNTF {(token list)} (test token)
{(true code)} {(false code)}

Updated: 2012-07-09

Tests if the first (token) in the (token list) has the same meaning as the (test token). In
the case where (token list) is empty, the test will always be false.

101

\tl_if_head_is_group_p:n *
\tl_if_head_is_group:nTF *

New: 2012-07-08

\tl_if_head_is_group_p:n {(token list)}

\tl_if_head_is_group:nTF {(token list)} {(true code)} {(false code)}

Tests if the first (token) in the (token list) is an explicit begin-group character (with
category code 1 and any character code), in other words, if the (token list) starts with a
brace group. In particular, the test is false if the (token list) starts with an implicit token
such as \c_group_begin_token, or if it is empty. This function is useful to implement
actions on token lists on a token by token basis.

\tl_if_head_is_N_type_p:n % \tl_if_head_is_N_type_p:n {(token list)}
\tl_if_head_is_N_type:nTF % \tl_if_head_is_N_type:nTF {(token list)} {(true code)} {(false code)}

New: 2012-07-08

\tl_if_head_is_space_p:n *
\tl_if_head_is_space:nTF x

Updated: 2012-07-08

\tl_show:N
:c

Updated: 2012-09-09

\tl_show:n

Updated: 2012-09-09

Tests if the first (token) in the (token list) is a normal N-type argument. In other words, it
is neither an explicit space character (explicit token with character code 32 and category
code 10) nor an explicit begin-group character (with category code 1 and any character
code). An empty argument yields false, as it does not have a “normal” first token. This
function is useful to implement actions on token lists on a token by token basis.

\tl_if_head_is_space_p:n {(token list)}
\tl_if_head_is_space:nTF {(token 1list)} {(true code)} {(false code)}

Tests if the first (token) in the (token list) is an explicit space character (explicit token
with character code 12 and category code 10). In particular, the test is false if the
(token list) starts with an implicit token such as \c_space_token, or if it is empty. This
function is useful to implement actions on token lists on a token by token basis.

11 Viewing token lists

\tl_show:N (tl var)

Displays the content of the (¢l var) on the terminal.

TEXhackers note: This is similar to the TEX primitive \show, wrapped to a fixed number
of characters per line.

\tl_show:n (token list)

Displays the (token list) on the terminal.

TEXhackers note: This is similar to the e-TEX primitive \showtokens, wrapped to a fixed
number of characters per line.

102

\c_empty_t1l

\c_job_name_t1l

Updated: 2011-08-18

\c_space_tl

\1_tmpa_tl
\1_tmpb_tl

\g_tmpa_tl
\g_tmpb_t1

__tl_trim_spaces:nn

12 Constant token lists

Constant that is always empty.

Constant that gets the “job name” assigned when TEX starts.

TEXhackers note: This copies the contents of the primitive \jobname. It is a constant
that is set by TEX and should not be overwritten by the package.

An explicit space character contained in a token list (compare this with \c_space_token).
For use where an explicit space is required.

13 Scratch token lists

Scratch token lists for local assignment. These are never used by the kernel code, and so
are safe for use with any XTEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

Scratch token lists for global assignment. These are never used by the kernel code, and
so are safe for use with any IXTEX3-defined function. However, they may be overwritten
by other non-kernel code and so should only be used for short-term storage.

14 Internal functions

__tl_trim_spaces:nn { \q_mark (token list) } {(continuation)}

This function removes all leading and trailing explicit space characters from the (token
list), and expands to the (continuation), followed by a brace group containing \use_-
none:n \q_mark ({rimmed token list). For instance, \t1_trim_spaces:n is implemented
by taking the (continuation) to be \exp_not:o, and the o-type expansion removes the
\g_mark. This function is also used in I3clist and |3candidates.

103

\seq_new:N
:c

\seq_clear:N

ic
\seq_gclear:N
ic

\seq_clear_new:N

:c
\seq_gclear_new:N
:c

\seq_set_eq:NN
: (cN|Nclcc)
\seq_gset_eq:NN
: (cN|Nc|cc)

\seq_set_split:Nnn

:NnV
\seq_gset_split:Nnn
:NnV

New: 2011-08-15
Updated: 2012-07-02

Part XII
The 13seq package
Sequences and stacks

ETREX3 implements a “sequence” data type, which contain an ordered list of entries which
may contain any (balanced text). It is possible to map functions to sequences such that
the function is applied to every item in the sequence.

Sequences are also used to implement stack functions in IXTEX3. This is achieved
using a number of dedicated stack functions.

1 Creating and initialising sequences

\seq_new:N (sequence)

Creates a new (sequence) or raises an error if the name is already taken. The declaration
is global. The (sequence) will initially contain no items.

\seq_clear:N (sequence)

Clears all items from the (sequence).

\seq_clear_new:N (sequence)

Ensures that the (sequence) exists globally by applying \seq_new:N if necessary, then
applies \seq_(g)clear:N to leave the (sequence) empty.

\seq_set_eq:NN (sequence;) (sequences)

Sets the content of (sequence;) equal to that of (sequences).

\seq_set_split:Nnn (sequence) {(delimiter)} {(token list)}

Splits the (token list) into (items) separated by (delimiter), and assigns the result to the
(sequence). Spaces on both sides of each (item) are ignored, then one set of outer braces
is removed (if any); this space trimming behaviour is identical to that of 13clist functions.
Empty (items) are preserved by \seq_set_split:Nnn, and can be removed afterwards
using \seq_remove_all:Nn (sequence) {()}. The (delimiter) may not contain {, } or #
(assuming TEX’s normal category code régime). If the (delimiter) is empty, the (token
list) is split into (items) as a (token list).

104

\seq_concat :NNN
tcce

\seq_gconcat : NNN
icce

\seq_if_exist_p:N *
ic ok
\seq_if_exist:NTF %
:cTF *

New: 2012-03-03

\seq_concat:NNN (sequencei) (sequence;) (sequences)

Concatenates the content of (sequences) and (sequences) together and saves the result in
(sequencer). The items in (sequences) will be placed at the left side of the new sequence.

\seq_if_exist_p:N (sequence)
\seq_if_exist:NTF (sequence) {(true code)} {(false code)}

Tests whether the (sequence) is currently defined. This does not check that the (sequence)
really is a sequence variable.

2 Appending data to sequences

\seq_put_left:Nn

\seq_put_left:Nn (sequence) {(item)}

: (NV|Nv|No|Nx|cn|cV|cv|co|cx)

\seq_gput_left:Nn

: (NV|Nv|No|Nx|cn|cV|cv|co|cx)

Appends the (item) to the left of the (sequence).

\seq_put_right:Nn

\seq_put_right:Nn (sequence) {(item)}

: (NV|Nv|No|Nx|cn|cV|cv|co|cx)

\seq_gput_right:Nn

: (NV|Nv|No|Nx|cn|cV|cv|co|cx)

\seq_get_left:NN
:cN

Updated: 2012-05-14

\seq_get_right:NN
:cN

Updated: 2012-05-19

Appends the (item) to the right of the (sequence).

3 Recovering items from sequences

Items can be recovered from either the left or the right of sequences. For implementa-
tion reasons, the actions at the left of the sequence are faster than those acting on the
right. These functions all assign the recovered material locally, i.e. setting the (token list
variable) used with \t1_set:Nn and never \tl_gset:Nn.

\seq_get_left:NN (sequence) (token list variable)

Stores the left-most item from a (sequence) in the (token list variable) without removing
it from the (sequence). The (token list variable) is assigned locally. If (sequence) is empty
the (token list variable) will contain the special marker \q_no_value.

\seq_get_right:NN (sequence) (token list variable)

Stores the right-most item from a (sequence) in the (token list variable) without removing
it from the (sequence). The (token list variable) is assigned locally. If (sequence) is empty
the (token list variable) will contain the special marker \q_no_value.

105

\seq_pop_left:NN
:cN

Updated: 2012-05-14

\seq_gpop_left:NN
:cN

Updated: 2012-05-14

\seq_pop_right:NN
:cN

Updated: 2012-05-19

\seq_gpop_right:NN
:cN

Updated: 2012-05-19

\seq_get_left:NNTF
:cNTF

New: 2012-05-14
Updated: 2012-05-19

\seq_get_right:NNTF
:cNTF

New: 2012-05-19

\seq_pop_left:NN (sequence) (token list variable)

Pops the left-most item from a (sequence) into the (token list variable), i.e. removes the
item from the sequence and stores it in the (token list variable). Both of the variables are
assigned locally. If (sequence) is empty the (token list variable) will contain the special
marker \q_no_value.

\seq_gpop_left:NN (sequence) (token list variable)

Pops the left-most item from a (sequence) into the (token list variable), i.e. removes
the item from the sequence and stores it in the (token list variable). The (sequence) is
modified globally, while the assignment of the (token list variable) is local. If (sequence)
is empty the (token list variable) will contain the special marker \q_no_value.

\seq_pop_right:NN (sequence) (token list variable)

Pops the right-most item from a (sequence) into the (token list variable), i.e. removes the
item from the sequence and stores it in the (token list variable). Both of the variables are
assigned locally. If (sequence) is empty the (token list variable) will contain the special
marker \q_no_value.

\seq_gpop_right:NN (sequence) (token list variable)

Pops the right-most item from a (sequence) into the (token list variable), i.e. removes
the item from the sequence and stores it in the (token list variable). The (sequence) is
modified globally, while the assignment of the (token list variable) is local. If (sequence)
is empty the (token list variable) will contain the special marker \q_no_value.

4 Recovering values from sequences with branching

The functions in this section combine tests for non-empty sequences with recovery of an
item from the sequence. They offer increased readability and performance over separate
testing and recovery phases.

\seq_get_left:NNTF (sequence) (token list variable) {(true code)} {(false code)}

If the (sequence) is empty, leaves the (false code) in the input stream. The value of the
(token list variable) is not defined in this case and should not be relied upon. If the
(sequence) is non-empty, stores the left-most item from a (sequence) in the (token list
variable) without removing it from a (sequence). The (token list variable) is assigned
locally.

\seq_get_right:NNTF (sequence) (token list variable) {(true code)} {(false code)}

If the (sequence) is empty, leaves the (false code) in the input stream. The value of the
(token list variable) is not defined in this case and should not be relied upon. If the
(sequence) is non-empty, stores the right-most item from a (sequence) in the (token list
variable) without removing it from a (sequence). The (token list variable) is assigned
locally.

106

\seq_pop_left:NNTF
:cNTF

New: 2012-05-14
Updated: 2012-05-19

\seq_gpop_left:NNTF
:cNTF

New: 2012-05-14
Updated: 2012-05-19

\seq_pop_right :NNTF
:cNTF

New: 2012-05-19

\seq_gpop_right:NNTF
:cNTF

New: 2012-05-19

\seq_remove_duplicates:N

:c
\seq_gremove_duplicates:N
:c

\seq_pop_left:NNTF (sequence) (token list variable) {(true code)} {(false code)}

If the (sequence) is empty, leaves the (false code) in the input stream. The value of the
(token list variable) is not defined in this case and should not be relied upon. If the
(sequence) is non-empty, pops the left-most item from a (sequence) in the (token list
variable), i.e. removes the item from a (sequence). Both the (sequence) and the (token
list variable) are assigned locally.

\seq_gpop_left:NNTF (sequence) (token list variable) {(true code)} {(false code)}

If the (sequence) is empty, leaves the (false code) in the input stream. The value of the
(token list variable) is not defined in this case and should not be relied upon. If the
(sequence) is non-empty, pops the left-most item from a (sequence) in the (token list
variable), i.e. removes the item from a (sequence). The (sequence) is modified globally,
while the (token list variable) is assigned locally.

\seq_pop_right:NNTF (sequence) (token list variable) {(true code)} {(false code)}

If the (sequence) is empty, leaves the (false code) in the input stream. The value of the
(token list variable) is not defined in this case and should not be relied upon. If the
(sequence) is non-empty, pops the right-most item from a (sequence) in the (token list
variable), i.e. removes the item from a (sequence). Both the (sequence) and the (token
list variable) are assigned locally.

\seq_gpop_right:NNTF (sequence) (token list variable) {(true code)} {(false code)}

If the (sequence) is empty, leaves the (false code) in the input stream. The value of the
(token list variable) is not defined in this case and should not be relied upon. If the
(sequence) is non-empty, pops the right-most item from a (sequence) in the (token list
variable), i.e. removes the item from a (sequence). The (sequence) is modified globally,
while the (token list variable) is assigned locally.

5 Modifying sequences

While sequences are normally used as ordered lists, it may be necessary to modify the
content. The functions here may be used to update sequences, while retaining the order
of the unaffected entries.

\seq_remove_duplicates:N (sequence)

Removes duplicate items from the (sequence), leaving the left most copy of each item
in the (sequence). The (item) comparison takes place on a token basis, as for \t1_if_-
eq:nn(TF).

TgXhackers note: This function iterates through every item in the (sequence) and does a
comparison with the (items) already checked. It is therefore relatively slow with large sequences.

107

\seq_remove_all:Nn

:cn
\seq_gremove_all:Nn
icn

\seq_if_empty_p:N
ic
\seq_if_empty:NTF
:cTF

* ok ot %

\seq_remove_all:Nn (sequence) {(item)}

Removes every occurrence of (item) from the (sequence). The (item) comparison takes
place on a token basis, as for \t1_if_eq:nn(TF).

6 Sequence conditionals

\seq_if_empty_p:N (sequence)
\seq_if_empty:NTF (sequence) {(true code)} {(false code)}

Tests if the (sequence) is empty (containing no items).

\seq_if_in:NnTF

\seq_if_in:NnTF (sequence) {(item)} {(true code)} {(false code)}

: (NV|Nv|No|Nx|cn|cV|cv|co|cx) TF

\seq_map_function:NN v
:cN

Updated: 2012-06-29

\seq_map_inline:Nn
:cn

Updated: 2012-06-29

Tests if the (item) is present in the (sequence).

7 Mapping to sequences

\seq_map_function:NN (sequence) (function)

Applies (function) to every (item) stored in the (sequence). The (function) will receive
one argument for each iteration. The (items) are returned from left to right. The function
\seq_map_inline:Nn is faster than \seq _map_function:NN for sequences with more
than about 10 items. One mapping may be nested inside another.

\seq_map_inline:Nn (sequence) {(inline function)}

Applies (inline function) to every (item) stored within the (sequence). The (inline
function) should consist of code which will receive the (item) as #1. One in line mapping
can be nested inside another. The (items) are returned from left to right.

\seq_map_variable:NNn

\seq_map_variable:NNn (sequence) (tl1 var.) {(function using tl var.)}

: (Nen|cNn|cen)

Updated: 2012-06-29

Stores each entry in the (sequence) in turn in the (¢l var.) and applies the (function using
tl var.) The (function) will usually consist of code making use of the (¢l var.), but this
is not enforced. Onme variable mapping can be nested inside another. The (items) are
returned from left to right.

108

\seq_map_break: v \seq_map_break:

Updated: 2012-06-20 Used to terminate a \seq_map_. .. function before all entries in the (sequence) have been
processed. This will normally take place within a conditional statement, for example

\seq_map_inline:Nn \1_my_seq
{
\str_if_eq:nnTF { #1 } { bingo }
{ \seq_map_break: }

{
% Do something useful
}
}
Use outside of a \seq_map_. .. scenario will lead to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted by the
internal macro __prg_break_point:Nn before further items are taken from the input stream.
This will depend on the design of the mapping function.

\seq_map_break:n ¥ \seq_map_break:n {(tokens)}

Updated: 2012-06-29 Used to terminate a \seq_map_... function before all entries in the (sequence) have
been processed, inserting the (tokens) after the mapping has ended. This will normally
take place within a conditional statement, for example

\seq_map_inline:Nn \1_my_seq
{
\str_if_eq:nnTF { #1 } { bingo }
{ \seq_map_break:n { <tokens> } }

{
% Do something useful
}
}
Use outside of a \seq_map_. .. scenario will lead to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted by the
internal macro __prg_break_point:Nn before the (tokens) are inserted into the input stream.
This will depend on the design of the mapping function.

\seq_count:N * \seq_count:N (sequence)
‘° * Leaves the number of items in the (sequence) in the input stream as an (integer
New: 2012-07-13 denotation). The total number of items in a (sequence) will include those which are

empty and duplicates, i.e. every item in a (sequence) is unique.

109

\seq_use:Nnnn x
icnnn

New: 2013-05-26

\seq_use:Nn *
icn ok

New: 2013-05-26

8 Using the content of sequences directly

\seq_use:Nnnn (seq var) {(separator between two)}
{(separator between more than two)} {(separator between final two)}

Places the contents of the (seq var) in the input stream, with the appropriate (separator)
between the items. Namely, if the sequence has more than two items, the (separator
between more than two) is placed between each pair of items except the last, for which
the (separator between final two) is used. If the sequence has exactly two items, then they
are placed in the input stream separated by the (separator between two). If the sequence
has a single item, it is placed in the input stream, and an empty sequence produces no
output. An error will be raised if the variable does not exist or if it is invalid.
For example,

\seq_set_split:Nnn \1_tmpa_seq { | } {a | b | c | {de} | £}
\seq_use:Nnnn \1_tmpa_seq { ~and~ } { ,~ } { ,~and~ }

will insert “a, b, c, de, and f” in the input stream. The first separator argument is
not used in this case because the sequence has more than 2 items.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (items) will not expand further when appearing in an x-type argument
expansion.

\seq_use:Nn (seq var) {(separator)}

Places the contents of the (seq var) in the input stream, with the (separator) between
the items. If the sequence has a single item, it is placed in the input stream with no
(separator), and an empty sequence produces no output. An error will be raised if the
variable does not exist or if it is invalid.

For example,

\seq_set_split:Nnn \1_tmpa_seq { | } {a |l b | c | {de} | £}
\seq_use:Nn \1_tmpa_seq { ~and~ }

will insert “a and b and ¢ and de and f” in the input stream.

TgXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (items) will not expand further when appearing in an x-type argument
expansion.

9 Sequences as stacks
Sequences can be used as stacks, where data is pushed to and popped from the top of

the sequence. (The left of a sequence is the top, for performance reasons.) The stack
functions for sequences are not intended to be mixed with the general ordered data

110

\seq_get:NN
:cN

Updated: 2012-05-14

\seq_pop:NN
:cN

Updated: 2012-05-14

\seq_gpop: NN
:cN

Updated: 2012-05-14

\seq_get :NNTF
:cNTF

New: 2012-05-14
Updated: 2012-05-19

\seq_pop:NNTF
:cNTF
New: 2012-05-14
Updated: 2012-05-19

\seq_gpop:NNTF
:cNTF

New: 2012-05-14
Updated: 2012-05-19

functions detailed in the previous section: a sequence should either be used as an ordered
data type or as a stack, but not in both ways.

\seq_get:NN (sequence) (token list variable)

Reads the top item from a (sequence) into the (token list variable) without removing it
from the (sequence). The (token list variable) is assigned locally. If (sequence) is empty
the (token list variable) will contain the special marker \q_no_value.

\seq_pop:NN (sequence) (token list variable)

Pops the top item from a (sequence) into the (token list variable). Both of the variables
are assigned locally. If (sequence) is empty the (token list variable) will contain the special
marker \q_no_value.

\seq_gpop:NN (sequence) (token list variable)

Pops the top item from a (sequence) into the (token list variable). The (sequence) is
modified globally, while the (token list variable) is assigned locally. If (sequence) is empty
the (token list variable) will contain the special marker \q_no_value.

\seq_get :NNTF (sequence) (token list variable) {(true code)} {(false code)}

If the (sequence) is empty, leaves the (false code) in the input stream. The value of the
(token list variable) is not defined in this case and should not be relied upon. If the
(sequence) is non-empty, stores the top item from a (sequence) in the (token list variable)
without removing it from the (sequence). The (token list variable) is assigned locally.

\seq_pop:NNTF (sequence) (token list variable) {(true code)} {(false code)}

If the (sequence) is empty, leaves the (false code) in the input stream. The value of
the (token list variable) is not defined in this case and should not be relied upon. If
the (sequence) is non-empty, pops the top item from the (sequence) in the (token list
variable), i.e. removes the item from the (sequence). Both the (sequence) and the (token
list variable) are assigned locally.

\seq_gpop:NNTF (sequence) (token list variable) {(true code)} {(false code)}

If the (sequence) is empty, leaves the (false code) in the input stream. The value of
the (token list variable) is not defined in this case and should not be relied upon. If
the (sequence) is non-empty, pops the top item from the (sequence) in the (token list
variable), i.e. removes the item from the (sequence). The (sequence) is modified globally,
while the (token list variable) is assigned locally.

\seq_push:Nn

\seq_push:Nn (sequence) {(item)}

: (NV|Nv|No|Nx|cn|cV|cv|co|cx)

\seq_gpush:Nn

: (NV|Nv|No|Nx|cn|cV|cv|co|cx)

Adds the {(item)} to the top of the (sequence).

111

\c_empty_seq

New: 2012-07-02

\1_tmpa_seq
\1_tmpb_seq

New: 2012-04-26

\g_tmpa_seq
\g_tmpb_seq

New: 2012-04-26

\seq_show:N
ic

Updated: 2012-09-09

\s__seq

__seq_item:n *

\

seq_push_item_def:n
iX

__seq_pop_item_def:

10 Constant and scratch sequences

Constant that is always empty.

Scratch sequences for local assignment. These are never used by the kernel code, and so
are safe for use with any I#TEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

Scratch sequences for global assignment. These are never used by the kernel code, and
so are safe for use with any I¥TEX3-defined function. However, they may be overwritten
by other non-kernel code and so should only be used for short-term storage.

11 Viewing sequences

\seq_show:N (sequence)

Displays the entries in the (sequence) in the terminal.

12 Internal sequence functions

This scan mark (equal to \scan_stop:) marks the beginning of a sequence variable.

__seq_item:n {(item)}

The internal token used to begin each sequence entry. If expanded outside of a mapping
or manipulation function, an error will be raised. The definition should always be set
globally.

\

Saves the definition of __seq_item:n and redefines it to accept one parameter and
expand to (code). This function should always be balanced by use of __seq_pop_-
item_def:.

seq_push_item_def:n {(code)}

\

Restores the definition of __seq_item:n most recently saved by __seq_push_item_-
def:n. This function should always be used in a balanced pair with __seq_push_-
item_def:n.

seq_pop_item_def:

112

\clist_new:N
:c

\clist_clear:N

ic
\clist_gclear:N
:c

\clist_clear_new:N

:c
\clist_gclear_new:N
:c

Part XIII
The 13clist package
Comma separated lists

Comma lists contain ordered data where items can be added to the left or right end of the
list. The resulting ordered list can then be mapped over using \clist_map_function:NN.
Several items can be added at once, and spaces are removed from both sides of each item
on input. Hence,

\clist_new:N \1_my_clist
\clist_put_left:Nn \l_my_clist { ~a ~ , ~ {b} ~ }
\clist_put_right:Nn \1_my_clist { ~{c ~ 3}, d}

results in \1_my_clist containing a,{b},{c~},d. Comma lists cannot contain empty
items, thus

\clist_clear_new:N \1_my_clist
\clist_put_right:Nn \1_my_clist { , ~, , }
\clist_if_empty:NTF \1_my_clist { true } { false }

will leave true in the input stream. To include an item which contains a comma, or
starts or ends with a space, surround it with braces. The sequence data type should
be preferred to comma lists if items are to contain {, }, or # (assuming the usual TEX
category codes apply).

1 Creating and initialising comma lists

\clist_new:N (comma list)

Creates a new (comma list) or raises an error if the name is already taken. The declaration
is global. The (comma list) will initially contain no items.

\clist_clear:N (comma list)

Clears all items from the (comma list).

\clist_clear_new:N (comma list)

Ensures that the (comma list) exists globally by applying \clist_new:N if necessary,
then applies \clist_(g)clear:N to leave the list empty.

113

\clist_set_eq:NN
: (cN|Nc|cc)
\clist_gset_eq:NN
:(cN|Nc|ec)

\clist_concat:NNN
tcce
\clist_gconcat :NNN
icce

\clist_if_exist_p:N
e
\clist_if_exist:NTF
:cTF

* o o o

New: 2012-03-03

\clist_set_eq:NN (comma listi) (comma lists)

Sets the content of (comma list;) equal to that of (comma lists).

\clist_concat:NNN (comma listi) (comma lists) (comma lists)

Concatenates the content of (comma lists) and (comma lists) together and saves the
result in (comma list;). The items in (comma listy) will be placed at the left side of the
new comma list.

\clist_if_exist_p:N (comma list)
\clist_if_exist:NTF (comma list) {(true code)} {(false code)}

Tests whether the (comma list) is currently defined. This does not check that the {comma
list) really is a comma list.

2 Adding data to comma lists

\clist_set:Nn

\clist_set:Nn (comma list) {{itemi),...,{item,)}

: (NV|No|Nx|cn|cV|co|cx)

\clist_gset:Nn

: (NV|No|Nx|cn|cV|co|cx)

New: 2011-09-06

Sets (comma list) to contain the (items), removing any previous content from the variable.
Spaces are removed from both sides of each item.

\clist_put_left:Nn

\clist_put_left:Nn (comma list) {(itemi),...,{item,)}

: (NV|No|Nx|cn|cV|co|cx)

\clist_gput_left:Nn

: (NV|No|Nx|cn|cV|co|cx)

Updated: 2011-09-05

Appends the (items) to the left of the (comma list). Spaces are removed from both sides
of each item.

\clist_put_right:Nn

\clist_put_right:Nn (comma list) {(item),...,{item,)}

: (NV|No|Nx|cn|cV|co|cx)

\clist_gput_right:Nn

: (NV|No|Nx|cn|cV|co|cx)

Updated: 2011-09-05

Appends the (items) to the right of the (comma list). Spaces are removed from both
sides of each item.

114

3 Modifying comma lists

While comma lists are normally used as ordered lists, it may be necessary to modify the
content. The functions here may be used to update comma lists, while retaining the
order of the unaffected entries.

\clist_remove_duplicates:N \clist_remove_duplicates:N (comma list)

:C

\clist_gremove_duplicates:N

:C

\clist_remove_all:Nn

:cn
\clist_gremove_all:Nn
:cn

Updated: 2011-09-06

\clist_if_empty_p:N
ic
\clist_if_empty:NTF
:cTF

* o o o

Removes duplicate items from the (comma list), leaving the left most copy of each item
in the (comma list). The (item) comparison takes place on a token basis, as for \t1_-
if_eq:nn(TF).

TgXhackers note: This function iterates through every item in the (comma list) and does
a comparison with the (items) already checked. It is therefore relatively slow with large comma
lists. Furthermore, it will not work if any of the items in the (comma list) contains {, }, or #
(assuming the usual TEX category codes apply).

\clist_remove_all:Nn (comma list) {(item)}

Removes every occurrence of (item) from the (comma list). The (item) comparison takes
place on a token basis, as for \t1_if_eq:nn(TF).

TgXhackers note: The (item) may not contain {, }, or # (assuming the usual TEX
category codes apply).

4 Comma list conditionals

\clist_if_empty_p:N (comma list)
\clist_if_empty:NTF (comma list) {(true code)} {(false code)}

Tests if the (comma list) is empty (containing no items).

115

\clist_if_in:NnTF

\clist_if_in:NnTF (comma list) {(item)} {(true code)} {(false

: (NV|No|cn|cV|co|nn|nV|no)TF code)}

Updated: 2011-09-06

Tests if the (item) is present in the (comma list). In the case of an n-type (comma list),
spaces are stripped from each item, but braces are not removed. Hence,

\clist_if_in:nnTF { a , {b}~ , {b} , ¢ } { b } {true} {false}
yields false.

TgXhackers note: The (item) may not contain {, }, or # (assuming the usual TEX
category codes apply), and should not contain , nor start or end with a space.

5 Mapping to comma lists

The functions described in this section apply a specified function to each item of a comma
list.

When the comma list is given explicitly, as an n-type argument, spaces are trimmed
around each item. If the result of trimming spaces is empty, the item is ignored.
Otherwise, if the item is surrounded by braces, one set is removed, and the result is
passed to the mapped function. Thus, if your comma list that is being mapped is
{ay, {3 3}, ,{},u{c},} then the arguments passed to the mapped function are ‘a’,
‘{b}.’, an empty argument, and ‘c’.

When the comma list is given as an N-type argument, spaces have already been
trimmed on input, and items are simply stripped of one set of braces if any. This case is
more efficient than using n-type comma lists.

\clist_map_function:NN

¥ \clist_map_function:NN (comma list) (function)

:(cN|nN) ¥

Updated: 2012-06-29

\clist_map_inline:Nn
:(cn|nn)

Updated: 2012-06-29

Applies (function) to every (item) stored in the (comma list). The (function) will receive
one argument for each iteration. The (items) are returned from left to right. The function
\clist_map_inline:Nn is in general more efficient than \clist_map_function:NN. One
mapping may be nested inside another.

\clist_map_inline:Nn (comma list) {(inline function)}

Applies (inline function) to every (item) stored within the (comma list). The (inline
function) should consist of code which will receive the (item) as #1. One in line mapping
can be nested inside another. The (items) are returned from left to right.

116

\clist_map_variable:NNn \clist_map_variable:NNn (comma list) (tl var.) {(function using tl var.)}
:(cNn|nNn)

Updated: 2012-06-29

Stores each entry in the (comma list) in turn in the (¢l var.) and applies the (function
using tl var.) The (function) will usually consist of code making use of the (¢l var.), but
this is not enforced. One variable mapping can be nested inside another. The (items)
are returned from left to right.

\clist_map_break: 7% \clist_map_break:

Updated: 2012-06-20 Used to terminate a \clist_map_... function before all entries in the (comma list)
have been processed. This will normally take place within a conditional statement, for
example

\clist_map_inline:Nn \1_my_clist
{
\str_if_eq:nnTF { #1 } { bingo }
{ \clist_map_break: }

{
% Do something useful
}
}
Use outside of a \clist_map_... scenario will lead to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted by the
internal macro __prg_break_point:Nn before further items are taken from the input stream.
This will depend on the design of the mapping function.

117

\clist_map_break:n

Updated: 2012-06-29

\clist_count:N *
:(cln) *

New: 2012-07-13

\clist_map_break:n {(tokens)}

Used to terminate a \clist_map_. .. function before all entries in the (comma list) have
been processed, inserting the (tokens) after the mapping has ended. This will normally
take place within a conditional statement, for example

\clist_map_inline:Nn \1_my_clist
{
\str_if_eq:nnTF { #1 } { bingo }
{ \clist_map_break:n { <tokens> } }

{
% Do something useful
}
}
Use outside of a \clist_map_... scenario will lead to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted by the
internal macro __prg_break_point:Nn before the (tokens) are inserted into the input stream.
This will depend on the design of the mapping function.

\clist_count:N (comma list)

Leaves the number of items in the (comma list) in the input stream as an (integer
denotation). The total number of items in a (comma list) will include those which are
duplicates, i.e. every item in a (comma list) is unique.

118

\clist_use:Nnnn x*
:cnnn *

New: 2013-05-26

\clist_use:Nn *
icn x

New: 2013-05-26

6 Using the content of comma lists directly

\clist_use:Nnnn (clist var) {(separator between two)}
{(separator between more than two)} {(separator between final two)}

Places the contents of the (clist var) in the input stream, with the appropriate (separator)
between the items. Namely, if the comma list has more than two items, the (separator
between more than two) is placed between each pair of items except the last, for which
the (separator between final two) is used. If the comma list has exactly two items, then
they are placed in the input stream separated by the (separator between two). If the
comma list has a single item, it is placed in the input stream, and a comma list with no
items produces no output. An error will be raised if the variable does not exist or if it is
invalid.
For example,

\clist_set:Nn \1_tmpa_clist {a , b, , ¢, {de} , £ }
\clist_use:Nnnn \1_tmpa_clist { ~and~ } { ,~ } { ,~and~ }

will insert “a, b, c, de, and f” in the input stream. The first separator argument is
not used in this case because the comma list has more than 2 items.

TEXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (items) will not expand further when appearing in an x-type argument
expansion.

\clist_use:Nn (clist var) {(separator)}

Places the contents of the (clist var) in the input stream, with the (separator) between
the items. If the comma list has a single item, it is placed in the input stream, and a
comma list with no items produces no output. An error will be raised if the variable does
not exist or if it is invalid.

For example,

\clist_set:Nn \1_tmpa_clist {a , b, , c, {de} , £ }
\clist_use:Nn \1_tmpa_clist { ~and~ }

will insert “a and b and c and de and f” in the input stream.

TgXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (items) will not expand further when appearing in an x-type argument
expansion.

7 Comma lists as stacks

Comma lists can be used as stacks, where data is pushed to and popped from the top
of the comma list. (The left of a comma list is the top, for performance reasons.) The

119

\clist_get:NN
:cN

Updated: 2012-05-14

\clist_get:NNTF
:cNTF

New: 2012-05-14

\clist_pop:NN
:cN

Updated: 2011-09-06

\clist_gpop:NN
:cN

\clist_pop:NNTF
:cNTF

New: 2012-05-14

\clist_gpop:NNTF
:cNTF

New: 2012-05-14

stack functions for comma lists are not intended to be mixed with the general ordered
data functions detailed in the previous section: a comma list should either be used as an
ordered data type or as a stack, but not in both ways.

\clist_get:NN (comma list) (token list variable)

Stores the left-most item from a (comma list) in the (token list variable) without removing
it from the (comma list). The (token list variable) is assigned locally. If the (comma list)
is empty the (token list variable) will contain the marker value \q_no_value.

\clist_get:NNTF (comma list) (token list variable) {(true code)} {(false code)}

If the (comma list) is empty, leaves the (false code) in the input stream. The value of
the (token list variable) is not defined in this case and should not be relied upon. If the
(comma list) is non-empty, stores the top item from the (comma list) in the (token list
variable) without removing it from the (comma list). The (token list variable) is assigned
locally.

\clist_pop:NN (comma list) (token list variable)

Pops the left-most item from a (comma list) into the (token list variable), i.e. removes the
item from the comma list and stores it in the (token list variable). Both of the variables
are assigned locally.

\clist_gpop:NN (comma list) (token list variable)

Pops the left-most item from a (comma list) into the (token list variable), i.e. removes
the item from the comma list and stores it in the (token list variable). The (comma list)
is modified globally, while the assignment of the (token list variable) is local.

\clist_pop:NNTF (sequence) (token list variable) {(true code)} {(false code)}

If the (comma list) is empty, leaves the (false code) in the input stream. The value of
the (token list variable) is not defined in this case and should not be relied upon. If the
(comma list) is non-empty, pops the top item from the (comma list) in the (token list
variable), i.e. removes the item from the (comma list). Both the (comma list) and the
(token list variable) are assigned locally.

\clist_gpop:NNTF (comma list) (token list variable) {(true code)} {(false code)}

If the (comma list) is empty, leaves the (false code) in the input stream. The value of
the (token list variable) is not defined in this case and should not be relied upon. If the
(comma list) is non-empty, pops the top item from the (comma list) in the (token list
variable), i.e. removes the item from the (comma list). The (comma list) is modified
globally, while the (token list variable) is assigned locally.

120

\clist_push:Nn

\clist_push:Nn (comma list) {(items)}

: (NV|No|Nx|cn|cV|co|cx)

\clist_gpush:Nn

: (NV|No|Nx|cn|cV|co|cx)

\clist_show:N

:C

Updated: 2012-09-09

\clist_show:n

Updated: 2012-09-09

\c_empty_clist

New: 2012-07-02

\1_tmpa_clist
\1_tmpb_clist

New: 2011-09-06

\g_tmpa_clist
\g_tmpb_clist

New: 2011-09-06

Adds the {(items)} to the top of the (comma list). Spaces are removed from both sides
of each item.

8 Viewing comma lists

\clist_show:N (comma list)

Displays the entries in the (comma list) in the terminal.

\clist_show:n {(tokens)}

Displays the entries in the comma list in the terminal.

9 Constant and scratch comma lists

Constant that is always empty.

Scratch comma lists for local assignment. These are never used by the kernel code, and
so are safe for use with any IXTEX3-defined function. However, they may be overwritten
by other non-kernel code and so should only be used for short-term storage.

Scratch comma lists for global assignment. These are never used by the kernel code, and
so are safe for use with any I¥TEX3-defined function. However, they may be overwritten
by other non-kernel code and so should only be used for short-term storage.

121

\prop_new:N
:C

\prop_clear:N

ic
\prop_gclear:N
c

\prop_clear_new:N

ic
\prop_gclear_new:N
ic

\prop_set_eq:NN
:(cN|Nclcc)
\prop_gset_eq:NN
: (cN|Nc|cc)

Part XIV
The 13prop package
Property lists

ITREX3 implements a “property list” data type, which contain an unordered list of entries
each of which consists of a (key) and an associated (value). The (key) and (value) may
both be any (balanced text). It is possible to map functions to property lists such that
the function is applied to every key—value pair within the list.

Each entry in a property list must have a unique (key): if an entry is added to
a property list which already contains the (key) then the new entry will overwrite the
existing one. The (keys) are compared on a string basis, using the same method as
\str_if_eq:nn.

Property lists are intended for storing key-based information for use within code.
This is in contrast to key—value lists, which are a form of input parsed by the keys
module.

1 Creating and initialising property lists

\prop_new:N (property list)

Creates a new (property list) or raises an error if the name is already taken. The decla-
ration is global. The (property list) will initially contain no entries.

\prop_clear:N (property list)

Clears all entries from the (property list).

\prop_clear_new:N (property list)

Ensures that the (property list) exists globally by applying \prop_new:N if necessary,
then applies \prop_(g)clear:N to leave the list empty.

\prop_set_eq:NN (property listi) (property lists)
Sets the content of (property list;) equal to that of (property listy).

122

2 Adding entries to property lists

\prop_put:Nnn

\prop_put:Nnn (property list)

: (NnV|Nno|Nnx|NVn|NVV|Non|Noo|cnn|cnV|cno|cnx|cVn|cVV|con|coo) {(key)} {(value)}

\prop_gput : Nnn

: (NnV|Nno|Nnx|NVn|NVV|Non|Noo|cnn|cnV|cno|cnx|cVn|cVV|con|coo)

Updated: 2012-07-09

\prop_put_if_new:Nnn

:cnn
\prop_gput_if_new:Nnn
:cnn

Adds an entry to the (property list) which may be accessed using the (key) and which
has (value). Both the (key) and (value) may contain any (balanced text). The (key) is
stored after processing with \t1l_to_str:n, meaning that category codes are ignored. If
the (key) is already present in the (property list), the existing entry is overwritten by the
new (value).

\prop_put_if_new:Nnn (property list) {(key)} {(value)}

If the (key) is present in the (property list) then no action is taken. If the (key) is not
present in the (property list) then a new entry is added. Both the (key) and (value) may
contain any (balanced text). The (key) is stored after processing with \t1l_to_str:n,
meaning that category codes are ignored.

3 Recovering values from property lists

\prop_get :NnN

\prop_get:NnN (property list) {(key)} (tl var)

: (NVN|NoN|cnN|cVN|coN)

Updated: 2011-08-28

\prop_pop:NnN
: (NoN|cnN|coN)

Updated: 2011-08-18

\prop_gpop:NnN
: (NoN|cnN|coN)

Updated: 2011-08-18

Recovers the (value) stored with (key) from the (property list), and places this in the
(token list variable). If the (key) is not found in the (property list) then the (token list
variable) will contain the special marker \q_no_value. The (token list variable) is set
within the current TEX group. See also \prop_get :NnNTF.

\prop_pop:NnN (property list) {(key)} (tl var)

Recovers the (value) stored with (key) from the (property list), and places this in the
(token list variable). If the (key) is not found in the (property list) then the (token list
variable) will contain the special marker \q_no_value. The (key) and (value) are then
deleted from the property list. Both assignments are local. See also \prop_pop:NnNTF.

\prop_gpop:NnN (property list) {(key)} (tl var)

Recovers the (value) stored with (key) from the (property list), and places this in the
(token list variable). 1If the (key) is not found in the (property list) then the (token
list variable) will contain the special marker \q_no_value. The (key) and (value) are
then deleted from the property list. The (property list) is modified globally, while the
assignment of the (token list variable) is local. See also \prop_gpop:NnNTF.

123

4 Modifying property lists

\prop_remove:Nn \prop_remove:Nn (property list) {(key)}

\prop gremové%ﬂcn‘cv) Removes the entry listed under (key) from the (property list). If the (key) is not found

: (WV|cn|cV) in the (property list) no change occurs, i.e there is no need to test for the existence of a
key before deleting it.

New: 2012-05-12

5 Property list conditionals

\prop_if_exist_p:N % \prop_if_exist_p:N (property list)

:c « \prop_if_exist:NTF (property list) {(true code)} {(false code)}
\prop_if_exist:NTF *
*

r Tests whether the (property list) is currently defined. This does not check that the
:cTF

(property list) really is a property list variable.

New: 2012-03-03

\prop_if_empty_p:N % \prop_if_empty p:N (property list)
:c + \prop_if_empty:NTF (property list) {(true code)} {(false code)}
\Pr°p—if—empty:N%: * Tests if the (property list) is empty (containing no entries).
:cTF *

\prop_if_in_p:Nn *
: (NV|No|cn|cV|co) *
\prop_if_in:NnTF *
:(NV|No|cn|cV|co)TF *

\prop_if_in:NnTF (property list) {(key)} {(true code)} {(false code)}

Updated: 2011-09-15

Tests if the (key) is present in the (property list), making the comparison using the
method described by \str_if_eq:nnTF.

TgXhackers note: This function iterates through every key—value pair in the (property
list) and is therefore slower than using the non-expandable \prop_get : NnNTF.

6 Recovering values from property lists with branch-
ing

The functions in this section combine tests for the presence of a key in a property list

with recovery of the associated valued. This makes them useful for cases where different

cases follow dependent on the presence or absence of a key in a property list. They offer
increased readability and performance over separate testing and recovery phases.

124

\prop_get :NnNTF

: (NVN|NoN|cnN|cVN|coN) TF

\prop_get :NoNTF (property list) {(key)} (token list variable)
{(true code)} {(false code)}

Updated: 2012-05-19

\prop_pop:NnNTF
:cnNTF

New: 2011-08-18
Updated: 2012-05-19

\prop_gpop: NnNTF
:cnNTF

New: 2011-08-18
Updated: 2012-05-19

\prop_map_function:NN
:cN W

Updated: 2013-01-08

\prop_map_inline:Nn
rcn

Updated: 2013-01-08

If the (key) is not present in the (property list), leaves the (false code) in the input stream.
The value of the (token list variable) is not defined in this case and should not be relied
upon. If the (key) is present in the (property list), stores the corresponding (value) in the
(token list variable) without removing it from the (property list), then leaves the (true
code) in the input stream. The (token list variable) is assigned locally.

\prop_pop:NnNTF (property list) {(key)} (token list variable) {(true code)}
{(false code)}

If the (key) is not present in the (property list), leaves the (false code) in the input stream.
The value of the (token list variable) is not defined in this case and should not be relied
upon. If the (key) is present in the (property list), pops the corresponding (value) in the
(token list variable), i.e. removes the item from the (property list). Both the (property
listy and the (token list variable) are assigned locally.

\prop_gpop:NnNTF (property list) {(key)} (token list variable) {(true code)}
{(false code)}

If the (key) is not present in the (property list), leaves the (false code) in the input stream.
The value of the (token list variable) is not defined in this case and should not be relied
upon. If the (key) is present in the (property list), pops the corresponding (value) in the
(token list variable), i.e. removes the item from the (property list). The (property list) is
modified globally, while the (token list variable) is assigned locally.

7 Mapping to property lists

\prop_map_function:NN (property list) (function)

Applies (function) to every (entry) stored in the (property list). The (function) will
receive two argument for each iteration: the (key) and associated (value). The order in
which (entries) are returned is not defined and should not be relied upon.

\prop_map_inline:Nn (property list) {(inline function)}

Applies (inline function) to every (entry) stored within the (property list). The (inline
function) should consist of code which will receive the (key) as #1 and the (value) as #2.
The order in which (entries) are returned is not defined and should not be relied upon.

125

\prop_map_break: i«

Updated: 2012-06-29

\prop_map_break:n v

Updated: 2012-06-29

\prop_show:N

:C

Updated: 2012-09-09

\prop_map_break:

Used to terminate a \prop_map_... function before all entries in the (property list)
have been processed. This will normally take place within a conditional statement, for
example

\prop_map_inline:Nn \1_my_prop
{
\str_if_eq:nnTF { #1 } { bingo }
{ \prop_map_break: }

{
% Do something useful
}
}
Use outside of a \prop_map_. .. scenario will lead to low level TEX errors.

\prop_map_break:n {(tokens)}

Used to terminate a \prop_map_. .. function before all entries in the (property list) have
been processed, inserting the (tokens) after the mapping has ended. This will normally
take place within a conditional statement, for example

\prop_map_inline:Nn \1_my_prop
{
\str_if_eq:nnTF { #1 } { bingo }
{ \prop_map_break:n { <tokens> } }

{
% Do something useful
}
}
Use outside of a \prop_map_. .. scenario will lead to low level TEX errors.

8 Viewing property lists

\prop_show:N (property list)
Displays the entries in the (property list) in the terminal.

126

\1_tmpa_prop
\1_tmpb_prop

New: 2012-06-23
\g_tmpa_prop
\g_tmpb_prop

New: 2012-06-23

\c_empty_prop

\s__prop

__prop_pair:wn

\1__prop_internal_tl

__prop_split:NnTF

Updated: 2013-01-08

9 Scratch property lists

Scratch property lists for local assignment. These are never used by the kernel code, and
so are safe for use with any IXTEX3-defined function. However, they may be overwritten
by other non-kernel code and so should only be used for short-term storage.

Scratch property lists for global assignment. These are never used by the kernel code, and
so are safe for use with any I#TEX3-defined function. However, they may be overwritten
by other non-kernel code and so should only be used for short-term storage.

10 Constants

A permanently-empty property list used for internal comparisons.

11 Internal property list functions

The internal token used at the beginning of property lists. This is also used after each
(key) (see __prop_pair:wn).

__prop_pair:wn (key) \s__prop {{item)}

The internal token used to begin each key—value pair in the property list. If expanded
outside of a mapping or manipulation function, an error will be raised. The definition
should always be set globally.

Token list used to store new key—value pairs to be inserted by functions of the \prop_-
put :Nnn family.

__prop_split:NnTF (property list) {(key)} {(true code)} {(false code)}

Splits the (property list) at the (key), giving three token lists: the (extract) of (property
list)y before the (key), the (wvalue) associated with the (key) and the (extract) of the
(property list) after the (value). Both (extracts) retain the internal structure of a property
list, and the concatenation of the two (extracts) is a property list. If the (key) is present
in the (property list) then the (true code) is left in the input stream, with #1, #2, and
#3 replaced by the first {extract), the (value), and the second extract. If the (key) is not
present in the (property list) then the (false code) is left in the input stream, with no
trailing material. Both (true code) and (false code) are used in the replacement text of
a macro defined internally, hence macro parameter characters should be doubled, except
#1, #2, and #3 which stand in the (true code) for the three extracts from the property
list. The (key) comparison takes place as described for \str_if_eq:nn.

127

\box_new:N
e

\box_clear:N

ic
\box_gclear:N
c

\box_clear_new:N

e
\box_gclear_new:N
:c

\box_set_eq:NN
: (cN|Nclec)
\box_gset_eq:NN
:(cN|Nc|ec)

\box_set_eq_clear:NN
:(cN|N¢|ec)

Part XV
The 13box package
Boxes

There are three kinds of box operations: horizontal mode denoted with prefix \hbox_,
vertical mode with prefix \vbox_, and the generic operations working in both modes with
prefix \box_.

1 Creating and initialising boxes

\box_new:N (box)

Creates a new (boz) or raises an error if the name is already taken. The declaration is
global. The (boz) will initially be void.

\box_clear:N (box)

Clears the content of the (boz) by setting the box equal to \c_void_box.

\box_clear_new:N (box)

Ensures that the (boz) exists globally by applying \box_new:N if necessary, then applies
\box_(g)clear:N to leave the (boz) empty.

\box_set_eq:NN (boxi) (boxa)
Sets the content of (box;) equal to that of (bozs).

\box_set_eq_clear:NN (box;) (boxz)

Sets the content of (boz;) within the current TEX group equal to that of (boxs), then
clears (boxy) globally.

\box_gset_eq_clear:NN

\box_gset_eq_clear:NN (boxi) (boxa)

: (cN|Nc|cc)

Sets the content of (box;) equal to that of (boxs), then clears (boxp). These assignments
are global.

128

\box_if_exist_p:N *
ic o*
\box_if_exist:NTF x
:cTF *

New: 2012-03-03

\box_use:N
:c

\box_use_clear:N
e

\box_move_right:nn
\box_move_left:nn

\box_move_up:nn
\box_move_down:nn

\box_dp:N
ic

\box_if_exist_p:N (box)
\box_if_exist:NTF (box) {(true code)} {(false code)}

Tests whether the (boz) is currently defined. This does not check that the (box) really is
a box.

2 Using boxes

\box_use:N (box)

Inserts the current content of the (boz) onto the current list for typesetting.

TEXhackers note: This is the TEX primitive \copy.

\box_use_clear:N (box)
Inserts the current content of the (box) onto the current list for typesetting, then globally

clears the content of the (boz).

TEXhackers note: This is the TEX primitive \box.

\box_move_right:nn {(dimexpr)} {(box function)}

This function operates in vertical mode, and inserts the material specified by the (boz
function) such that its reference point is displaced horizontally by the given (dimezpr)
from the reference point for typesetting, to the right or left as appropriate. The (box
function) should be a box operation such as \box_use:N \<box> or a “raw” box specifi-
cation such as \vbox:n { xyz }.

\box_move_up:nn {(dimexpr)} {(box function)}

This function operates in horizontal mode, and inserts the material specified by the
(boz function) such that its reference point is displaced vertical by the given (dimezpr)
from the reference point for typesetting, up or down as appropriate. The (box function)
should be a box operation such as \box_use:N \<box> or a “raw” box specification such
as \vbox:n { xyz }.

3 Measuring and setting box dimensions

\box_dp:N (box)

Calculates the depth (below the baseline) of the (boz) in a form suitable for use in a
(dimension expression).

TEXhackers note: This is the TEX primitive \dp.

129

\box_ht:N
e

\box_wd:N
ic

\box_set_dp:Nn
:cn

Updated: 2011-10-22

\box_set_ht:Nn
:cn

Updated: 2011-10-22

\box_set_wd:Nn
:cn

Updated: 2011-10-22

\box_if_empty_p:N *

ic oK

\box_if _empty:NTF *

:cTF *
\box_if_horizontal_p:N *
ic oK
\box_if_horizontal:NTF *
:cTF *
\box_if_vertical_p:N x
ic oK
\box_if_vertical:NTF x
:cTF *

\box_ht:N (box)

Calculates the height (above the baseline) of the (boz) in a form suitable for use in a
(dimension expression).

TEXhackers note: This is the TEX primitive \ht.

\box_wd:N (box)

Calculates the width of the (boz) in a form suitable for use in a (dimension expression,).

TgXhackers note: This is the TEX primitive \wd.

\box_set_dp:Nn (box) {(dimension expression)}

Set the depth (below the baseline) of the (box) to the value of the {{dimension
expression)}. This is a global assignment.

\box_set_ht:Nn (box) {(dimension expression)}

Set the height (above the baseline) of the (boz) to the value of the {(dimension
expression)}. This is a global assignment.

\box_set_wd:Nn (box) {(dimension expression)}

Set the width of the (box) to the value of the {(dimension expression)}. This is a global
assignment.

4 Box conditionals

\box_if_empty_p:N (box)
\box_if_empty:NTF (box) {(true code)} {(false code)}

Tests if (box) is a empty (equal to \c_empty_box).

\box_if_horizontal_p:N (box)
\box_if_horizontal:NTF (box) {(true code)} {(false code)}

Tests if (box) is a horizontal box.

\box_if_vertical_p:N (box)
\box_if_vertical:NTF (box) {(true code)} {(false code)}

Tests if (box) is a vertical box.

130

\box_set_to_last:N

:c
\box_gset_to_last:N
:c

\c_empty_box

Updated: 2012-11-04

\1_tmpa_box
\1_tmpb_box

Updated: 2012-11-04

\g_tmpa_box
\g_tmpb_box

\box_show:N
:c

Updated: 2012-05-11

\box_show:Nnn
:cnn

New: 2012-05-11

\box_log:N

:C

New: 2012-05-11

5 The last box inserted

\box_set_to_last:N (box)

Sets the (box) equal to the last item (box) added to the current partial list, removing the
item from the list at the same time. When applied to the main vertical list, the (box)
will always be void as it is not possible to recover the last added item.

6 Constant boxes

This is a permanently empty box, which is neither set as horizontal nor vertical.

7 Scratch boxes

Scratch boxes for local assignment. These are never used by the kernel code, and so are
safe for use with any I4TEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

Scratch boxes for global assignment. These are never used by the kernel code, and so
are safe for use with any I4TEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

8 Viewing box contents

\box_show:N (box)

Shows full details of the content of the (bozx) in the terminal.

\box_show:Nnn (box) (intexpri) (intexprs)

Display the contents of (boz) in the terminal, showing the first (intezpr;) items of the
box, and descending into (intexpry) group levels.

\box_show:N (box)
Writes full details of the content of the (boz) to the log.

131

\box_log:Nnn
:cnn

New: 2012-05-11

\hbox:n

\hbox_to_wd:nn

\hbox_to_zero:n

\hbox_set:Nn

:cn
\hbox_gset:Nn
:cn

\hbox_set_to_wd:Nnn

:cnn
\hbox_gset_to_wd:Nnn
:cnn

\hbox_overlap_right:n

\hbox_overlap_left:n

\box_show:Nnn (box) (intexpri) (intexprsa)

Writes the contents of (box) to the log, showing the first (intezpr;) items of the box, and
descending into (intexprs) group levels.

9 Horizontal mode boxes

\hbox:n {(contents)}

Typesets the (contents) into a horizontal box of natural width and then includes this box
in the current list for typesetting.

TEXhackers note: This is the TEX primitive \hbox.

\hbox_to_wd:nn {(dimexpr)} {(contents)}

Typesets the (contents) into a horizontal box of width (dimezpr) and then includes this
box in the current list for typesetting.

\hbox_to_zero:n {(contents)}

Typesets the (contents) into a horizontal box of zero width and then includes this box in
the current list for typesetting.

\hbox_set:Nn (box) {(contents)}

Typesets the (contents) at natural width and then stores the result inside the (boz).

\hbox_set_to_wd:Nnn (box) {(dimexpr)} {(contents)}

Typesets the (contents) to the width given by the (dimezpr) and then stores the result
inside the (boz).

\hbox_overlap_right:n {(contents)}

Typesets the (contents) into a horizontal box of zero width such that material will pro-
trude to the right of the insertion point.

\hbox_overlap_left:n {(contents)}

Typesets the (contents) into a horizontal box of zero width such that material will pro-
trude to the left of the insertion point.

132

\hbox_set :Nw
tcw
\hbox_set_end:
\hbox_gset:Nw
rcw
\hbox_gset_end:

\hbox_unpack:N
ic

\hbox_unpack_clear:N
:c

\vbox:n

Updated: 2011-12-18

\vbox_top:n

Updated: 2011-12-18

\hbox_set:Nw (box) (contents) \hbox_set_end:

Typesets the (contents) at natural width and then stores the result inside the (boz). In
contrast to \hbox_set:Nn this function does not absorb the argument when finding the
(content), and so can be used in circumstances where the (content) may not be a simple
argument.

\hbox_unpack:N (box)
Unpacks the content of the horizontal (box), retaining any stretching or shrinking applied

when the (bozx) was set.

TEXhackers note: This is the TEX primitive \unhcopy.

\hbox_unpack_clear:N (box)
Unpacks the content of the horizontal (boz), retaining any stretching or shrinking applied
when the (bozx) was set. The (bozx) is then cleared globally.

TEXhackers note: This is the TEX primitive \unhbox.

10 Vertical mode boxes

Vertical boxes inherit their baseline from their contents. The standard case is that the
baseline of the box is at the same position as that of the last item added to the box.
This means that the box will have no depth unless the last item added to it had depth.
As a result most vertical boxes have a large height value and small or zero depth. The
exception are _top boxes, where the reference point is that of the first item added. These
tend to have a large depth and small height, although the latter will typically be non-zero.

\vbox:n {(contents)}

Typesets the (contents) into a vertical box of natural height and includes this box in the
current list for typesetting.

TEXhackers note: This is the TEX primitive \vbox.

\vbox_top:n {(contents)}

Typesets the (contents) into a vertical box of natural height and includes this box in the
current list for typesetting. The baseline of the box will be equal to that of the first item
added to the box.

TEXhackers note: This is the TEX primitive \vtop.

133

\vbox_to_ht:nn

Updated: 2011-12-18

\vbox_to_zero:n

Updated: 2011-12-18

\vbox_set:Nn

icn
\vbox_gset:Nn
icn

Updated: 2011-12-18

\vbox_set_top:Nn

:cn

\vbox_gset_top:Nn

:cn

Updated: 2011-12-18

\vbox_set_to_ht:Nnn

:cnn

\vbox_gset_to_ht:Nnn

:cnn

Updated: 2011-12-18

\vbox_set :Nw
tcw
\vbox_set_end:
\vbox_gset :Nw
rcw
\vbox_gset_end:

Updated: 2011-12-18

\vbox_set_split_to_ht:NNn

Updated: 2011-10-22

\vbox_to_ht:nn {(dimexpr)} {(contents)}

Typesets the (contents) into a vertical box of height (dimexpr) and then includes this
box in the current list for typesetting.

\vbox_to_zero:n {(contents)}

Typesets the (contents) into a vertical box of zero height and then includes this box in
the current list for typesetting.

\vbox_set:Nn (box) {(contents)}

Typesets the (contents) at natural height and then stores the result inside the (box).

\vbox_set_top:Nn (box) {(contents)}

Typesets the {contents) at natural height and then stores the result inside the (boz). The
baseline of the box will be equal to that of the first item added to the box.

\vbox_set_to_ht:Nnn (box) {(dimexpr)} {(contents)}

Typesets the (contents) to the height given by the (dimezpr) and then stores the result
inside the (boz).

\vbox_set:Nw (box) (contents) \vbox_set_end:

Typesets the (contents) at natural height and then stores the result inside the (bozx). In
contrast to \vbox_set:Nn this function does not absorb the argument when finding the
(content), and so can be used in circumstances where the (content) may not be a simple
argument.

\vbox_set_split_to_ht:NNn (boxi) (boxs) {(dimexpr)}

Sets (boz;) to contain material to the height given by the (dimezpr) by removing content
from the top of (bozs) (which must be a vertical box).

TEXhackers note: This is the TEX primitive \vsplit.

134

\vbox_unpack:N \vbox_unpack:N (box)

© Unpacks the content of the vertical (boz), retaining any stretching or shrinking applied

when the (boz) was set.

TEXhackers note: This is the TEX primitive \unvcopy.

\vbox_unpack_clear:N \vbox_unpack:N (box)
ic

Unpacks the content of the vertical (boz), retaining any stretching or shrinking applied
when the (bozx) was set. The (bozx) is then cleared globally.

TEXhackers note: This is the TEX primitive \unvbox.

11 Primitive box conditionals

\if_hbox:N * \if_hbox:N (box)
- (true code)
\else:
(false code)
\fi:
Tests is (box) is a horizontal box.

TEXhackers note: This is the TEX primitive \ifhbox.

\if_vbox:N * \if_vbox:N (box)
- (true code)
\else:
(false code)
\fi:
Tests is (box) is a vertical box.

TEXhackers note: This is the TEX primitive \ifvbox.

\if_box_empty:N * \if_box_empty:N (box)
(true code)
\else:
(false code)
\fi:
Tests is (boz) is an empty (void) box.

TEXhackers note: This is the TEX primitive \ifvoid.

135

\coffin_new:N
:c

New: 2011-08-17

\coffin_clear:N
ic

New: 2011-08-17

\coffin_set_eq:NN
: (Nc|cN|cc)

New: 2011-08-17

\coffin_if_exist_p:N x
ic ok
\coffin_if_exist:NTF x
:cTF *

New: 2012-06-20

\hcoffin_set:Nn
:cn

New: 2011-08-17
Updated: 2011-09-03

Part XVI
The 13coffins package
Coffin code layer

The material in this module provides the low-level support system for coffins. For details
about the design concept of a coffin, see the xcoffins module (in the I13experimental bundle).

1 Creating and initialising coffins

\coffin_new:N (coffin)

Creates a new (coffin) or raises an error if the name is already taken. The declaration is
global. The (coffin) will initially be empty.

\coffin_clear:N (coffin)

Clears the content of the (coffin) within the current TEX group level.

\coffin_set_eq:NN (coffin;) (coffinsp)

Sets both the content and poles of (coffini) equal to those of (coffing) within the current
TEX group level.

\coffin_if_exist_p:N (box)
\coffin_if_exist:NTF (box) {(true code)} {(false code)}

Tests whether the (coffin) is currently defined.

2 Setting coffin content and poles

All coffin functions create and manipulate coffins locally within the current TEX group
level.

\hcoffin_set:Nn (coffin) {(material)}

Typesets the (material) in horizontal mode, storing the result in the (coffin). The stan-
dard poles for the (coffin) are then set up based on the size of the typeset material.

136

\hcoffin_set:Nw
tcw
\hcoffin_set_end:

New: 2011-09-10

\vcoffin_set:Nnn
:cnn

New: 2011-08-17
Updated: 2012-05-22

\vcoffin_set:Nnw
rcnw
\vcoffin_set_end:

New: 2011-09-10
Updated: 2012-05-22

\hcoffin_set:Nw (coffin) (material) \hcoffin_set_end:

Typesets the (material) in horizontal mode, storing the result in the (coffin). The stan-
dard poles for the (coffin) are then set up based on the size of the typeset material. These
functions are useful for setting the entire contents of an environment in a coffin.

\vcoffin_set:Nnn (coffin) {(width)} {(material)}
Typesets the (material) in vertical mode constrained to the given (width) and stores the

result in the (coffin). The standard poles for the (coffin) are then set up based on the
size of the typeset material.

\vcoffin_set:Nnw (coffin) {(width)} (material) \vcoffin_set_end:

Typesets the (material) in vertical mode constrained to the given (width) and stores the
result in the (coffin). The standard poles for the (coffin) are then set up based on the
size of the typeset material. These functions are useful for setting the entire contents of
an environment in a coffin.

\coffin_set_horizontal_pole:Nnn \coffin_set_horizontal_pole:Nnn (coffin)

:cnn {(pole)} {(offset)}

New: 2012-07-20

Sets the (pole) to run horizontally through the {coffin). The (pole) will be located at the
(offset) from the bottom edge of the bounding box of the (coffin). The (offset) should
be given as a dimension expression.

\coffin_set_vertical_pole:Nnn \coffin_set_vertical_pole:Nnn (coffin) {(pole)} {(offset)}

.cnn

New: 2012-07-20

Sets the (pole) to run vertically through the (coffin). The (pole) will be located at the
(offset) from the left-hand edge of the bounding box of the (coffin). The (offset) should

be given as a dimension expression.

137

3 Joining and using coffins

\coffin_attach:NnnNnnnn \coffin_attach:NnnNnnnn

: (cnnNnnnn|Nnncnnnn|cnnennnn) (coffini) {(coffin;-pole;)} {(coffin;-polez)}

(coffins) {(coffins-pole1)} {{coffiny-poles)}

{(x-offset)} {(y-offset)}

This function attaches (coffing) to (coffiny) such that the bounding box of {coffini)
is not altered, i.e. (coffing) can protrude outside of the bounding box of the cof-
fin. The alignment is carried out by first calculating (handle;), the point of intersec-
tion of (coffing-poler) and (coffini-poles), and (handles), the point of intersection of
(coffing-poler) and (coffina-poles). {(coffing) is then attached to (coffing) such that the
relationship between (handle;) and (handles) is described by the (z-offset) and (y-offset).
The two offsets should be given as dimension expressions.

\coffin_join:NnnNnnnn \coffin_join:NnnNnnnn
: (cnnNnnnn|Nnncnnnn|cnncnnnn) (coffiny) {(coffini-polei)} {(coffini-polez)}
(coffing) {({coffina-polei)} {(coffinp-poles)}

{{x-offset)} {(y-offset)}

This function joins (coffing) to (coffing) such that the bounding box of (coffin;) may
expand. The new bounding box will cover the area containing the bounding boxes of
the two original coffins. The alignment is carried out by first calculating (handle;), the
point of intersection of (coffini-pole;) and (coffini-poles), and (handles), the point of
intersection of (coffing-pole;) and (coffing-poles). {coffing) is then attached to (coffing)
such that the relationship between (handle;) and (handles) is described by the (a-offset)
and (y-offset). The two offsets should be given as dimension expressions.

\coffin_typeset:Nnnnn \coffin_typeset:Nnnnn (coffin) {(pole:1)} {(poles)}
:cnnnn {(x-offset)} {(y-offset)}

Updated: 2012-07-20 Lypesetting is carried out by first calculating (handle), the point of intersection of (pole;)
and (poles). The coffin is then typeset in horizontal mode such that the relationship be-
tween the current reference point in the document and the (handle) is described by the
(z-offset) and (y-offset). The two offsets should be given as dimension expressions. Type-
setting a coffin is therefore analogous to carrying out an alignment where the “parent”
coffin is the current insertion point.

4 Measuring coffins

\coffin_dp:N \coffin_dp:N (coffin)

Calculates the depth (below the baseline) of the (coffin) in a form suitable for use in a
(dimension expression).

138

\coffin_ht:N
e

\coffin_wd:N
:c

\coffin_display_handles:Nn
rcn

Updated: 2011-09-02

\coffin_mark_handle:Nnnn
:cnnn

Updated: 2011-09-02

\coffin_show_structure:N
:c

Updated: 2012-09-09

\c_empty_coffin

\1_tmpa_coffin
\1_tmpb_coffin

New: 2012-06-19

\coffin_ht:N (coffin)

Calculates the height (above the baseline) of the (coffin) in a form suitable for use in a
(dimension expression).

\coffin_wd:N (coffin)

Calculates the width of the (coffin) in a form suitable for use in a (dimension expression,).

5 Coffin diagnostics

\coffin_display_handles:Nn (coffin) {({color)}

This function first calculates the intersections between all of the (poles) of the {coffin) to
give a set of (handles). It then prints the (coffin) at the current location in the source,
with the position of the (handles) marked on the coffin. The (handles) will be labelled
as part of this process: the locations of the (handles) and the labels are both printed in
the (color) specified.

\coffin_mark_handle:Nnnn (coffin) {(polei)} {(pole2)} {({color)}

This function first calculates the (handle) for the (coffin) as defined by the intersection
of (poler) and (poles). It then marks the position of the (handle) on the (coffin). The
(handle) will be labelled as part of this process: the location of the (handle) and the
label are both printed in the (color) specified.

\coffin_show_structure:N (coffin)

This function shows the structural information about the (coffin) in the terminal. The
width, height and depth of the typeset material are given, along with the location of all
of the poles of the coffin.

Notice that the poles of a coffin are defined by four values: the x and y co-ordinates
of a point that the pole passes through and the z- and y-components of a vector denoting
the direction of the pole. It is the ratio between the later, rather than the absolute values,
which determines the direction of the pole.

5.1 Constants and variables

A permanently empty coffin.

Scratch coffins for local assignment. These are never used by the kernel code, and so
are safe for use with any I#TEX3-defined function. However, they may be overwritten by
other non-kernel code and so should only be used for short-term storage.

139

\color_group_begin:
\color_group_end:

New: 2011-09-03

\color_ensure_current:

New: 2011-09-03

Part XVII
The 13color package
Color support

This module provides support for color in IXTEX3. At present, the material here is mainly
intended to support a small number of low-level requirements in other 13kernel modules.

1 Color in boxes

Controlling the color of text in boxes requires a small number of control functions, so
that the boxed material uses the color at the point where it is set, rather than where it
is used.

\color_group_begin:

\color_group_end:

Creates a color group: one used to “trap” color settings.

\color_ensure_current:

Ensures that material inside a box will use the foreground color at the point where the
box is set, rather than that in force when the box is used. This function should usually
be used within a \color_group_begin: ...\color_group_end: group.

140

\msg_new:nnnn
:nnn

Updated: 2011-08-16

Part XVIII
The 13msg package
Messages

Messages need to be passed to the user by modules, either when errors occur or to indicate
how the code is proceeding. The I3msg module provides a consistent method for doing
this (as opposed to writing directly to the terminal or log).

The system used by I13msg to create messages divides the process into two distinct
parts. Named messages are created in the first part of the process; at this stage, no
decision is made about the type of output that the message will produce. The second
part of the process is actually producing a message. At this stage a choice of message
class has to be made, for example error, warning or info.

By separating out the creation and use of messages, several benefits are available.
First, the messages can be altered later without needing details of where they are used
in the code. This makes it possible to alter the language used, the detail level and so
on. Secondly, the output which results from a given message can be altered. This can be
done on a message class, module or message name basis. In this way, message behaviour
can be altered and messages can be entirely suppressed.

1 Creating new messages

All messages have to be created before they can be used. The text of messages will
automatically by wrapped to the length available in the console. As a result, formatting
is only needed where it will help to show meaning. In particular, \\ may be used to force
a new line and \, forces an explicit space. Additionally, \{, \#, \}, \% and \~ can be
used to produce the corresponding character.

Messages may be subdivided by one level using the / character. This is used within
the message filtering system to allow for example the IXTEX kernel messages to belong to
the module LaTeX while still being filterable at a more granular level. Thus for example

\msg_new:nnnn { mymodule } { submodule / message } ...

will allow only those messages from the submodule to be filtered out.

\msg_new:nnnn {(module)} {(message)} {(text)} {(more text)}

Creates a (message) for a given (module). The message will be defined to first give (text)
and then (more text) if the user requests it. If no (more text) is available then a standard
text is given instead. Within (text) and (more text) four parameters (#1 to #4) can be
used: these will be supplied at the time the message is used. An error will be raised if
the (message) already exists.

141

\msg_set:nnnn
:nnn

\msg_gset :nnnn
:nnn

\msg_if_exist_p:nn *
\msg_if_exist:nnTF x

New: 2012-03-03

\msg_line_context:

\msg_line_number: x*

\msg_fatal_text:n *

\msg_critical_text:n *

\msg_error_text:n *

\msg_set:nnnn {(module)} {(message)} {(text)} {(more text)}

Sets up the text for a (message) for a given (module). The message will be defined to
first give (text) and then (more text) if the user requests it. If no (more text) is available
then a standard text is given instead. Within (text) and (more text) four parameters (#1
to #4) can be used: these will be supplied at the time the message is used.

\msg_if_exist_p:nn {(module)} {(message)}
\msg_if_exist:nnTF {(module)} {(message)} {(true code)} {(false code)}

Tests whether the (message) for the (module) is currently defined.

2 Contextual information for messages

\msg_line_context:

Prints the current line number when a message is given, and thus suitable for giving
context to messages. The number itself is proceeded by the text on line.

\msg_line_number:

Prints the current line number when a message is given.

\msg_fatal_text:n {(module)}
Produces the standard text
Fatal (module) error
This function can be redefined to alter the language in which the message is given, using

#1 as the name of the (module) to be included.

\msg_critical_text:n {(module)}
Produces the standard text
Critical (module) error
This function can be redefined to alter the language in which the message is given, using

#1 as the name of the (module) to be included.

\msg_error_text:n {(module)}

Produces the standard text
(module) error

This function can be redefined to alter the language in which the message is given, using
#1 as the name of the {(module) to be included.

142

\msg_warning_text:n *

\msg_info_text:n *

\msg_warning_text:n {(module)}

Produces the standard text
(module) warning

This function can be redefined to alter the language in which the message is given, using
#1 as the name of the (module) to be included.

\msg_info_text:n {(module)}
Produces the standard text:

(module) info

This function can be redefined to alter the language in which the message is given, using
#1 as the name of the (module) to be included.

\msg_see_documentation_text:n x \msg_see_documentation_text:n {(module)}

Produces the standard text
See the (module) documentation for further information.

This function can be redefined to alter the language in which the message is given, using
#1 as the name of the (module) to be included.

3 Issuing messages

Messages behave differently depending on the message class. In all cases, the message
may be issued supplying 0 to 4 arguments. If the number of arguments supplied here does
not match the number in the definition of the message, extra arguments will be ignored,
or empty arguments added (of course the sense of the message may be impaired). The
four arguments will be converted to strings before being added to the message text: the
x-type variants should be used to expand material.

\msg_fatal:nnnnnn

\msg_fatal:nnnnnn {(module)} {(message)} {(arg one)}

: (nnnnn|nnnn|nnn|nn|nnxxxx|nnxxx|nnxx|nnx) {(arg two)} {(arg three)} {(arg four)}

Updated: 2012-08-11

Issues (module) error (message), passing (arg one) to (arg four) to the text-creating
functions. After issuing a fatal error the TEX run will halt.

143

{(message)} {(arg
{(arg four)}

\msg_critical:nnnnnn \msg_critical:nnnnnn {(module)}
: (nnnnn|nnnn|nnn|nn|nnxxxx|nnxxx|nnxx|nnx) one)} {(arg two)} {(arg three)}

Updated: 2012-08-11

Issues (module) error (message), passing (arg one) to (arg four) to the text-creating
functions. After issuing a critical error, TEX will stop reading the current input file. This
may halt the TEX run (if the current file is the main file) or may abort reading a sub-file.

TEXhackers note: The TEX \endinput primitive is used to exit the file. In particular,
the rest of the current line remains in the input stream.

\msg_error:nnnnnn \msg_error:nnnnnn {(module)} {(message)} {(arg one)}
: (nnnnn|nnnn|nnn|nn|nnxxxx|nnxxx|nnxx|nnx) {(arg two)} {(arg three)} {(arg four)}

Updated: 2012-08-11

Issues (module) error (message), passing (arg one) to (arg four) to the text-creating
functions. The error will interrupt processing and issue the text at the terminal. After
user input, the run will continue.

\msg_warning:nnnnnn \msg_warning:nnxxxx {(module)} {(message)} {(arg
: (nnnnn|nnnn|nnn|nn|nnxxxx|nnxxx|nnxx|nnx) one)} {(arg two)} {(arg three)} {(arg four)}

Updated: 2012-08-11

Issues (module) warning (message), passing (arg one) to (arg four) to the text-creating
functions. The warning text will be added to the log file and the terminal, but the TEX
run will not be interrupted.

\msg_info:nnnnnn \msg_info:nnnnnn {(module)} {(message)} {(arg one)}
: (nnnnn|nnnn|nnn|nn|nnxxxx|nnxxx|nnxx|nnx) {(arg two)} {(arg three)} {(arg four)}

Updated: 2012-08-11

Issues (module) information (message), passing (arg one) to (arg four) to the text-creating
functions. The information text will be added to the log file.

\msg_log:nnnnnn \msg_log:nnnnnn {(module)} {(message)} {(arg one)} {(arg
: (nnnnn|nnnn|nnn|nn|nnxxxx|nnxxx|nnxx|nnx) two)} {(arg three)} {(arg four)}

Updated: 2012-08-11

Issues (module) information (message), passing (arg one) to (arg four) to the text-creating
functions. The information text will be added to the log file: the output is briefer than
\msg_info:nnnnnn.

144

\msg_none :nnnnnn

\msg_none:nnnnnn {(module)} {(message)} {(arg one)}

: (nnnnn|nnnn|nnn|nn|nnxxxx|nnxxx|nnxx|nnx) {(arg two)} {(arg three)} {(arg four)}

Updated: 2012-08-11

\msg_redirect_class:nn

Updated: 2012-04-27

Does nothing: used as a message class to prevent any output at all (see the discussion of
message redirection).

4 Redirecting messages

Each message has a “name”, which can be used to alter the behaviour of the message
when it is given. Thus we might have

\msg_new:nnnn { module } { my-message } { Some~text } { Some~more~text }
to define a message, with
\msg_error:nn { module } { my-message }

when it is used. With no filtering, this will raise an error. However, we could alter the
behaviour with

\msg_redirect_class:nn { error } { warning }

to turn all errors into warnings, or with
\msg_redirect_module:nnn { module } { error } { warning }

to alter only messages from that module, or even
\msg_redirect_name:nnn { module } { my-message } { warning }

to target just one message. Redirection applies first to individual messages, then to
messages from one module and finally to messages of one class. Thus it is possible to
select out an individual message for special treatment even if the entire class is already
redirected.

Multiple redirections are possible. Redirections can be cancelled by providing an
empty argument for the target class. Redirection to a missing class will raise errors
immediately. Infinite loops are prevented by eliminating the redirection starting from
the target of the redirection that caused the loop to appear. Namely, if redirections are
requested as A — B, B — C and C' — A in this order, then the A — B redirection is
cancelled.

\msg_redirect_class:nn {(class omne)} {(class two)}

Changes the behaviour of messages of (class one) so that they are processed using the
code for those of (class two).

145

\msg_redirect_module:nnn

Updated: 2012-04-27

\msg_redirect_name:nnn

Updated: 2012-04-27

\msg_interrupt:nnn

New: 2012-06-28

\msg_redirect_module:nnn {(module)} {(class one)} {(class two)}

Redirects message of (class one) for (module) to act as though they were from (class
two). Messages of (class one) from sources other than (module) are not affected by this
redirection. This function can be used to make some messages “silent” by default. For
example, all of the warning messages of (module) could be turned off with:

\msg_redirect_module:nnn { module } { warning } { none }

\msg_redirect_name:nnn {(module)} {(message)} {(class)}

Redirects a specific (message) from a specific (module) to act as a member of (class) of
messages. No further redirection is performed. This function can be used to make a
selected message “silent” without changing global parameters:

\msg_redirect_name:nnn { module } { annoying-message } { none }

5 Low-level message functions

The lower-level message functions should usually be accessed from the higher-level system.
However, there are occasions where direct access to these functions is desirable.

\msg_interrupt:nnn {(first line)} {(text)} {(extra text)}

Interrupts the TEX run, issuing a formatted message comprising (first line) and (text)
laid out in the format

<first line>

<text>

where the (text) will be wrapped to fit within the current line length. The user may then
request more information, at which stage the (extra text) will be shown in the terminal
in the format

|77}))7’})}))}7}))))77}))77}))77}))7’}))’JJ))J))

| <extra text>

where the (extra text) will be wrapped within the current line length. Wrapping of both
(text) and (more text) takes place using \iow_wrap:nnnN; the documentation for the
latter should be consulted for full details.

146

\msg_log:n

New: 2012-06-28

\msg_term:n

New: 2012-06-28

__msg_kernel_new:nnnn
:nnn

Updated: 2011-08-16

__msg_kernel_set:nnnn
:nnn

\msg_log:n {(text)}
Writes to the log file with the (text) laid out in the format

where the (text) will be wrapped to fit within the current line length. Wrapping takes
place using \iow_wrap:nnnN; the documentation for the latter should be consulted for
full details.

\msg_term:n {(text)}

Writes to the terminal and log file with the (text) laid out in the format

>k >k >k >k >k >k 5k 5k 5k ok 5k 5k 5k %k >k >k %k >k >k >k 5k 5k 5k 5k %k %k >k %k >k >k >k >k >k >k 5k 5k %k >k >k >k >k >k %k %k >k >k >k >k >k

*x <text>
sk sk ok ok 3k ok ok sk ok ok sk 3 ok ok 3k oK ok 3k 3 ok ok 3k ok ok sk o ok 3k 3k oK ok sk ok ok sk 3 ok ok 3k ok ok sk 3k ok ok 3k ok ok

where the (text) will be wrapped to fit within the current line length. Wrapping takes
place using \iow_wrap:nnnN; the documentation for the latter should be consulted for
full details.

6 Kernel-specific functions

Messages from KTEX3 itself are handled by the general message system, but have their
own functions. This allows some text to be pre-defined, and also ensures that serious
errors can be handled properly.

__msg_kernel_new:nnnn {(module)} {(message)} {(text)} {(more text)}

Creates a kernel (message) for a given (module). The message will be defined to first give
(text) and then (more text) if the user requests it. If no (more text) is available then a
standard text is given instead. Within (text) and (more text) four parameters (#1 to #4)
can be used: these will be supplied and expanded at the time the message is used. An
error will be raised if the (message) already exists.

__msg_kernel_set:nnnn {(module)} {(message)} {(text)} {(more text)}

Sets up the text for a kernel (message) for a given (module). The message will be defined
to first give (text) and then (more text) if the user requests it. If no (more teat) is available
then a standard text is given instead. Within (text) and (more text) four parameters (#1
to #4) can be used: these will be supplied and expanded at the time the message is used.

147

__msg_kernel_fatal:nnnnnn __msg_kernel_fatal:nnnnnn {(module)}
: (nnnnn|nnnn|nnn|nn|nnxxxx|nnxxx|nnxx|nnx) {(message)} {(arg one)} {(arg two)} {(arg
three)} {(arg four)}

Updated: 2012-08-11

Issues kernel (module) error (message), passing {arg one) to (arg four) to the text-creating
functions. After issuing a fatal error the TEX run will halt. Cannot be redirected.

__msg_kernel_error:nnnnnn __msg_kernel_error:nnnnnn {({module)}
: (nnnnn|nnnn|nnn|nn|nnxxxx|nnxxx|nnxx|nnx) {(message)} {(arg one)} {(arg two)} {(arg
three)} {(arg four)}

Updated: 2012-08-11

Issues kernel (module) error (message), passing {arg one) to {arg four) to the text-creating
functions. The error will stop processing and issue the text at the terminal. After user
input, the run will continue. Cannot be redirected.

__msg_kernel_warning:nnnnnn __msg_kernel _warning:nnnnnn {(module)}
: (nnnnn|nnnn|nnn|nn|nnxxxx|nnxxx|nnxx|nnx) {(message)} {(arg one)} {(arg two)} {(arg
three)} {(arg four)}

Updated: 2012-08-11

Issues kernel (module) warning (message), passing (arg one) to {(arg four) to the text-
creating functions. The warning text will be added to the log file, but the TEX run will
not be interrupted.

__msg_kernel_info:nnnnnn __msg_kernel_info:nnnnnn {(module)}
: (nnnnn|nnnn|nnn|nn|nnxxxx|nnxxx|nnxx|nnx) {(message)} {(arg one)} {(arg two)} {(arg
three)} {(arg four)}

Updated: 2012-08-11

Issues kernel (module) information (message), passing (arg one) to (arg four) to the
text-creating functions. The information text will be added to the log file.

7 Expandable errors

In a few places, the XTEX3 kernel needs to produce errors in an expansion only context.
This must be handled internally very differently from normal error messages, as none of
the tools to print to the terminal or the log file are expandable. However, the interface is
similar, with the important caveat that the message text and arguments are not expanded,
and messages should be very short.

__msg_kernel_expandable_error:nnnnnn % __msg_kernel_expandable_error:nnnnnn {(module)}
:(nnnnn|nnnn|nnnjnn) « {(message)} {(arg one)} {(arg two)} {(arg three)}
{(arg four)}

New: 2011-11-23

Issues an error, passing (arg one) to (arg four) to the text-creating functions. The
resulting string must be shorter than a line, otherwise it will be cropped.

148

__msg_expandable_error:n * __msg_expandable_error:n {(error message)}

New: 2011-08-11
Updated: 2011-08-13

Issues an “Undefined error” message from TEX itself, and prints the (error message).
The (error message) must be short: it is cropped at the end of one line.

TEXhackers note: This function expands to an empty token list after two steps. Tokens
inserted in response to TEX’s prompt are read with the current category code setting, and
inserted just after the place where the error message was issued.

8 Internal I3msg functions

The following functions are used in several kernel modules.

__msg_term:nnnnnn

__msg_term:nnnnnn {(module)} {(message)} {(arg one)} {(arg two)} {({arg

:(nnnnnV|nnnnn|nnn|nn) ~ three)} {(arg four)}

__msg_show_variable:Nnn

Updated: 2012-09-09

__msg_show_variable:n

Updated: 2012-09-09

Prints the (message) from (module) in the terminal without formatting. Used in messages
which print complex variable contents completely.

__msg_show_variable:Nnn (variable) {(type)} {(formatted content)}

Displays the (formatted content) of the (variable) of (type) in the terminal. The
(formatted content) will be processed as the first argument in a call to \iow_wrap:nnnN,
hence \\, \ and other formatting sequences can be used. Once expanded and processed,
the (formatted content) must either be empty or contain >; everything until the first >
will be removed.

__msg_show_variable:n {(formatted text)}

Shows the (formatted text) on the terminal. After expansion, unless it is empty, the
(formatted text) must contain >, and the part of (formatted text) before the first > is
removed. Failure to do so causes low-level TEX errors.

__msg_show_item:n
:nn

__msg_show_item:n (item)
__msg_show_item:nn (item-key) (item-value)

__msg_show_item_unbraced:nn

Updated: 2012-09-09

Auxiliary functions used within the argument of __msg_show_variable:Nnn to format
variable items correctly for display. The __msg_show_item:n version is used for simple
lists, the __msg_show_item:nn and __msg_show_item_unbraced:nn versions for key—
value like data structures.

149

Part XIX
The 13keys package
Key—value interfaces

The key—value method is a popular system for creating large numbers of settings for
controlling function or package behaviour. The system normally results in input of the
form

\MyModuleSetup{
key-one = value one,
key-two = value two

}

or

\MyModuleMacro [
key-one = value one,
key-two = value two

l{argument}

for the user.

The high level functions here are intended as a method to create key—value controls.
Keys are themselves created using a key—value interface, minimising the number of func-
tions and arguments required. Each key is created by setting one or more properties of
the key:

\keys_define:nn { mymodule }
{
key-one .code:n = code including parameter #1,
key-two .tl_set:N \1_mymodule_store_tl
3

These values can then be set as with other key—value approaches:

\keys_set:nn { mymodule }
{
key-one = value one,
key-two = value two

}

At a document level, \keys_set:nn will be used within a document function, for
example

\DeclareDocumentCommand \MyModuleSetup { m }
{ \keys_set:nn { mymodule } { #1 } }
\DeclareDocumentCommand \MyModuleMacro { o m }

{

150

\keys_define:nn

\group_begin:
\keys_set:nn { mymodule } { #1 }
% Main code for \MyModuleMacro
\group_end:
}

Key names may contain any tokens, as they are handled internally using \t1l_to_-
str:n. As will be discussed in section 2, it is suggested that the character / is reserved
for sub-division of keys into logical groups. Functions and variables are not expanded
when creating key names, and so

\tl_set:Nn \1_mymodule_tmp_tl { key }
\keys_define:nn { mymodule }
{
\1_mymodule_tmp_tl .code:n = code
}

will create a key called \1_mymodule_tmp_t1, and not one called key.

1 Creating keys

\keys_define:nn {(module)} {(keyval list)}

Parses the (keyval list) and defines the keys listed there for (module). The (module)
name should be a text value, but there are no restrictions on the nature of the text. In
practice the (module) should be chosen to be unique to the module in question (unless
deliberately adding keys to an existing module).

The (keyval list) should consist of one or more key names along with an associated
key property. The properties of a key determine how it acts. The individual properties
are described in the following text; a typical use of \keys_define:nn might read

\keys_define:nn { mymodule }
{
keyname .code:n = Some~code~using~#1,
keyname .value_required:

3

where the properties of the key begin from the . after the key name.
The various properties available take either no arguments at all, or require one

or more arguments. This is indicated in the name of the property using an argument
specification. In the following discussion, each property is illustrated attached to an
arbitrary (key), which when used may be supplied with a (value). All key definitions are
local.

151

.bool_set:N
.bool_set:c
.bool_gset:N
.bool_gset:c

Updated: 2013-07-08

.bool_set_inverse:N
.bool_set_inverse:c
.bool_gset_inverse:N
.bool_gset_inverse:c

New: 2011-08-28
Updated: 2013-07-08

.choice:

.choices:nn
.choices:Vn
.choices:on
.choices:xn

New: 2011-08-21
Updated: 2013-07-10

.clist_set:N
.clist_set:c
.clist_gset:N
.clist_gset:c

New: 2011-09-11

.code:n

Updated: 2013-07-10

(key) .bool_set:N = (boolean)

Defines (key) to set (boolean) to (value) (which must be either true or false). If the
variable does not exist, it will be created globally at the point that the key is set up.

(key) .bool_set_inverse:N = (boolean)

Defines (key) to set (boolean) to the logical inverse of (value) (which must be either true
or false). If the (boolean) does not exist, it will be created globally at the point that
the key is set up.

(key) .choice:

Sets (key) to act as a choice key. Each valid choice for (key) must then be created, as
discussed in section 3.

(key) .choices:nn = {(choices)} {(code)}

Sets (key) to act as a choice key, and defines a series (choices) which are implemented
using the (code). Inside (code), \1_keys_choice_t1l will be the name of the choice
made, and \1_keys_choice_int will be the position of the choice in the list of {choices)
(indexed from 1). Choices are discussed in detail in section 3.

(key) .clist_set:N = (comma list variable)

Defines (key) to set (comma list variable) to (value). Spaces around commas and empty
items will be stripped. If the variable does not exist, it will be created globally at the
point that the key is set up.

(key) .code:n = {(code)}

Stores the (code) for execution when (key) is used. The The (code) can include one
parameter (#1), which will be the (value) given for the (key). The x-type variant will
expand (code) at the point where the (key) is created.

152

.default:n
.default:V
.default:o
.default:x

Updated: 2013-07-09

.dim_set:N
.dim_set:c
.dim_gset:N
.dim_gset:c

.fp_set:N
.fp_set:c
.fp_gset:N
.fp_gset:c

.groups:n

New: 2013-07-14

.initial:n
.initial:V
.initial:o
.initial:x

Updated: 2013-07-09

.int_set:N
.int_set:c
.int_gset:N
.int_gset:c

(key) .default:n = {(default)}

Creates a (default) value for (key), which is used if no value is given. This will be used

if only the key name is given, but not if a blank (value) is given:

\keys_define:nn { mymodule }

{
key .code:n = Hello~#1,
key .default:n = World

}

\keys_set:nn { mymodule }

{
key = Fred, % Prints ’Hello Fred’
key, % Prints ’Hello World’
key = , % Prints ’Hello ’

}

(key) .dim_set:N = (dimension)

Defines (key) to set (dimension) to (value) (which must a dimension expression). If the
variable does not exist, it will be created globally at the point that the key is set up.

(key) .fp_set:N = (floating point)

Defines (key) to set (floating point) to (value) (which must a floating point expression).
If the variable does not exist, it will be created globally at the point that the key is set

up.

(key) .groups:n = {(groups)}

Defines (key) as belonging to the {groups) declared. Groups provide a “secondary axis”
for selectively setting keys, and are described in Section 6.

(key) .initial:n = {(value)}

Initialises the (key) with the (value), equivalent to

\keys_set:nn {(module)} { (key) = (value) }

(key) .int_set:N = (integer)

Defines (key) to set (integer) to (value) (which must be an integer expression). If the
variable does not exist, it will be created globally at the point that the key is set up.

153

.meta:n

Updated: 2013-07-10

.meta:nn

New: 2013-07-10

.multichoice:

New: 2011-08-21

.multichoices:nn
.multichoices:Vn
.multichoices:on
.multichoices:xn

New: 2011-08-21
Updated: 2013-07-10

.skip_set:N
.skip_set:c
.skip_gset:N
.skip_gset:c

.tl_set:N
.tl_set:c
.tl_gset:N
.tl_gset:c

.tl_set_x:N
.tl_set_x:c
.tl_gset_x:N
.tl_gset_x:c

.value_forbidden:

.value_required:

(key) .meta:n = {(keyval list)}

Makes (key) a meta-key, which will set (keyval list) in one go. If (key) is given with a
value at the time the key is used, then the value will be passed through to the subsidiary
(keys) for processing (as #1).

(key) .meta:nn = {(path)} {(keyval 1list)}

Makes (key) a meta-key, which will set (keyval list) in one go using the (path) in place of
the current one. If (key) is given with a value at the time the key is used, then the value
will be passed through to the subsidiary (keys) for processing (as #1).

(key) .multichoice:

Sets (key) to act as a multiple choice key. Each valid choice for (key) must then be
created, as discussed in section 3.

(key) .multichoices:nn {{choices)} {({code)}

Sets (key) to act as a multiple choice key, and defines a series (choices) which are im-
plemented using the (code). Inside (code), \1_keys_choice_t1 will be the name of the
choice made, and \1_keys_choice_int will be the position of the choice in the list of
(choices) (indexed from 1). Choices are discussed in detail in section 3.

(key) .skip_set:N = (skip)

Defines (key) to set (skip) to (value) (which must be a skip expression). If the variable
does not exist, it will be created globally at the point that the key is set up.

(key) .tl_set:N = (token list variable)

Defines (key) to set (token list variable) to (value). If the variable does not exist, it will
be created globally at the point that the key is set up.

(key) .tl_set_x:N = (token list variable)

Defines (key) to set (token list variable) to (value), which will be subjected to an x-
type expansion (i.e. using \t1_set:Nx). If the variable does not exist, it will be created
globally at the point that the key is set up.

(key) .value_forbidden:

Specifies that (key) cannot receive a (value) when used. If a (value) is given then an error
will be issued.

(key) .value_required:

Specifies that (key) must receive a (value) when used. If a (value) is not given then an
error will be issued.

154

2 Sub-dividing keys

When creating large numbers of keys, it may be desirable to divide them into several
sub-groups for a given module. This can be achieved either by adding a sub-division to
the module name:

\keys_define:nn { module / subgroup }
{ key .code:n = code }

or to the key name:

\keys_define:nn { mymodule }
{ subgroup / key .code:n = code }

As illustrated, the best choice of token for sub-dividing keys in this way is /. This is
because of the method that is used to represent keys internally. Both of the above code
fragments set the same key, which has full name module/subgroup/key.

As will be illustrated in the next section, this subdivision is particularly relevant to
making multiple choices.

3 Choice and multiple choice keys

The I3keys system supports two types of choice key, in which a series of pre-defined input
values are linked to varying implementations. Choice keys are usually created so that the
various values are mutually-exclusive: only one can apply at any one time. “Multiple”
choice keys are also supported: these allow a selection of values to be chosen at the same
time.

Mutually-exclusive choices are created by setting the .choice: property:

\keys_define:nn { mymodule }
{ key .choice: }

For keys which are set up as choices, the valid choices are generated by creating sub-keys
of the choice key. This can be carried out in two ways.

In many cases, choices execute similar code which is dependant only on the name of
the choice or the position of the choice in the list of all possibilities. Here, the keys can
share the same code, and can be rapidly created using the .choices:nn property.

\keys_define:nn { mymodule }
{
key .choices:nn =
{ choice-a, choice-b, choice-c }

{
You~gave~choice~’\tl_use:N \1_keys_choice_tl’,~
which~is~in~position~\int_use:N \1_keys_choice_int \c_space_tl
in~the~list.

}

155

\1_keys_choice_int
\1_keys_choice_tl

The index \1_keys_choice_int in the list of choices starts at 1.

Inside the code block for a choice generated using .choices:nn, the variables \1_keys_-
choice_tl and \1_keys_choice_int are available to indicate the name of the current
choice, and its position in the comma list. The position is indexed from 1. Note that,
as with standard key code generated using .code:n, the value passed to the key (i.e. the

choice name) is also available as #1.
On the other hand, it is sometimes useful to create choices which use entirely different

code from one another. This can be achieved by setting the .choice: property of a key,
then manually defining sub-keys.

\keys_define:nn { mymodule }
{
key .choice:,
key / choice-a .code:n = code-a,
key / choice-b .code:n = code-b,
key / choice-c .code:n = code-c,

}

It is possible to mix the two methods, but manually-created choices should not
use \1_keys_choice_t1l or \1_keys_choice_int. These variables do not have defined
behaviour when used outside of code created using .choices:nn (i.e. anything might
happen).

It is possible to allow choice keys to take values which have not previously been
defined by adding code for the special unknown choice. The general behavior of the
unknown key is described in Section 5. A typical example in the case of a choice would
be to issue a custom error message:

\keys_define:nn { mymodule }
{

key .choice:,

key / choice-a .code:n = code-a,
key / choice-b .code:n = code-b,
key / choice-c .code:n = code-c,
key / unknown .code:n =

\msg_error:nnxxx { mymodule } { unknown-choice }

{ key % % Name of choice key
{ choice-a , choice-b , choice-c } ¥% Valid choices
{ \exp_not:n {#1} } % Invalid choice given

b
b
X

Multiple choices are created in a very similar manner to mutually-exclusive choices,
using the properties .multichoice: and .multichoices:nn. As with mutually exclusive
choices, multiple choices are define as sub-keys. Thus both

156

\keys_set:nn
: (nV|nv|no)

\keys_define:nn { mymodule }
{
key .multichoices:nn =
{ choice-a, choice-b, choice-c }

{
You~gave~choice~’\tl_use:N \1_keys_choice_tl’,~
which~is~in~position-~
\int_use:N \1_keys_choice_int \c_space_tl
in~the~list.

}

and

\keys_define:nn { mymodule }
{
key .multichoice:,
key / choice-a .code:n = code-a,
key / choice-b .code:n = code-b,
key / choice-c .code:n = code-c,

}

are valid.
When a multiple choice key is set

\keys_set:nn { mymodule }
{
key ={a, b, c} % ’key’ defined as a multiple choice
}

each choice is applied in turn, equivalent to a clist mapping or to applying each value
individually:

\keys_set:nn { mymodule }

{
key = a ,
key b,
key = ¢ ,

}

Thus each separate choice will have passed to it the \1_keys_choice_t1l and \1_keys_-
choice_int in exactly the same way as described for .choices:nn.

4 Setting keys

\keys_set:nn {(module)} {(keyval list)}

Parses the (keyval list), and sets those keys which are defined for (module). The behaviour
on finding an unknown key can be set by defining a special unknown key: this will be
illustrated later.

157

\1_keys_key_tl For each key processed, information of the full path of the key, the name of the key and
\1_keys_path_tl the value of the key is available within three token list variables. These may be used
\M_keys_value_tl within the code of the key.
The value is everything after the =, which may be empty if no value was given. This
is stored in \1_keys_value_t1, and is not processed in any way by \keys_set:nn.
The path of the key is a “full” description of the key, and is unique for each key. It
consists of the module and full key name, thus for example

\keys_set:nn { mymodule } { key-a = some-value }
has path mymodule/key-a while
\keys_set:nn { mymodule } { subset / key-a = some-value }

has path mymodule/subset/key-a. This information is stored in \1_keys_path_t1, and
will have been processed by \tl_to_str:n.

The name of the key is the part of the path after the last /, and thus is not unique.
In the preceding examples, both keys have name key-a despite having different paths.
This information is stored in \1_keys_key_t1, and will have been processed by \tl_-
to_str:n.

5 Handling of unknown keys

If a key has not previously been defined (is unknown), \keys_set :nn will look for a special
unknown key for the same module, and if this is not defined raises an error indicating that
the key name was unknown. This mechanism can be used for example to issue custom
error texts.

\keys_define:nn { mymodule }
{
unknown .code:n =
You~tried~to~set~key~’\1_keys_key_tl’~to~’#1’.

\keys_set_known:nnN \keys_set_known:nnN {(module)} {(keyval list)} (tI)
: (nVN|nvN|noN|nn|nV|nv|no)

New: 2011-08-23
Updated: 2014-04-27

In some cases, the desired behavior is to simply ignore unknown keys, collecting up
information on these for later processing. The \keys_set_known:nnN function parses
the (keyval list), and sets those keys which are defined for (module). Any keys which are
unknown are not processed further by the parser. The key—value pairs for each unknown
key name will be stored in the (#l) in a comma-separated form (i.e. an edited version of
the (keyval list)). The \keys_set_known:nn version skips this stage.

Use of \keys_set_known:nnN can be nested, with the correct residual (keyval list)
returned at each stage.

158

6 Selective key setting

In some cases it may be useful to be able to select only some keys for setting, even though
these keys have the same path. For example, with a set of keys defined using

\keys define:nn { mymodule }

{
key-one .code:n = { \my_func:n {#1} } ,
key-two .tl_set:N = \1l_my_a_tl ,
key-three .tl_set:N = \1_my_b_tl ,
key-four .fp_set:N = \1_my_a_fp s

3

the use of \keys_set:nn will attempt to set all four keys. However, in some contexts it
may only be sensible to set some keys, or to control the order of setting. To do this, keys
may be assigned to groups: arbitrary sets which are independent of the key tree. Thus
modifying the example to read

\keys define:nn { mymodule }

{
key-one .code:n = { \my_func:n {#1} } ,
key-one .groups:n = { first } ,
key-two .tl_set:N = \1_my_a_tl ,
key-two .groups:n = { first } R
key-three .tl_set:N = \1_my_b_tl ,
key-three .groups:n = { second } ,
key-four .fp_set:N = \1_my_a_fp ,

}

will assign key-one and key-two to group first, key-three to group second, while
key-four is not assigned to a group.

Selective key setting may be achieved either by selecting one or more groups to be
made “active”, or by marking one or more groups to be ignored in key setting.

\keys_set_filter:nnnN \keys_set_filter:nnnN {(module)} {(groups)} {(keyval
: (nnVN|nnvN|nnoN|nnn|nnV|nnv|nno) list)} (tI)

New: 2013-07-14
Updated: 2014-04-27

Actives key filtering in an “opt-out” sense: keys assigned to any of the (groups) specified
will be ignored. The (groups) are given as a comma-separated list. Unknown keys are
not assigned to any group and will thus always be set. The key—value pairs for each key
which is filtered out will be stored in the (¢) in a comma-separated form (i.e. an edited
version of the (keyval list)). The \keys_set_filter:nnn version skips this stage.

Use of \keys_set_filter:nnnN can be nested, with the correct residual (keyval list)
returned at each stage.

159

\keys_set_groups:nnn

\keys_set_groups:nnn {(module)} {(groups)} {(keyval list)}

: (nnV|nnv|nno)

New: 2013-07-14

\keys_if_exist_p:nn *
\keys_if_exist:nnTF *

Actives key filtering in an “opt-in” sense: only keys assigned to one or more of the (groups)
specified will be set. The {groups) are given as a comma-separated list. Unknown keys
are not assigned to any group and will thus never be set.

7 Utility functions for keys

\keys_if_exist_p:nn {(module)} {(key)}
\keys_if_exist:nnTF {(module)} {(key)} {(true code)} {(false code)}

Tests if the (key) exists for (module), i.e. if any code has been defined for (key).

\keys_if_choice_exist_p:nnn * \keys_if_choice_exist_p:nnn {(module)} {(ke
\keys_if_choice_exist:nnnTF \keys_if_choice_exist:nnnTF {(module)} {(ke

)} {({choice)}
)} {{choice)} {(true code)}

(

{(false code)}

New: 2011-08-21

\keys_show:nn

Tests if the (choice) is defined for the (key) within the (module), i.e. if any code has been
defined for (key)/(choice). The test is false if the (key) itself is not defined.

\keys_show:nn {(module)} {(key)}

Shows the function which is used to actually implement a (key) for a (module).

8 Low-level interface for parsing key—val lists

To re-cap from earlier, a key—value list is input of the form

KeyOne = ValueOne ,
KeyTwo = ValueTwo ,
KeyThree

where each key—value pair is separated by a comma from the rest of the list, and each
key—value pair does not necessarily contain an equals sign or a value! Processing this
type of input correctly requires a number of careful steps, to correctly account for braces,
spaces and the category codes of separators.

While the functions described earlier are used as a high-level interface for processing
such input, in special circumstances you may wish to use a lower-level approach. The
low-level parsing system converts a (key-value list) into (keys) and associated (values).
After the parsing phase is completed, the resulting keys and values (or keys alone) are
available for further processing. This processing is not carried out by the low-level parser
itself, and so the parser requires the names of two functions along with the key—value
list. One function is needed to process key—value pairs (it receives two arguments), and

160

\keyval_parse:NNn

Updated: 2011-09-08

a second function is required for keys given without any value (it is called with a single
argument).

The parser does not double # tokens or expand any input. Active tokens = and ,
appearing at the outer level of braces are converted to category “other” (12) so that the
parser does not “miss” any due to category code changes. Spaces are removed from the
ends of the keys and values. Keys and values which are given in braces will have exactly
one set removed (after space trimming), thus

key = {value here},
and
key = value here,

are treated identically.

\keyval_parse:NNn (functioni) (functions) {(key-value list)}

Parses the (key—value list) into a series of (keys) and associated (values), or keys alone
(if no (value) was given). (function;) should take one argument, while (functions)
should absorb two arguments. After \keyval_parse:NNn has parsed the (key—value list),
(function;) will be used to process keys given with no value and (functions) will be used
to process keys given with a value. The order of the (keys) in the (key—value list) will be
preserved. Thus

\keyval_parse:NNn \function:n \function:nn
{ keyl = valuel , key2 = value2, key3 = , key4 }

will be converted into an input stream

\function:nn { keyl } { valuel }
\function:nn { key2 } { value2 }
\function:nn { key3 } { }
\function:n { key4 }

Note that there is a difference between an empty value (an equals sign followed by noth-
ing) and a missing value (no equals sign at all). Spaces are trimmed from the ends of the
(key) and (value), then one outer set of braces is removed from the (key) and (value) as
part of the processing.

161

\g_file_current_name_tl

\file_if_exist:nTF

Updated: 2012-02-10

\file_add_path:nN

Updated: 2012-02-10

\file_input:n

Updated: 2012-02-17

Part XX
The I13file package
File and I/O operations

This module provides functions for working with external files. Some of these functions
apply to an entire file, and have prefix \file_. .., while others are used to work with
files on a line by line basis and have prefix \ior_... (reading) or \iow_... (writing).

It is important to remember that when reading external files TEX will attempt to
locate them both the operating system path and entries in the TgX file database (most
TEX systems use such a database). Thus the “current path” for TEX is somewhat broader
than that for other programs.

For functions which expect a (file name) argument, this argument may contain both
literal items and expandable content, which should on full expansion be the desired file
name. Any active characters (as declared in \1_char_active_seq) will not be expanded,
allowing the direct use of these in file names. Spaces are not allowed in file names.

1 File operation functions

Contains the name of the current IXTEX file. This variable should not be modified: it
is intended for information only. It will be equal to \c_job_name_t1 at the start of a
ETEX run and will be modified each time a file is read using \file_input:n.

\file_if_exist:nTF {(file name)} {(true code)} {(false code)}

Searches for (file name) using the current TEX search path and the additional paths
controlled by \file_path_include:n).

\file_add_path:nN {(file name)} (tl var)

Searches for (file name) in the path as detailed for \file_if_exist:nTF, and if found
sets the (¢l var) the fully-qualified name of the file, .e. the path and file name. If the file
is not found then the (¢ var) will contain the marker \q_no_value.

\file_input:n {(file name)}

Searches for (file name) in the path as detailed for \file_if_exist:nTF, and if found
reads in the file as additional IATEX source. All files read are recorded for information
and the file name stack is updated by this function. An error will be raised if the file is
not found.

162

\file_path_include:n

Updated: 2012-07-04

\file_path_remove:n

Updated: 2012-07-04

\file_list:

\ior_new:N
:c
\iow_new:N
:c

New: 2011-09-26
Updated: 2011-12-27

\ior_open:Nn
icn

Updated: 2012-02-10

\ior_open:NnTF
:cnTF

New: 2013-01-12

\file_path_include:n {(path)}

Adds (path) to the list of those used to search when reading files. The assignment is local.
The (path) is processed in the same way as a (file name), i.e., with x-type expansion
except active characters. Spaces are not allowed in the (path).

\file_path_remove:n {(path)}

Removes (path) from the list of those used to search when reading files. The assignment
is local. The (path) is processed in the same way as a (file name), i.e., with x-type
expansion except active characters. Spaces are not allowed in the {path).

\file_list:

This function will list all files loaded using \file_input:n in the log file.

1.1 Input—output stream management

As TEX is limited to 16 input streams and 16 output streams, direct use of the streams
by the programmer is not supported in IXTEX3. Instead, an internal pool of streams is
maintained, and these are allocated and deallocated as needed by other modules. As a
result, the programmer should close streams when they are no longer needed, to release
them for other processes.

Note that I/O operations are global: streams should all be declared with global
names and treated accordingly.

\ior_new:N (stream)

\iow_new:N (stream)

Globally reserves the name of the (stream), either for reading or for writing as appropri-
ate. The (stream) is not opened until the appropriate \..._open:Nn function is used.
Attempting to use a (stream) which has not been opened is an error, and the (stream)
will behave as the corresponding \c_term_. . ..

\ior_open:Nn (stream) {(file name)}

Opens (file name) for reading using (stream) as the control sequence for file access. If the
(stream) was already open it is closed before the new operation begins. The (stream) is
available for access immediately and will remain allocated to (file name) until a \ior_-
close:N instruction is given or the TEX run ends.

\ior_open:NnTF (stream) {(file name)} {(true code)} {(false code)}

Opens (file name) for reading using (stream) as the control sequence for file access. If the
(stream) was already open it is closed before the new operation begins. The (stream) is
available for access immediately and will remain allocated to (file name) until a \ior_-
close:N instruction is given or the TEX run ends. The ({rue code) is then inserted into
the input stream. If the file is not found, no error is raised and the (false code) is inserted
into the input stream.

163

\iow_open:Nn
icn

Updated: 2012-02-09

\ior_close:N
e
\iow_close:N
ic

Updated: 2012-07-31

\ior_list_streams:
\iow_list_streams:

Updated: 2012-09-09

\ior_get:NN

New: 2012-06-24

\iow_open:Nn (stream) {(file name)}

Opens (file name) for writing using (stream) as the control sequence for file access. If the
(stream) was already open it is closed before the new operation begins. The (stream) is
available for access immediately and will remain allocated to (file name) until a \iow_-
close:N instruction is given or the TEX run ends. Opening a file for writing will clear
any existing content in the file (i.e. writing is not additive).

\ior_close:N (stream)
\iow_close:N (stream)

Closes the (stream). Streams should always be closed when they are finished with as this
ensures that they remain available to other programmers.

\ior_list_streams:

\iow_list_streams:

Displays a list of the file names associated with each open stream: intended for tracking
down problems.

1.2 Reading from files

\ior_get:NN (stream) (token list variable)

Function that reads one or more lines (until an equal number of left and right braces are
found) from the input (stream) and stores the result locally in the (token list) variable.
If the (stream) is not open, input is requested from the terminal. The material read from
the (stream) will be tokenized by TEX according to the category codes in force when
the function is used. Note that any blank lines will be converted to the token \par.
Therefore, if skipping blank lines is requires a test such as

\ior_get:NN \1_my_stream \1_tmpa_tl
\tl_set:Nn \1_tmpb_tl { \par }
\tl_if_eq:NNF \1_tmpa_t1 \1_tmpb_t1l

may be used. Also notice that if multiple lines are read to match braces then the resulting
token list will contain \par tokens. As normal TEX tokenization is in force, any lines
which do not end in a comment character (usually %) will have the line ending converted
to a space, so for example input

ab c
will result in a token list a b ¢ .

TEXhackers note: This protected macro expands to the TEX primitive \read along with
the to keyword.

164

\ior_get_str:NN

New: 2012-06-24
Updated: 2012-07-31

\ior_if_eof_p:N x
\ior_if_eof:NTF x

Updated: 2012-02-10

\iow_now:Nn
:Nx

Updated: 2012-06-05

\iow_log:n
X

\iow_term:n
:X

\iow_shipout:Nn
:Nx

\ior_get_str:NN (stream) (token list variable)

Function that reads one line from the input (stream) and stores the result locally in the
(token list) variable. If the (stream) is not open, input is requested from the terminal.
The material is read from the (stream) as a series of tokens with category code 12 (other),
with the exception of space characters which are given category code 10 (space). Multiple
whitespace characters are retained by this process. It will always only read one line and
any blank lines in the input will result in the (token list variable) being empty. Unlike
\ior_get:NN, line ends do not receive any special treatment. Thus input

ab c
will result in a token list a b ¢ with the letters a, b, and ¢ having category code 12.

TEXhackers note: This protected macro is a wrapper around the e-TEX primitive
\readline. However, the end-line character normally added by this primitive is not included in
the result of \ior_get_str:NN.

\ior_if_eof_p:N (stream)
\ior_if_eof:NTF (stream) {(true code)} {(false code)}

Tests if the end of a (stream) has been reached during a reading operation. The test will
also return a true value if the (stream) is not open.

2 Writing to files

\iow_now:Nn (stream) {(tokens)}

This functions writes (tokens) to the specified (stream) immediately (i.e. the write oper-
ation is called on expansion of \iow_now:Nn).

\iow_log:n {(tokens)}

This function writes the given (tokens) to the log (transcript) file immediately: it is a
dedicated version of \iow_now:Nn.

\iow_term:n {(tokens)}

This function writes the given (tokens) to the terminal file immediately: it is a dedicated
version of \iow_now:Nn.

\iow_shipout:Nn (stream) {(tokens)}

This functions writes (tokens) to the specified (stream) when the current page is finalised
(i.e. at shipout). The x-type variants expand the (tokens) at the point where the function
is used but not when the resulting tokens are written to the (stream) (cf. \iow_shipout_-
x:Nn).

165

\iow_shipout_x:

Nn

:Nx

Updated: 2012-09-08

\iow_char:N «*

\iow_newline:

*

\iow_shipout_x:Nn (stream) {(tokens)}

This functions writes (tokens) to the specified (stream) when the current page is finalised
(i.e. at shipout). The (tokens) are expanded at the time of writing in addition to any
expansion when the function is used. This makes these functions suitable for including
material finalised during the page building process (such as the page number integer).

TEXhackers note: This is a wrapper around the TEX primitive \write.

\iow_char:N \(char)
Inserts {char) into the output stream. Useful when trying to write difficult characters
such as %, {, }, etc. in messages, for example:

\iow_now:Nx \g_my_iow { \iow_char:N \{ text \iow_char:N \} }

The function has no effect if writing is taking place without expansion (e.g. in the second
argument of \iow_now:Nn).

\iow_newline:

Function to add a new line within the (tokens) written to a file. The function has no
effect if writing is taking place without expansion (e.g. in the second argument of \iow_-
now:Nn).

166

\iow_wrap:nnnN

New: 2012-06-28

\iow_indent:n

New: 2011-09-21

\1l_iow_line_count_int

New: 2012-06-24

2.1 Wrapping lines in output

\iow_wrap:nnnN {(text)} {(run-on text)} {(set up)} (function)

This function will wrap the (text) to a fixed number of characters per line. At the start of
each line which is wrapped, the (run-on text) will be inserted. The line character count
targeted will be the value of \1_iow_line_count_int minus the number of characters
in the (run-on text). The (text) and (run-on text) are exhaustively expanded by the
function, with the following substitutions:

¢ \\ may be used to force a new line,

o \u may be used to represent a forced space (for example after a control sequence),
o \#, \%, \{, \}, \~ may be used to represent the corresponding character,

e \iow_indent:n may be used to indent a part of the message.

Additional functions may be added to the wrapping by using the (set up), which is
executed before the wrapping takes place: this may include overriding the substitutions
listed.

Any expandable material in the (text) which is not to be expanded on wrapping
should be converted to a string using \token_to_str:N, \tl_to_str:n, \tl_to_str:N,
etc.

The result of the wrapping operation is passed as a braced argument to the
(function), which will typically be a wrapper around a write operation. The output
of \iow_wrap:nnnN (i.e. the argument passed to the (function)) will consist of charac-
ters of category “other” (category code 12), with the exception of spaces which will have
category “space” (category code 10). This means that the output will not expand further
when written to a file.

TEXhackers note: Internally, \iow_wrap:nnnN carries out an x-type expansion on the
(text) to expand it. This is done in such a way that \exp_not:N or \exp_not:n could be used
to prevent expansion of material. However, this is less conceptually clear than conversion to a
string, which is therefore the supported method for handling expandable material in the (text).

\iow_indent:n {(text)}

In the context of \iow_wrap:nnnN (for instance in messages), indents (text) by four
spaces. This function will not cause a line break, and only affects lines which start
within the scope of the (text). In case the indented (text) should appear on separate lines
from the surrounding text, use \\ to force line breaks.

The maximum number of characters in a line to be written by the \iow_wrap:nnnN
function. This value depends on the TEX system in use: the standard value is 78, which
is typically correct for unmodified TEXlive and MiKTEX systems.

167

\c_catcode_other_space_tl

New: 2011-09-05

\c_term_ior

\c_log_iow
\c_term_iow

\if_eof:w *

\1__file_internal_name_ior

\1__file_internal_name_tl

__file_name_sanitize:nn

New: 2012-02-09

Token list containing one character with category code 12, (“other”), and character code
32 (space).

2.2 Constant input—output streams

Constant input stream for reading from the terminal. Reading from this stream using
\ior_get:NN or similar will result in a prompt from TEX of the form

<tl>=

Constant output streams for writing to the log and to the terminal (plus the log), respec-
tively.

2.3 Primitive conditionals

\if_eof:w (stream)
(true code)
\else:
(false code)
\fi:
Tests if the (stream) returns “end of file”, which is true for non-existent files. The \else:
branch is optional.

TEXhackers note: This is the TEX primitive \ifeof.

2.4 Internal file functions and variables

Used to test for the existence of files when opening.

Used to return the full name of a file for internal use.

__file_name_sanitize:nn {(name)} {(tokens)}

Exhaustively-expands the (name) with the exception of any category (active) (catcode 13)
tokens, which are not expanded. The list of (active) tokens is taken from \1_char_-
active_seq. The (sanitized name) is then inserted (in braces) after the (tokens), which
should further process the file name. If any spaces are found in the name after expansion,
an error is raised.

168

__ior_open:Nn
:No

New: 2012-01-23

2.5 Internal input—output functions

__ior_open:Nn (stream) {(file name)}

This function has identical syntax to the public version. However, is does not take
precautions against active characters in the (file name), and it does not attempt to add
a (path) to the (file name): it is therefore intended to be used by higher-level functions
which have already fully expanded the (file name) and which need to perform multiple
open or close operations. See for example the implementation of \file_add_path:nN,

169

Part XXI
The 13fp package: floating points

A decimal floating point number is one which is stored as a significand and a separate
exponent. The module implements expandably a wide set of arithmetic, trigonometric,
and other operations on decimal floating point numbers, to be used within floating point
expressions. Floating point expressions support the following operations with their usual
precedence.

e Basic arithmetic: addition x + y, subtraction x — y, multiplication x * y, division
x/y, square root 1/x, and parentheses.

e Comparison operators: z <y, r <=y, z>7y, x| =y etc.

¢ Boolean logic: negation !z, conjunction z && y, disjunction z || y, ternary operator
x?y:z.

o Exponentials: expz, Inz, x¥.

e Trigonometry: sinz, cosx, tanz, cotx, secx, cscx expecting their arguments in
radians, and sind x, cosd x, tand x, cotd x, secd x, cscd x expecting their arguments
in degrees.

o Inverse trigonometric functions: asinx, acosz, atan x, acot z, asec x, acscx giving
a result in radians, and asind x, acosd x, atand x, acotd x, asecd x, acscd x giving a
result in degrees.

(not yet) Hyperbolic functions and their inverse functions: sinhz, coshz, tanhz, cothz,
sech z, csch, and asinh x, acosh x, atanh x, acoth x, asech z, acsch x.

o Extrema: max(x,y,...), min(x,y,...), abs(z).

o Rounding functions: round(xz, n) rounds to closest, trunc(x, n) rounds towards zero,
floor(x, n) rounds towards —oo, ceil(z, n) rounds towards +0o. And (not yet) mod-
ulo, and “quantize”.

o Constants: pi, deg (one degree in radians).
¢ Dimensions, automatically expressed in points, e.g., pc is 12.

o Automatic conversion (no need for \(type)_use:N) of integer, dimension, and skip
variables to floating points, expressing dimensions in points and ignoring the stretch
and shrink components of skips.

Floating point numbers can be given either explicitly (in a form such as 1.234e-34, or
-.0001), or as a stored floating point variable, which is automatically replaced by its
current value. See section 9.1 for a description of what a floating point is, section 9.2
for details about how an expression is parsed, and section 9.3 to know what the various
operations do. Some operations may raise exceptions (error messages), described in
section 7.

An example of use could be the following.

170

\fp_new:N
ic

Updated: 2012-05-08

\fp_const:Nn
:cn

Updated: 2012-05-08

\fp_zero:N

ic
\fp_gzero:N
ic

Updated: 2012-05-08

\fp_zero_new:N

:c
\fp_gzero_new:N
e

Updated: 2012-05-08

\fp_set:Nn

icn
\fp_gset:Nn
icn

Updated: 2012-05-08

\LaTeX{} can now compute: $ \frac{\sin (3.5)}{2} + 2\cdot 10°{-3}
= \ExplSyntaxOn \fp_to_decimal:n {sin 3.5 /2 + 2e-3} §.

But in all fairness, this module is mostly meant as an underlying tool for higher-level
commands. For example, one could provide a function to typeset nicely the result of
floating point computations.

\usepackage{xparse, siunitx}

\ExplSyntaxOn

\NewDocumentCommand { \calcnum } { m }
{ \num { \fp_to_scientific:n {#1} } }

\ExplSyntax0ff

\calcnum { 2 pi * sin (2.3 ~ 5) }

1 Creating and initialising floating point variables

\fp_new:N (fp var)

Creates a new (fp var) or raises an error if the name is already taken. The declaration is
global. The (fp var) will initially be +0.

\fp_const:Nn (fp var) {(floating point expression)}

Creates a new constant (fp wvar) or raises an error if the name is already taken. The
(fp var) will be set globally equal to the result of evaluating the (floating point expression).

\fp_zero:N (fp var)
Sets the (fp var) to +0.

\fp_zero_new:N (fp var)

Ensures that the (fp var) exists globally by applying \fp_new:N if necessary, then applies
\fp_(g)zero:N to leave the (fp var) set to +0.

2 Setting floating point variables

\fp_set:Nn (fp var) {(floating point expressiomn)}
Sets (fp var) equal to the result of computing the {floating point expression).

171

\fp_set_eq:NN

: (cN|Nc|cc)

\fp_gset_eq:NN

:(cN|Nc|ec)

Updated: 2012-05-08

\fp_add:Nn

rcn
\fp_gadd:Nn
rcn

Updated: 2012-05-08

\fp_sub:Nn

icn
\fp_gsub:Nn
icn

Updated: 2012-05-08

\fp_eval:n *

New: 2012-05-08
Updated: 2012-07-08

\fp_to_decimal:N *

:(cn) *

New: 2012-05-08
Updated: 2012-07-08

\fp_to_dim:N *

:(cln) *

Updated: 2012-07-08

\fp_set_eq:NN (fp var;) (fp vara)

Sets the floating point variable (fp vari) equal to the current value of (fp vary).

\fp_add:Nn (fp var) {(floating point expression)}
Adds the result of computing the {floating point expression) to the (fp var).

\fp_sub:Nn (fp var) {(floating point expression)}
Subtracts the result of computing the (floating point expression) from the (fp var).

3 Using floating point numbers

\fp_eval:n {(floating point expression)}

Evaluates the (floating point expression) and expresses the result as a decimal number
with no exponent. Leading or trailing zeros may be inserted to compensate for the
exponent. Non-significant trailing zeros are trimmed, and integers are expressed without
a decimal separator. The values 0o and nan trigger an “invalid operation” exception.
This function is identical to \fp_to_decimal:n.

\fp_to_decimal:N (fp var)

\fp_to_decimal:n {(floating point expression)}

Evaluates the (floating point expression) and expresses the result as a decimal number
with no exponent. Leading or trailing zeros may be inserted to compensate for the
exponent. Non-significant trailing zeros are trimmed, and integers are expressed without
a decimal separator. The values +0o and nan trigger an “invalid operation” exception.

\fp_to_dim:N (fp var)

\fp_to_dim:n {(floating point expression)}

Evaluates the (floating point expression) and expresses the result as a dimension (in pt)
suitable for use in dimension expressions. The output is identical to \fp_to_decimal:n,
with an additional trailing pt. In particular, the result may be outside the range [—2'* +
2717 214 2-17] of valid TEX dimensions, leading to overflow errors if used as a dimension.
The values +0co and nan trigger an “invalid operation” exception.

172

\fp_to_int:N *
:(cln) *

Updated: 2012-07-08

\fp_to_scientific:N *
:(cln) *

New: 2012-05-08
Updated: 2012-07-08

\fp_to_t1:N *
:(cln) *

Updated: 2012-07-08

\fp_use:N *
ic *

Updated: 2012-07-08

\fp_if_exist_p:N *
ic oK
\fp_if_exist:NTF
:cTF *

Updated: 2012-05-08

\fp_to_int:N (fp var)

\fp_to_int:n {(floating point expression)}

Evaluates the (floating point expression), and rounds the result to the closest integer,
rounding exact ties to an even integer. The result may be outside the range [—23' +
1,231 —1] of valid TEX integers, leading to overflow errors if used in an integer expression.
The values £00 and nan trigger an “invalid operation” exception.

\fp_to_scientific:N (fp var)
\fp_to_scientific:n {(floating point expression)}

Evaluates the (floating point expression) and expresses the result in scientific notation:
(optional -){digit) . (15 digits)e{optional sign){exponent)

The leading (digit) is non-zero except in the case of 0. The values +oo and nan trigger
an “invalid operation” exception.

\fp_to_t1:N (fp var)

\fp_to_tl:n {(floating point expression)}

Evaluates the (floating point expression) and expresses the result in (almost) the shortest
possible form. Numbers in the ranges (0,1073) and [10'®, 00) are expressed in scientific
notation with trailing zeros trimmed and no decimal separator when there is a single
significant digit (see \fp_to_scientific:n). Numbers in the range [1073,10%°) are
expressed in a decimal notation without exponent, with trailing zeros trimmed, and no
decimal separator for integer values (see \fp_to_decimal:n. Negative numbers start
with -. The special values £0, 0o and nan are rendered as 0, -0, inf, -inf, and nan
respectively.

\fp_use:N (fp var)

Inserts the value of the (fp var) into the input stream as a decimal number with no
exponent. Leading or trailing zeros may be inserted to compensate for the exponent.
Non-significant trailing zeros are trimmed. Integers are expressed without a decimal sep-
arator. The values 00 and nan trigger an “invalid operation” exception. This function
is identical to \fp_to_decimal:N.

4 Floating point conditionals

\fp_if_exist_p:N (fp var)
\fp_if_exist:NTF (fp var) {(true code)} {(false code)}

Tests whether the (fp var) is currently defined. This does not check that the (fp var)
really is a floating point variable.

173

\fp_compare_p:nlNn *
\fp_compare:nNnTF *

Updated: 2012-05-08

\fp_compare_p:n *
\fp_compare:nTF *

Updated: 2012-12-14

\fp_compare_p:nNn {({fpexpri)} (relation) {(fpexpra)}
\fp_compare:nNnTF {(fpexpri)} (relation) {(fpexpra)} {(true code)} {(false code)}

Compares the (fpexpr;) and the (fpexprs), and returns true if the (relation) is obeyed.
Two floating point numbers x and y may obey four mutually exclusive relations:
x(y,z=y,z)y, or x and y are not ordered. The latter case occurs exactly when either
operand is nan, and this relation is denoted by the symbol ?. Note that a nan is distinct
from any value, even another nan, hence z = z is not true for a nan. To test if a value
is nan, compare it to an arbitrary number with the “not ordered” relation.

\fp_compare:nNnTF { <value> } 7 { 0 }
{ } % <value> is nan
{ } % <value> is not nan

\fp_compare_p:n
{
(fpexpri) (relatiom)
(fpexprn) (relationn)
(fpexpry 1)
}
\fp_compare:nTF
{
(fpexpri) (relatiom;)

(fpexprn) (relationy)
(fpexpry+1)

}

{(true code)} {(false code)}

Evaluates the (floating point expressions) as described for \fp_eval:n and compares
consecutive result using the corresponding (relation), namely it compares (intexpr;) and
(intexpre) using the (relation;), then (intexpry) and (intexprs) using the (relations), until
finally comparing (intexpry) and (intexpryy1) using the (relationy). The test yields
true if all comparisons are true. Each (floating point expression) is evaluated only once.
Contrarily to \int_compare:nTF, all (floating point expressions) are computed, even if
one comparison is false. Two floating point numbers x and y may obey four mutually
exclusive relations: z(y,x=y,x)y, or and y are not ordered. The latter case occurs
exactly when one of the operands is nan, and this relation is denoted by the symbol 7.
Each (relation) can be any (non-empty) combination of <, =, >, and ?, plus an optional
leading ! (which negates the (relation)), with the restriction that the (relation) may
not start with ?, as this symbol has a different meaning (in combination with :) within
floatin point expressions. The comparison x (relation) y is then true if the (relation)
does not start with ! and the actual relation (<, =, >, or ?) between z and y appears
within the (relation), or on the contrary if the (relation) starts with ! and the relation
between x and y does not appear within the (relation). Common choices of (relation)
include >= (greater or equal), != (not equal), !? or <=> (comparable).

174

\fp_do_until:nNnn ¥

New: 2012-08-16

\fp_do_while:nNnn v

New: 2012-08-16

\fp_until_do:nNnn 3

New: 2012-08-16

\fp_while_do:nNnn 3¢

New: 2012-08-16

\fp_do_until:nn

New: 2012-08-16

\fp_do_while:nn

New: 2012-08-16

\fp_until_do:nn %

New: 2012-08-16

5 Floating point expression loops

\fp_do_until:nNnn {(fpexpr:i)} (relation) {(fpexpr:)} {(code)}

Places the (code) in the input stream for TEX to process, and then evaluates the relation-
ship between the two (floating point expressions) as described for \fp_compare :nNnTF.
If the test is false then the (code) will be inserted into the input stream again and a
loop will occur until the (relation) is true.

\fp_do_while:nNnn {(fpexpr:i)} (relation) {(fpexpr:)} {(code)}

Places the (code) in the input stream for TEX to process, and then evaluates the relation-
ship between the two (floating point expressions) as described for \fp_compare:nNnTF.
If the test is true then the (code) will be inserted into the input stream again and a loop
will occur until the (relation) is false.

\fp_until_do:nNnn {(fpexpr:i)} (relation) {(fpexpr:)} {(code)}

Evaluates the relationship between the two (floating point expressions) as described for
\fp_compare:nNnTF, and then places the (code) in the input stream if the (relation) is
false. After the (code) has been processed by TEX the test will be repeated, and a loop
will occur until the test is true.

\fp_while_do:nNnn {(fpexpri)} (relation) {(fpexpr:)} {(code)}

Evaluates the relationship between the two (floating point expressions) as described for
\fp_compare:nNnTF, and then places the (code) in the input stream if the (relation) is
true. After the (code) has been processed by TEX the test will be repeated, and a loop
will occur until the test is false.

\fp_do_until:nn { (fpexpri) (relation) (fpexprz) } {(code)}

Places the (code) in the input stream for TEX to process, and then evaluates the rela-
tionship between the two (floating point expressions) as described for \fp_compare :nTF.
If the test is false then the (code) will be inserted into the input stream again and a
loop will occur until the (relation) is true.

\fp_do_while:nn { (fpexpri) (relation) (fpexprs) } {(code)}

Places the (code) in the input stream for TEX to process, and then evaluates the rela-
tionship between the two (floating point expressions) as described for \fp_compare:nTF.
If the test is true then the (code) will be inserted into the input stream again and a loop
will occur until the (relation) is false.

\fp_until_do:nn { (fpexpri) (relation) (fpexprs) } {(code)}

Evaluates the relationship between the two (floating point expressions) as described for
\fp_compare:nTF, and then places the (code) in the input stream if the (relation) is
false. After the (code) has been processed by TEX the test will be repeated, and a loop
will occur until the test is true.

175

\fp_while_do:nn v

New: 2012-08-16

\c_zero_fp
\c_minus_zero_fp

New: 2012-05-08

\c_one_fp

New: 2012-05-08

\c_inf_fp
\c_minus_inf_fp

New: 2012-05-08

\c_e_fp

Updated: 2012-05-08

\c_pi_£fp

Updated: 2013-11-17

\c_one_degree_fp

New: 2012-05-08
Updated: 2013-11-17

\1_tmpa_fp
\1_tmpb_fp

\g_tmpa_=£p
\g_tmpb_=fp

\fp_while_do:nn { (fpexpr:) (relation) (fpexprs) } {(code)}

Evaluates the relationship between the two (floating point expressions) as described for
\fp_compare:nTF, and then places the (code) in the input stream if the (relation) is
true. After the (code) has been processed by TEX the test will be repeated, and a loop
will occur until the test is false.

6 Some useful constants, and scratch variables

Zero, with either sign.

One as an fp: useful for comparisons in some places.

Infinity, with either sign. These can be input directly in a floating point expression as
inf and -inf.

The value of the base of the natural logarithm, e = exp(1).

The value of . This can be input directly in a floating point expression as pi.

The value of 1° in radians. Multiply an angle given in degrees by this value to obtain a
result in radians. Note that trigonometric functions expecting an argument in radians or
in degrees are both available. Within floating point expressions, this can be accessed as
deg.

Scratch floating points for local assignment. These are never used by the kernel code, and
so are safe for use with any I#TEX3-defined function. However, they may be overwritten
by other non-kernel code and so should only be used for short-term storage.

Scratch floating points for global assignment. These are never used by the kernel code,
and so are safe for use with any KTEX3-defined function. However, they may be over-
written by other non-kernel code and so should only be used for short-term storage.

176

\fp_if_flag_on_p:n *
\fp_if_flag on:nTF *

New: 2012-08-08

\fp_flag_off:n

New: 2012-08-08

\fp_flag_on:n *

New: 2012-08-08

7 Floating point exceptions

The functions defined in this section are experimental, and their functionality may be
altered or removed altogether.

“Exceptions” may occur when performing some floating point operations, such as 0
/ 0,or 10 **x 1e9999. The IEEE standard defines 5 types of exceptions.

e Querflow occurs whenever the result of an operation is too large to be represented
as a normal floating point number. This results in Foo.

e Underflow occurs whenever the result of an operation is too close to 0 to be repre-
sented as a normal floating point number. This results in +0.

o Inwalid operation occurs for operations with no defined outcome, for instance 0/0,
or sin(co), and almost any operation involving a nan. This normally results in a
nan, except for conversion functions whose target type does not have a notion of
nan (e.g., \fp_to_dim:n).

o Division by zero occurs when dividing a non-zero number by 0, or when evaluating
e.g., In(0) or cot(0). This results in +oo.

e Inexact occurs whenever the result of a computation is not exact, in other words,
almost always. At the moment, this exception is entirely ignored in EXTEX3.

To each exception is associated a “flag”, which can be either on or off. By default, the
“invalid operation” exception triggers an (expandable) error, and raises the corresponding
flag. Other exceptions only raise the corresponding flag. The state of the flag can be
tested and modified. The behaviour when an exception occurs can be modified (using
\fp_trap:nn) to either produce an error and turn the flag on, or only turn the flag on,
or do nothing at all.

\fp_if_flag_on_p:n {(exception)}
\fp_if_flag_on:nTF {(exception)} {(true code)} {(false code)}

Tests if the flag for the (exception) is on, which normally means the given (exception)
has occurred. This function is experimental, and may be altered or removed.

\fp_flag_off:n {(exception)}

Locally turns off the flag which indicates whether the (exception) has occurred. This
function is experimental, and may be altered or removed.

\fp_flag_on:n {(exception)}

Locally turns on the flag to indicate (or pretend) that the (exzception) has occurred. Note
that this function is expandable: it is used internally by 13fp to signal when exceptions
do occur. This function is experimental, and may be altered or removed.

177

\fp_trap:nn

New: 2012-07-19
Updated: 2012-08-08

\fp_show:N
:(c|n)
New: 2012-05-08
Updated: 2012-08-14

\fp_trap:nn {(exception)} {(trap type)}

All occurrences of the (exception) (invalid_operation7 division_by_zero, overflow,
or underflow) within the current group are treated as (trap type), which can be

o nomne: the (exception) will be entirely ignored, and leave no trace;
o flag: the (exception) will turn the corresponding flag on when it occurs;

o error: additionally, the (exception) will halt the TEX run and display some infor-
mation about the current operation in the terminal.

This function is experimental, and may be altered or removed.

8 Viewing floating points

\fp_show:N (fp var)
\fp_show:n {(floating point expression)}

Evaluates the (floating point expression) and displays the result in the terminal.

9 Floating point expressions

9.1 Input of floating point numbers
We support four types of floating point numbers:

e +0.d1ds...d16 - 10", a normal floating point number, with d; € [0,9], d; # 0, and
|n| < 10000;

e =£0, zero, with a given sign;
e 00, infinity, with a given sign;

e mnan, is “not a number”, and can be either quiet or signalling (not yet: this distinc-
tion is currently unsupported);

not yet) subnormal numbers .dids . ..dig - 107 wit 1 =0.
b 1 b +0.d1d d 1010000 with d 0

Normal floating point numbers are stored in base 10, with 16 significant figures.
On input, a normal floating point number consists of:

o (sign): a possibly empty string of + and - characters;
o (significand): a non-empty string of digits together with zero or one dot;

o (exponent) optionally: the character e, followed by a possibly empty string of
+ and - tokens, and a non-empty string of digits.

178

The sign of the resulting number is + if (sign) contains an even number of -, and -
otherwise, hence, an empty (sign) denotes a non-negative input. The stored significand
is obtained from (significand) by omitting the decimal separator and leading zeros, and
rounding to 16 significant digits, filling with trailing zeros if necessary. In particular, the
value stored is exact if the input (significand) has at most 16 digits. The stored (exzponent)
is obtained by combining the input (ezponent) (0 if absent) with a shift depending on
the position of the significand and the number of leading zeros.

A special case arises if the resulting (exponent) is either too large or too small for the
floating point number to be represented. This results either in an overflow (the number
is then replaced by £00), or an underflow (resulting in £0).

The result is thus £0 if and only if (significand) contains no non-zero digit (i.e.,
consists only in 0 characters, and an optional . character), or if there is an underflow.
Note that a single dot is currently a valid floating point number, equal to +0, but that
is not guaranteed to remain true.

Special numbers are input as follows:

¢ inf represents +00, and can be preceded by any (sign), yielding oo as appropriate.

e nan represents a (quiet) non-number. It can be preceded by any sign, but that will
be ignored.

e Any unrecognizable string triggers an error, and produces a nan.

Note that e-1 is not a representation of 1071, because it could be mistaken with the
difference of “e” and 1. This is consistent with several other programming languages.
However, in order to avoid confusions, e-1 is not considered to be this difference either.
To input the base of natural logarithms, use exp(1) or \c_e_=fp.

9.2 Precedence of operators

We list here all the operations supported in floating point expressions, in order of de-
creasing precedence: operations listed earlier bind more tightly than operations listed
below them.

o Implicit multiplication by juxtaposition (2pi, 3(4+5), etc).
o Function calls (sin, 1n, etc).

e Binary ** and ~ (right associative).

e Unary +, -, !.

e Binary *, / and ¥%.

e Binary + and -.

o Comparisons >=, !=, <?, etc.

e Logical and, denoted by &&.

e Logical or, denoted by | 1.

179

|]

TWOBARS

&&

o Ternary operator ?: (right associative).

The precedence of operations can be overridden using parentheses. In particular, those
precedences imply that
sin2pi = sin(27) =0,

2"2max(3,4) = 22mx(4) — 956,

Functions are called on the value of their argument, contrarily to TEX macros.

9.3 Operations

We now present the various operations allowed in floating point expressions, from the
lowest precedence to the highest. When used as a truth value, a floating point expression
is false if it is £0, and true otherwise, including when it is nan.

\fp_eval:n { (operand;) ? (operands) : (operands) }

The ternary operator ?: results in (operandy) if (operand,) is true, and (operands) if it is
false (equal to 0). All three {(operands) are evaluated in all cases. The operator is right
associative, hence

\fp_eval:n
{

1+3>471:
2+4>572
3+5>67

by

first tests whether 1 + 3 > 4; since this isn’t true, the branch following : is taken, and
244 > 5 is compared; since this is true, the branch before : is taken, and everything else
is (evaluated then) ignored. That allows testing for various cases in a concise manner,
with the drawback that all computations are made in all cases.

\fp_eval:n { (operand;) || (operands) }

If (operandy) is true (non-zero), use that value, otherwise the value of (operandy). Both
(operands) are evaluated in all cases.

\fp_eval:n { (operand:) && (operand,) }

If (operandy) is false (equal to £0), use that value, otherwise the value of (operands).
Both (operands) are evaluated in all cases.

180

N VvV Il A

Updated: 2013-12-14

+

I~ %1 |

+ 1

k%

abs

\fp_eval:n
{

(operand;) (relation)

(operandn) (relationn)
(operandn+1)
}
Each (relation) consists of a non-empty string of <, =, > and ?, optionally preceded by !,
and may not start with ?. This evaluates to +1 if all comparisons (operand;) (relation;)
(operand;11) are true, and +0 otherwise. All (operands) are evaluated in all cases. See
\fp_compare:nTF for details.

\fp_eval:n { (operand;) + (operands) }

\fp_eval:n { (operand;) - (operands) }

Computes the sum or the difference of its two (operands). The “invalid operation” ex-
ception occurs for co — co. “Underflow” and “overflow” occur when appropriate.

\fp_eval:n { (operand;) * (operands) }
\fp_eval:n { (operand;) / (operands) }

Computes the product or the ratio of its two (operands). The “invalid operation” excep-
tion occurs for co/oo, 0/0, or 0 x co. “Division by zero” occurs when dividing a finite
non-zero number by +0. “Underflow” and “overflow” occur when appropriate.

\fp_eval:n { + (operand) }

\fp_eval:n { - (operand) }

\fp_eval:n { ! (operand) }

The unary + does nothing, the unary - changes the sign of the (operand), and ! {operand)
evaluates to 1 if (operand) is false and 0 otherwise (this is the not boolean function).
Those operations never raise exceptions.

\fp_eval:n { (operand;) ** (operands) }
\fp_eval:n { (operand;) ~ (operands) }

Raises (operand;) to the power (operands). This operation is right associative, hence 2
** 2 xx 3 equals 2°2°3 = 256. The “invalid operation” exception occurs if {operands)
is negative or —0, and (operandy) is not an integer, unless the result is zero (in that case,
the sign is chosen arbitrarily to be +0). “Division by zero” occurs when raising +0 to a
strictly negative power. “Underflow” and “overflow” occur when appropriate.

\fp_eval:n { abs((fpexpr)) }

Computes the absolute value of the (fpezpr). This function does not raise any exception
beyond those raised when computing its operand (fpexpr). See also \fp_abs:n.

\fp_eval:n { exp((fpexpr)) }

Computes the exponential of the (fpexpr). “Underflow” and “overflow” occur when ap-
propriate.

181

sin
cos
tan
cot
csc
sec

1n

max
min

round
trunc
ceil

floor

New: 2013-12-14

Updated: 2013-11-17

\fp_eval:n { 1n((fpexpr)) }

Computes the natural logarithm of the (fpezpr). Negative numbers have no (real) loga-
rithm, hence the “invalid operation” is raised in that case, including for In(—0). “Division

by zero” occurs when evaluating In(+0) = —co. “Underflow” and “overflow” occur when
appropriate.

\fp_eval:n { max((fpexpri) , (fpexpr2) , ...) }

\fp_eval:n { min((fpexpr:) , (fpexpr:) , ...) }

Evaluates each (fpexpr) and computes the largest (smallest) of those. If any of the
(fpexpr) is a nan, the result is nan. Those operations do not raise exceptions.

\fp_eval:n { round ((fpexpr)) }

\fp_eval:n { round ((fpexpri) , (fpexprz)) }

Evaluates (fpexpri) = x and (fpexprs) = n, then rounds x to n places. If n is an integer,
this rounds x to a multiple of 10™"; if n = +00, this always yields z; if n = —o0, this yields
one of +0, +00, or nan; if n is neither 00 nor an integer, then an “invalid operation”
exception is raised. When (fpexpry) is omitted, n = 0, i.e., (fpexpri) is rounded to an
integer. The rounding direction depends on the function:

e round yields the multiple of 107" closest to x, and if = is half-way between two
such multiples, the even multiple is chosen (“ties to even”);

e floor, or the deprecated round-, yields the largest multiple of 10™" smaller or
equal to z (“round towards negative infinity”);

e ceil, or the deprecated round+, yields the smallest multiple of 107" greater or
equal to z (“round towards positive infinity”);

e trunc, or the deprecated round0, yields a multiple of 107" with the same sign as z
and with the largest absolute value less that that of z (“round towards zero”).

“Overflow” occurs if z is finite and the result is infinite (this can only happen if (fpexprs) <
—9984).

\fp_eval:n { sin((fpexpr)) }
\fp_eval:n { cos((fpexpr)) }
\fp_eval:n { tan((fpexpr)) }
\fp_eval:n { cot((fpexpr)) }
\fp_eval:n { csc((fpexpr)) }
\fp_eval:n { sec((fpexpr)) }

Computes the sine, cosine, tangent, cotangent, cosecant, or secant of the (fpexpr) given
in radians. For arguments given in degrees, see sind, cosd, etc. Note that since 7 is
irrational, sin(8pi) is not quite zero, while its analog sind(8 x 180) is exactly zero. The
trigonometric functions are undefined for an argument of +oo, leading to the “invalid
operation” exception. Additionally, evaluating tangent, cotangent, cosecant, or secant at
one of their poles leads to a “division by zero” exception. “Underflow” and “overflow”
occur when appropriate.

182

sind
cosd
tand
cotd
cscd
secd

New: 2013-11-02

asin
acos
acsc
asec

New: 2013-11-02

asind
acosd
acscd
asecd

New: 2013-11-02

\fp_eval:n { sind((fpexpr)) }
\fp_eval:n { cosd((fpexpr)) %}
\fp_eval:n { tand((fpexpr)) }
\fp_eval:n { cotd((fpexpr)) }
\fp_eval:n { cscd((fpexpr)) %}
\fp_eval:n { secd((fpexpr)) }

Computes the sine, cosine, tangent, cotangent, cosecant, or secant of the (fpexpr) given
in degrees. For arguments given in radians, see sin, cos, etc. Note that since 7 is
irrational, sin(8pi) is not quite zero, while its analog sind(8 x 180) is exactly zero. The
trigonometric functions are undefined for an argument of +oo, leading to the “invalid
operation” exception. Additionally, evaluating tangent, cotangent, cosecant, or secant at
one of their poles leads to a “division by zero” exception. “Underflow” and “overflow”
occur when appropriate.

\fp_eval:n { asin((fpexpr)) }
\fp_eval:n { acos((fpexpr)) }
\fp_eval:n { acsc((fpexpr)) %}
\fp_eval:n { asec((fpexpr)) }

Computes the arcsine, arccosine, arccosecant, or arcsecant of the (fpexpr) and returns
the result in radians, in the range [—m/2,7/2] for asin and acsc and [0, 7] for acos and
asec. For a result in degrees, use asind, etc. If the argument of asin or acos lies outside
the range [—1,1], or the argument of acsc or asec inside the range (—1,1), an “invalid
operation” exception is raised. “Underflow” and “overflow” occur when appropriate.

\fp_eval:n { asind((fpexpr)) }
\fp_eval:n { acosd((fpexpr)) }
\fp_eval:n { acscd((fpexpr)) }
\fp_eval:n { asecd((fpexpr)) }

Computes the arcsine, arccosine, arccosecant, or arcsecant of the (fpexpr) and returns
the result in degrees, in the range [—90, 90] for asin and acsc and [0, 180] for acos and
asec. For a result in radians, use asin, etc. If the argument of asin or acos lies outside
the range [—1,1], or the argument of acsc or asec inside the range (—1,1), an “invalid
operation” exception is raised. “Underflow” and “overflow” occur when appropriate.

183

atan
acot

New: 2013-11-02

atand
acotd

New: 2013-11-02

sqrt

New: 2013-12-14

\fp_eval:n { atan((fpexpr)) }
\fp_eval:n { atan((fpexpri) , (fpexprz)) }
\fp_eval:n { acot((fpexpr)) }
\fp_eval:n { acot((fpexpri) , (fpexpr:)) %}

Those functions yield an angle in radians: atand and acotd are their analogs in degrees.
The one-argument versions compute the arctangent or arccotangent of the (fpexpr): arc-
tangent takes values in the range [—m/2,7/2], and arccotangent in the range [0, 7]. The
two-argument arctangent computes the angle in polar coordinates of the point with Carte-
sian coordinates ({fpexprs), (fpexpry)): this is the arctangent of (fpexpri)/(fpexprs), pos-
sibly shifted by 7 depending on the signs of (fpexpr;) and (fpexprs). The two-argument
arccotangent computes the angle in polar coordinates of the point ({fpexpr:), (fpexprs)),
equal to the arccotangent of (fpexpri)/(fpexprs), possibly shifted by . Both two-
argument functions take values in the wider range [—m, 7). The ratio (fpexpri)/{fpexprs)
need not be defined for the two-argument arctangent: when both expressions yield +0,
or when both yield o0, the resulting angle is one of {£7/4,+37/4} depending on signs.
Only the “underflow” exception can occur.

\fp_eval:n { atand((fpexpr)) }
\fp_eval:n { atand((fpexpri) , (fpexpraz)) }
\fp_eval:n { acotd((fpexpr)) }

(

\fp_eval:n { acotd((fpexpri) , (fpexpra)) }

Those functions yield an angle in degrees: atand and acotd are their analogs in ra-
dians. The one-argument versions compute the arctangent or arccotangent of the
(fpexpr): arctangent takes values in the range [—90,90], and arccotangent in the range
[0,180]. The two-argument arctangent computes the angle in polar coordinates of
the point with Cartesian coordinates ({(fpexprs), (fpexpri)): this is the arctangent of
(fpexpr)/{fpexprs), possibly shifted by 180 depending on the signs of (fpexpr;) and
(fpexpra). The two-argument arccotangent computes the angle in polar coordinates of
the point ((fpexpry), {fpexpr2)), equal to the arccotangent of (fpexpr;)/{fpexprs), possibly
shifted by 180. Both two-argument functions take values in the wider range [—180, 180].
The ratio (fpexzpri)/{fpexpra) need not be defined for the two-argument arctangent:
when both expressions yield +0, or when both yield +oo, the resulting angle is one
of {£45,+135} depending on signs. Only the “underflow” exception can occur.

\fp_eval:n { sqrt((fpexpr)) }

Computes the square root of the (fpexpr). The “invalid operation” is raised when the
(fpexpr) is negative; no other exception can occur. Special values yield v/—0 = —0,

v+0 = 40, v/400 = +c0 and /nan = nan.

The special values +00, —o0, and nan are represented as inf, -inf and nan (see \c_-
inf_fp, \c_minus_inf_fp and \c_nan_£p).

The value of 7 (see \c_pi_£p).
The value of 1° in radians (see \c_one_degree_fp).

184

em
ex
in
pt
pc
cm

dd
cc
nd
nc
bp
sp

true
false

\dim_to_fp:n *

New: 2012-05-08

\fp_abs:n *

New: 2012-05-14
Updated: 2012-07-08

\fp_max:nn *
\fp_min:nn *

New: 2012-09-26

Those units of measurement are equal to their values in pt, namely

lin = 72.27pt

1pt = 1pt

lpc = 12pt
L.

lem = ppm= 28.45275590551181pt
L

1lmm = pam= 2.845275590551181pt

1dd = 0.376065mm = 1.07000856496063pt
lcc = 12dd = 12.84010277952756pt

Ind = 0.375mm = 1.066978346456693pt
Inc = 12nd = 12.80374015748031pt

1
1bp = ﬁin = 1.00375pt
1sp = 27 10pt = 1.52587890625¢ — 5pt.

The values of the (font-dependent) units em and ex are gathered from TEX when the
surrounding floating point expression is evaluated.

Other names for 1 and +0.

\dim_to_fp:n {(dimexpr)}

Expands to an internal floating point number equal to the value of the (dimexpr) in
pt. Since dimension expressions are evaluated much faster than their floating point
equivalent, \dim_to_fp:n can be used to speed up parts of a computation where a low
precision is acceptable.

\fp_abs:n {(floating point expression)}

Evaluates the (floating point expression) as described for \fp_eval:n and leaves the
absolute value of the result in the input stream. This function does not raise any exception
beyond those raised when evaluating its argument. Within floating point expressions,
abs () can be used.

\fp_max:nn {(fp expression 1)} {(fp expression 2)}

Evaluates the (floating point expressions) as described for \fp_eval:n and leaves the
resulting larger (max) or smaller (min) value in the input stream. This function does not
raise any exception beyond those raised when evaluating its argument. Within floating
point expressions, max () and min() can be used.

185

10

Disclaimer and roadmap

The package may break down if the escape character is among 0123456789 _+; if it receives
a TEX primitive conditional affected by \exp_not:N.

The following need to be done. I'll try to time-order the items.
Decide what exponent range to consider.
Support signalling nan.

Modulo and remainder, and rounding functions quantize, quantize0, quantize+,
quantize-, quantize=, round=. Should the modulo also be provided as (catcode
12) %?

\fp_format:nn {(fpexpr)} {(format)}, but what should (format) be? More general
pretty printing?

Add and, or, xor? Perhaps under the names all, any, and xor?
Add log(zx,b) for logarithm of z in base b.

hypot (Euclidean length). Cartesian-to-polar transform.
Hyperbolic functions cosh, sinh, tanh.

Inverse hyperbolics.

Base conversion, input such as 0xAB.CDEF.

Random numbers (pgfmath provides rnd, rand, random), with seed reset at every
\fp_set:Nn.

Factorial (not with !), gamma function.

Improve coefficients of the sin and tan series.

Treat upper and lower case letters identically in identifiers, and ignore underscores.
Add an array(1,2,3) and i=complex(0,1).

Provide an experimental map function? Perhaps easier to implement if it is a single
character, @sin(1,2)?

Provide \fp_if_nan:nTF, and an isnan function?

Support keyword arguments?

Pgfmath also provides box-measurements (depth, height, width), but boxes are not pos-
sible expandably.

Bugs. (Exclamation points mark important bugs.)

Check that functions are monotonic when they should.

186

e Add exceptions to 7:, 1<=>7 &&, ||, and !.
e Logarithms of numbers very close to 1 are inaccurate.
e When rounding towards —oo, \dim_to_£fp:n {Opt} should return —0, not +0.

o The result of (£0) + (£0), of z + (—=x), and of (—z) + = should depend on the
rounding mode.

e 09999999999 gives a TEX “number too large” error.
e Subnormals are not implemented.

e The overflow trap receives the wrong argument in |3fp-expo (see exp(1e5678) in
m3fp-traps001).

Possible optimizations/improvements.
e Document that 13trial /I3fp-types introduces tools for adding new types.
e In subsection 9.1, write a grammar.
o Fix the TWO BARS business with the index.

e It would be nice if the parse auxiliaries for each operation were set up in the
corresponding module, rather than centralizing in |13fp-parse.

e Some functions should get an _o ending to indicate that they expand after their
result.

e More care should be given to distinguish expandable/restricted expandable (auxil-
iary and internal) functions.

e The code for the ternary set of functions is ugly.
e There are many ~ missing in the doc to avoid bad line-breaks.

e The algorithm for computing the logarithm of the significand could be made to use
a 5 terms Taylor series instead of 10 terms by taking ¢ = 2000/(|200z |+1) € [10, 95]
instead of ¢ € [1,10]. Also, it would then be possible to simplify the computation
of t. However, we would then have to hard-code the logarithms of 44 small integers
instead of 9.

o Improve notations in the explanations of the division algorithm (I3fp-basics).

e Understand and document __fp_basics_pack_weird_low:NNNNw and __fp_-
basics_pack_weird_high:NNNNNNNNw better. Move the other basics_pack auxil-
iaries to I3fp-aux under a better name.

e Find out if underflow can really occur for trigonometric functions, and redoc as
appropriate.

187

Add bibliography. Some of Kahan’s articles, some previous TEX fp packages, the
international standards,. ..

Also take into account the “inexact” exception?

Support multi-character prefix operators (e.g., @/ or whatever)? Perhaps for in-
cluding comments inside the computation itself??

188

\lua_now:n *
'x *

Updated: 2012-08-02

\lua_now_x:n *
X K

New: 2012-08-02

\lua_shipout:n
X

Part XXII
The 13luatex package
LuaTeX-specific functions

1 Breaking out to Lua

The LuaTgX engine provides access to the Lua programming language, and with it access
to the “internals” of TEX. In order to use this within the framework provided here, a
family of functions is available. When used with pdfTEX or X#ITEX these will raise an
error: use \luatex_if_engine:T to avoid this. Details of coding the LuaTEX engine are
detailed in the LuaTEX manual.

\lua_now:n {(token list)}

The (token list) is first tokenized by TgEX, which will include converting line ends to
spaces in the usual TEX manner and which respects currently-applicable TEX category
codes. The resulting (Lua input) is passed to the Lua interpreter for processing. Each
\lua_now:n block is treated by Lua as a separate chunk. The Lua interpreter will execute
the (Lua input) immediately, and in an expandable manner.

\lua_now_x:n {(token list)}

The (token list) is first tokenized and expanded by TEX, which will include converting
line ends to spaces in the usual TEX manner and which respects currently-applicable TEX
category codes. The resulting (Lua input) is passed to the Lua interpreter for processing.
Each \lua_now_x:n block is treated by Lua as a separate chunk. The Lua interpreter
will execute the (Lua input) immediately, and in an expandable manner.

TEXhackers note: \lua_now_x:n is the LuaTEX primitive \directlua renamed.

\lua_shipout:n {(token list)}

The (token list) is first tokenized by TEX, which will include converting line ends to
spaces in the usual TEX manner and which respects currently-applicable TEX category
codes. The resulting (Lua input) is passed to the Lua interpreter when the current page
is finalised (.e. at shipout). Each \lua_shipout:n block is treated by Lua as a separate
chunk. The Lua interpreter will execute the (Lua input) during the page-building routine:
no TEX expansion of the (Lua input) will occur at this stage.

TEXhackers note: At a TEX level, the (Lua input) is stored as a “whatsit”.

189

\lua_shipout_x:n
°X

\cctab_new:N

\cctab_gset:Nn

\cctab_begin:N

\cctab_end:

\c_code_cctab

\lua_shipout:n {(token list)}

The (token list) is first tokenized by TgX, which will include converting line ends to
spaces in the usual TEX manner and which respects currently-applicable TEX category
codes. The resulting (Lua input) is passed to the Lua interpreter when the current page
is finalised (.e. at shipout). Each \lua_shipout:n block is treated by Lua as a separate
chunk. The Lua interpreter will execute the (Lua input) during the page-building routine:
the (Lua input) is expanded during this process in addition to any expansion when the
argument was read. This makes these functions suitable for including material finalised
during the page building process (such as the page number).

TEXhackers note: \lua_shipout_x:n is the LuaTEX primitive \latelua named using the
ETREX3 scheme.
At a TEX level, the (Lua input) is stored as a “whatsit”.

2 Category code tables

As well as providing methods to break out into Lua, there are places where additional
ETREX3 functions are provided by the LualgX engine. In particular, LualgX provides
category code tables. These can be used to ensure that a set of category codes are in
force in a more robust way than is possible with other engines. These are therefore used
by \ExplSyntaxOn and ExplSyntaxOff when using the LuaTgX engine.

\cctab_new:N (category code table)

Creates a new category code table, initially with the codes as used by iniTEX.

\cctab_gset:Nn (category code table) {(category code set up)}

Sets the (category code table) to apply the category codes which apply when the prevailing
régime is modified by the (category code set up). Thus within a standard code block the
starting point will be the code applied by \c_code_cctab. The assignment of the table
is global: the underlying primitive does not respect grouping.

\cctab_begin:N (category code table)

Switches the category codes in force to those stored in the (category code table). The
prevailing codes before the function is called are added to a stack, for use with \cctab_-
end:.

\cctab_end:

Ends the scope of a (category code table) started using \cctab_begin:N, retuning the
codes to those in force before the matching \cctab_begin:N was used.

Category code table for the code environment. This does not include setting the be-
haviour of the line-end character, which is only altered by \ExplSyntax0On.

190

\c_document_cctab

\c_initex_cctab
\c_other_cctab

\c_str_cctab

Category code table for a standard I4TEX document. This does not include setting the
behaviour of the line-end character, which is only altered by \ExplSyntax0ff.

Category code table as set up by iniTEX.

Category code table where all characters have category code 12 (other).

Category code table where all characters have category code 12 (other) with the exception
of spaces, which have category code 10 (space).

191

\cs_if_exist_use:NTF x
:cTF *

\box_resize:Nnn
:cnn

Part XXIII
The 13candidates package
Experimental additions to 13kernel

This module provides a space in which functions can be added to 13kernel (expl3) while still
being experimental. As such, the functions here may not remain in their current form,
or indeed at all, in I13kernel in the future. In contrast to the material in |3experimental,
the functions here are all small additions to the kernel. We encourage programmers to
test them out and report back on the LaTeX-L mailing list.

1 Additions to I13basics

\cs_if_exist_use:NTF (control sequence) {(true code)} {(false code)}

If the (control sequence) exists, leave it in the input stream, followed by the (true code)
(unbraced). Otherwise, leave the (false) code in the input stream. For example,

\cs_set:Npn \mypkg_use_character:N #1
{ \cs_if_exist_use:cF { mypkg_#1:n } { \mypkg_default:N #1 } }

calls the function \mypkg_#1:n if it exists, and falls back to a default action otherwise.
This could also be done (more slowly) using \str_case_x:nnn.

TgXhackers note: The c variants do not introduce the (control sequence) in the hash
table if it is not there.

2 Additions to 13box

2.1 Affine transformations

Affine transformations are changes which (informally) preserve straight lines. Simple
translations are affine transformations, but are better handled in TEX by doing the trans-
lation first, then inserting an unmodified box. On the other hand, rotation and resizing
of boxed material can best be handled by modifying boxes. These transformations are
described here.

\box_resize:Nnn (box) {(x-size)} {(y-size)}

Resize the (boz) to (z-size) horizontally and (y-size) vertically (both of the sizes are
dimension expressions). The (y-size) is the vertical size (height plus depth) of the box.
The updated (boz) will be an hbox, irrespective of the nature of the (boz) before the
resizing is applied. Negative sizes will cause the material in the (bozx) to be reversed in
direction, but the reference point of the (box) will be unchanged. The resizing applies
within the current TEX group level.

192

\box_resize_to_ht_plus_dp:Nn \box_resize_to_ht_plus_dp:Nn (box) {(y-size)}

:cn

\box_resize_to_wd:Nn
:cn

\box_rotate:Nn
:cn

\box_scale:Nnn
:cnn

\box_clip:N
:c

Resize the (boz) to (y-size) vertically, scaling the horizontal size by the same amount
({y-size) is a dimension expression). The (y-size) is the vertical size (height plus depth)
of the box. The updated (box) will be an hbox, irrespective of the nature of the (bozx)
before the resizing is applied. A negative size will cause the material in the (boz) to be
reversed in direction, but the reference point of the (boz) will be unchanged. The resizing
applies within the current TEX group level.

\box_resize_to_wd:Nn (box) {(x-size)}

Resize the (box) to (z-size) horizontally, scaling the vertical size by the same amount
((z-size) is a dimension expression). The updated (box) will be an hbox, irrespective
of the nature of the (box) before the resizing is applied. A negative size will cause the
material in the (bozx) to be reversed in direction, but the reference point of the (boz) will
be unchanged. The resizing applies within the current TEX group level.

\box_rotate:Nn (box) {(angle)}

Rotates the (boz) by (angle) (in degrees) anti-clockwise about its reference point. The
reference point of the updated box will be moved horizontally such that it is at the left
side of the smallest rectangle enclosing the rotated material. The updated (boz) will
be an hbox, irrespective of the nature of the (boz) before the rotation is applied. The
rotation applies within the current TEX group level.

\box_scale:Nnn (box) {(x-scale)} {(y-scale)}

Scales the (boz) by factors (z-scale) and (y-scale) in the horizontal and vertical directions,
respectively (both scales are integer expressions). The updated (boz) will be an hbox,
irrespective of the nature of the (boz) before the scaling is applied. Negative scalings will
cause the material in the (box) to be reversed in direction, but the reference point of the
(boz) will be unchanged. The scaling applies within the current TEX group level.

2.2 Viewing part of a box

\box_clip:N (box)

Clips the (boz) in the output so that only material inside the bounding box is displayed
in the output. The updated (boz) will be an hbox, irrespective of the nature of the (bozx)
before the clipping is applied. The clipping applies within the current TEX group level.

These functions require the IXTEX3 native drivers: they will not work
with the BTEX 2¢ graphics drivers!

TgXhackers note: Clipping is implemented by the driver, and as such the full content of
the box is placed in the output file. Thus clipping does not remove any information from the
raw output, and hidden material can therefore be viewed by direct examination of the file.

193

\box_trim:Nnnnn
:cnnnn

\box_viewport :Nnnnn
:cnnnn

\1__box_angle_fp

\1__box_cos_fp
\1__box_sin_fp

\1__box_scale_x_fp
\1__box_scale_y_fp

\1__box_internal_box

\box_trim:Nnnnn (box) {(left)} {(bottom)} {(right)} {(top)}

Adjusts the bounding box of the (boz) (left) is removed from the left-hand edge of the
bounding box, (right) from the right-hand edge and so fourth. All adjustments are
(dimension expressions). Material output of the bounding box will still be displayed in
the output unless \box_clip:N is subsequently applied. The updated (boz) will be an
hbox, irrespective of the nature of the (boz) before the trim operation is applied. The
adjustment applies within the current TEX group level. The behavior of the operation
where the trims requested is greater than the size of the box is undefined.

\box_viewport:Nnnnn (box) {(11x)} {(11y)} {(urx)} {(ury)}

Adjusts the bounding box of the (boz) such that it has lower-left co-ordinates (({llx),
(lly)) and upper-right co-ordinates ({(urz), (ury)). All four co-ordinate positions are
(dimension expressions). Material output of the bounding box will still be displayed in
the output unless \box_clip:N is subsequently applied. The updated (boz) will be an
hbox, irrespective of the nature of the (box) before the viewport operation is applied.
The adjustment applies within the current TEX group level.

2.3 Internal variables

The angle through which a box is rotated by \box_rotate:Nn, given in degrees counter-
clockwise. This value is required by the underlying driver code in |3driver to carry out
the driver-dependent part of box rotation.

The sine and cosine of the angle through which a box is rotated by \box_rotate:Nn: the
values refer to the angle counter-clockwise. These values are required by the underlying
driver code in [3driver to carry out the driver-dependent part of box rotation.

The scaling factors by which a box is scaled by \box_scale:Nnn or \box_resize:Nnn.
These values are required by the underlying driver code in I3driver to carry out the
driver-dependent part of box rotation.

Box used for affine transformations, which is used to contain rotated material when ap-
plying \box_rotate:Nn. This box must be correctly constructed for the driver-dependent
code in I3driver to function correctly.

194

3 Additions to 13clist

\clist_item:Nn * \clist_item:Nn (comma list) {(integer expression)}

(cnjnn) « Indexing items in the (comma list) from 1 at the top (left), this function will evaluate

the (integer expression) and leave the appropriate item from the comma list in the input
stream. If the (integer expression) is negative, indexing occurs from the bottom (right)
of the comma list. When the (integer expression) is larger than the number of items in
the (comma list) (as calculated by \clist_count:N) then the function will expand to
nothing.

TgXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (item) will not expand further when appearing in an x-type argument

expansion.
\clist_set_from_seq:NN \clist_set_from_seq:NN (comma list) (sequence)
: (cN|Nc|ec)
\clist_gset_from_seq:NN
: (cN|Nc|cc)

Sets the (comma list) to be equal to the content of the (sequence). Items which contain
either spaces or commas are surrounded by braces.

\clist_const:Nn \clist_const:Nn (clist var) {(comma list)}

T(N
(Nx|cn|cx) Creates a new constant (clist var) or raises an error if the name is already taken. The

value of the (clist var) will be set globally to the (comma list).

\clist_if_empty_p:n % \clist_if_empty_p:n {(comma Iist)}
\clist_if_empty:nTF % \clist_if_empty:nTF {(comma list)} {(true code)} {(false code)}

Tests if the {comma list) is empty (containing no items). The rules for space trimming
are as for other n-type comma-list functions, hence the comma list {~,~,,~} (without
outer braces) is empty, while {~,{},} (without outer braces) contains one element, which
happens to be empty: the comma-list is not empty.

4 Additions to 13coffins

\coffin_resize:Nnn \coffin_resize:Nnn (coffin) {(width)} {(total-height)}

"M Resized the (coffin) to (width) and (total-height), both of which should be given as di-
mension expressions.

\coffin_rotate:Nn \coffin_rotate:Nn (coffin) {(angle)}
:cn

Rotates the {coffin) by the given (angle) (given in degrees counter-clockwise). This
process will rotate both the coffin content and poles. Multiple rotations will not result
in the bounding box of the coffin growing unnecessarily.

195

\coffin_scale:Nnn
:cnn

\ior_map_inline:Nn

New: 2012-02-11

\ior_str_map_inline:Nn

New: 2012-02-11

\ior_map_break:

New: 2012-06-29

\coffin_scale:Nnn (coffin) {(x-scale)} {(y-scale)}

Scales the (coffin) by a factors (z-scale) and (y-scale) in the horizontal and vertical
directions, respectively. The two scale factors should be given as real numbers.

5 Additions to 13file

\ior_map_inline:Nn (stream) {(inline function)}

Applies the (inline function) to (lines) obtained by reading one or more lines (until an
equal number of left and right braces are found) from the (stream). The (inline function)
should consist of code which will receive the (line) as #1. Note that TEX removes trailing
space and tab characters (character codes 32 and 9) from every line upon input. TEX
also ignores any trailing new-line marker from the file it reads.

\ior_str_map_inline:Nn {(stream)} {(inline function)}

Applies the (inline function) to every (line) in the (stream). The material is read from
the (stream) as a series of tokens with category code 12 (other), with the exception of
space characters which are given category code 10 (space). The (inline function) should
consist of code which will receive the (line) as #1. Note that TEX removes trailing space
and tab characters (character codes 32 and 9) from every line upon input. TEX also
ignores any trailing new-line marker from the file it reads.

\ior_map_break:

Used to terminate a \ior_map_... function before all lines from the (stream) have been
processed. This will normally take place within a conditional statement, for example

\ior_map_inline:Nn \1_my_ior
{
\str_if_eq:nnTF { #1 } { bingo }
{ \ior_map_break: }

{
% Do something useful
}
}
Use outside of a \ior_map_... scenario will lead to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted by the
internal macro __prg_break_point:Nn before further items are taken from the input stream.
This will depend on the design of the mapping function.

196

\ior_map_break:n

New: 2012-06-29

\fp_set_from_dim:Nn

:cn
\fp_gset_from_dim:Nn
:cn

\ior_map_break:n {(tokens)}

Used to terminate a \ior_map_... function before all lines in the (stream) have been
processed, inserting the (tokens) after the mapping has ended. This will normally take
place within a conditional statement, for example

\ior_map_inline:Nn \1_my_ior
{
\str_if_eq:nnTF { #1 } { bingo }
{ \ior_map_break:n { <tokens> } }

{
% Do something useful
}
}
Use outside of a \ior_map_. .. scenario will lead to low level TEX errors.

TEXhackers note: When the mapping is broken, additional tokens may be inserted by the
internal macro __prg_break_point:Nn before the (tokens) are inserted into the input stream.
This will depend on the design of the mapping function.

6 Additions to 13fp

\fp_set_from_dim:Nn (floating point variable) {(dimexpr)}

Sets the (floating point variable) to the distance represented by the (dimension expression)
in the units points. This means that distances given in other units are first converted to
points before being assigned to the (floating point variable).

197

\fp_function:Nw \fp_eval:n
{
\fp_function:Nw (function)

((fpexpri) , ... , (fpexprn))

}

Finds one or more arguments (fpexpry) ... (fpexpr,) following the (function), and evalu-
ate them. Then calls the (function) followed by a single brace group containing {(result;)}
. {(result,)}. For instance,

\cs_new_nopar:Npn \mypkg_log:w
{ \fp_function:Nw __mypkg_log:n }
\cs_new:Npn __mypkg_log:n #1

{
\int_case:nnF { \tl_count:n {#1} }
{
{13} {__mypkg_log_aux:nn #1 { 10 } }
{2} {__mypkg_log_aux:nn #1 }
}
{ \ERROR \c_nan_fp }
}

\cs_new:Npn __mypkg_log_aux:nn #1#2 { In(#1) / In(#2) }
\fp_show:n { \mypkg_log:w (8, 2) + \mypkg_log:w (lel7) }

shows 20 = log,(8) + log(10'7). The function \mypkg_log:w behaves like other built-
in functions such as 1n, but allows 1 or 2 arguments, and computes either the base 10
logarithm or the logarithm of the first argument in a base given by the second argument.
Checking the number of arguments is acheived by __mypkg_log:n, which provides the
default base 10 when there is only one argument. The computation itself is done by
__mypkg_log_aux:nn.

198

\fp_new_function:Npn \fp_new_function:Npn (function) (parameters) {(code)}
\fp_eval:n { (function) ((fpexpri) , ... , (fpexprn)) }

Defines the (function) for use within floating point expressions, expecting some (parameters),
and evaluating the (code), which must be expandable. When the (function) appears in a
floating point expression, arguments (fpexpry), ..., (fpexpr,) are found and evaluated in
the same way as for built-in functions such as max. If the number of arguments matches
the number of (parameters), the arguments replace #1, ..., #n in the (code), which is
then evaluated to produce a floating point result. Otherwise, the result is nan after an
error. The (parameter text) must not contain delimited arguments, that is, it must be
empty or one of #1, #1#2, #1#2#3, ... #1#2#3#4#5#6#7#8#9. The arguments replacing
parameters in the (code) are internal floating point numbers; operations such as #1°2
thus correctly take into account the sign of #1. For instance,

\fp_new_function:Npn \mypkg_sqrt:w #1 { #1~.5 }
\fp_new_function:Npn \mypkg_veclen:w #1#2

{ \mypkg_sqrt:w (#172 + #272) }
\fp_show:n { \mypkg_veclen:w (42 / 7 , 2 x4 -0) }

shows 10. In the example, \mypkg_veclen:w receives the arguments 6 = 42/7 and 8 =
2x4—0, thus expands to \mypkg_sqrt:w (672 + 872), then \mypkg_sqrt:w receives
100 = 62 + 82 as an argument, and evaluates the square root 10 = 100°°.

7 Additions to 13prop

\prop_map_tokens:Nn % \prop_map_tokens:Nn (property list) {(code)}

DX

icn x

Analogue of \prop_map_function:NN which maps several tokens instead of a single func-
tion. The (code) receives each key—value pair in the (property list) as two trailing brace
groups. For instance,

\prop_map_tokens:Nn \1_my_prop { \str_if_eq:nnT { mykey } }

will expand to the value corresponding to mykey: for each pair in \1_my_prop the function
\str_if_eq:nnT receives mykey, the (key) and the (value) as its three arguments. For
that specific task, \prop_get :Nn is faster.

\prop_get:Nn * \prop_get:Nn (property list) {(key)}
ien

Expands to the (value) corresponding to the (key) in the (property list). If the (key) is
missing, this has an empty expansion.

TEXhackers note: This function is slower than the non-expandable analogue \prop_-
get:NnN. The result is returned within the \unexpanded primitive (\exp_not:n), which means
that the (value) will not expand further when appearing in an x-type argument expansion.

199

\seq_item:Nn =%
icn ok

8 Additions to 13seq

\seq_item:Nn (sequence) {(integer expression)}

Indexing items in the (sequence) from 1 at the top (left), this function will evaluate
the (integer expression) and leave the appropriate item from the sequence in the input
stream. If the (integer expression) is negative, indexing occurs from the bottom (right)
of the sequence. When the (integer expression) is larger than the number of items in the
(sequence) (as calculated by \seq_count:N) then the function will expand to nothing.

TgXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (item) will not expand further when appearing in an x-type argument
expansion.

\seq_mapthread_function:NNN ¥ \seq_mapthread_function:NNN (seq:) (seqz) (function)

:(NcN|cNN|ccN)

Applies (function) to every pair of items (seq; -item)—(segz-item) from the two sequences,
returning items from both sequences from left to right. The (function) will receive two
n-type arguments for each iteration. The mapping will terminate when the end of ei-
ther sequence is reached (i.e. whichever sequence has fewer items determines how many
iterations occur).

\seq_set_from_clist:NN \seq_set_from_clist:NN (sequence) (comma-list)
:(cN|N¢|cc|Nn|cn)

\seq_gset_from_clist

:NN
: (cN|Nc|cc|Nn|cn)

\seq_reverse:N
\seq_greverse:N

\seq_set_filter:NNn
\seq_gset_filter:NNn

Sets the (sequence) within the current TEX group to be equal to the content of the
(comma-list).

\seq_reverse:N (sequence)

Reverses the order of items in the (sequence), and assigns the result to (sequence), locally
or globally according to the variant chosen.

\seq_set_filter:NNn (sequence;) (sequences) {(inline boolexpr)}

Evaluates the (inline boolexpr) for every (item) stored within the (sequences). The (inline
boolexpr) will receive the (item) as #1. The sequence of all (items) for which the (inline
boolexpr) evaluated to true is assigned to (sequence;).

TEXhackers note: Contrarily to other mapping functions, \seq_map_break: cannot be
used in this function, and will lead to low-level TEX errors.

200

\seq_set_map:NNn \seq_set_map:NNn (sequencei) (sequences) {(inline function)}

\seq_gset_map:Nin Applies (inline function) to every (item) stored within the (sequences). The (inline

New: 2011-12-22 fypetion) should consist of code which will receive the (item) as #1. The sequence result-
ing from x-expanding (inline function) applied to each (item) is assigned to (sequence;).
As such, the code in (inline function) should be expandable.

TEXhackers note: Contrarily to other mapping functions, \seq_map_break: cannot be
used in this function, and will lead to low-level TEX errors.

9 Additions to I13skip

\dim_to_pt:n x \dim_to_pt:n {(dimexpr)}

New: 2013-05-06 Evaluates the (dimension expression), and leaves the result, expressed in points (pt) in
the input stream, with no units. The result is rounded by TEX to four or five decimal
places. If the decimal part of the result is zero, it is omitted, together with the decimal
marker.

If the (dimension expression) contains additional tokens such as redundant units,
these will be ignored, so for example

\dim_to_pt:n { 1 bp pt }

leaves 1.00374 in the input stream, i.e. the magnitude of one “big point” when converted
to points.

\dim_to_unit:nn + \dim_to_unit:nn {(dimexpr;)} {(dimexprs)}

New: 2013-05-06 Eivaluates the (dimension expressions), and leaves the value of (dimexpr,), expressed in a
unit given by (dimezprs), in the input stream. The result is a decimal number, rounded
by TEX to four or five decimal places. If the decimal part of the result is zero, it is
omitted, together with the decimal marker.

If the (dimension expressions) contain additional tokens such as redundant units,
these will be ignored, so for example

\dim_to_unit:nn { 1 bp pt > { 1 mm }

leaves 0.35277 in the input stream, ¢.e. the magnitude of one “big point” when converted
to millimeters.

\skip_split_finite_else_action:nnNN \skip_split_finite_else_action:nnNN {(skipexpr)} {(action)}
(dimen;) (dimens)

Checks if the (skipezpr) contains finite glue. If it does then it assigns (dimen,) the stretch
component and (dimens) the shrink component. If it contains infinite glue set (dimen;)
and (dimeng) to Opt and place #2 into the input stream: this is usually an error or
warning message of some sort.

201

\tl_if_single_token_p:n *
\tl_if_single_token:nTF *

\tl_reverse_tokens:n x

\tl_count_tokens:n *

10 Additions to 13tl

\tl_if_single_token_p:n {(token list)}

\tl_if_single_token:nTF {(token list)} {(true code)} {(false code)}

Tests if the token list consists of exactly one token, i.e. is either a single space character
or a single “normal” token. Token groups ({...}) are not single tokens.

\tl_reverse_tokens:n {(tokens)}

This function, which works directly on TEX tokens, reverses the order of the (tokens):
the first will be the last and the last will become first. Spaces are preserved. The reversal
also operates within brace groups, but the braces themselves are not exchanged, as this
would lead to an unbalanced token list. For instance, \t1_reverse_tokens:n {a~{b()}}
leaves {) (b}~a in the input stream. This function requires two steps of expansion.

TgXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the token list will not expand further when appearing in an x-type argument
expansion.

\tl_count_tokens:n {(tokens)}

Counts the number of TEX tokens in the (tokens) and leaves this information in the input
stream. Every token, including spaces and braces, contributes one to the total; thus for
instance, the token count of a~{bc} is 6. This function requires three expansions, giving
an (integer denotation).

\t1_expandable_uppercase:n * \tl_expandable_uppercase:n {(tokens)}
\t1l_expandable_lowercase:n * \tl_expandable_lowercase:n {(tokens)}

The \t1_expandable_uppercase:n function works through all of the (tokens), replacing
characters in the range a—z (with arbitrary category code) by the corresponding letter in
the range A-Z, with category code 11 (letter). Similarly, \t1_expandable_lowercase:n
replaces characters in the range A-Z by letters in the range a—z, and leaves other tokens
unchanged. This function requires two steps of expansion.

TEXhackers note: Begin-group and end-group characters are normalized and become
{ and }, respectively. The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the token list will not expand further when appearing in an x-type argument
expansion.

202

\tl_item:nn *
:(Nn|cn) *

\char_set_active:Npn
:Npx

\char_gset_active:Npn
:Npx

\char_set_active_eq:NN

\char_gset_active_eq:NN

\tl_item:nn {(token list)} {(integer expression)}

Indexing items in the (token list) from 1 on the left, this function will evaluate the (integer
expression) and leave the appropriate item from the (token list) in the input stream. If
the (integer expression) is negative, indexing occurs from the right of the token list,
starting at —1 for the right-most item. If the index is out of bounds, then thr function
expands to nothing.

TgXhackers note: The result is returned within the \unexpanded primitive (\exp_not:n),
which means that the (item) will not expand further when appearing in an x-type argument
expansion.

11 Additions to 13tokens

\char_set_active:Npn (char) (parameters) {(code)}

Makes (char) an active character to expand to (code) as replacement text. Within the
(code), the (parameters) (#1, #2, etc.) will be replaced by those absorbed. The (char) is
made active within the current TEX group level, and the definition is also local.

\char_gset_active:Npn (char) (parameters) {(code)}

Makes (char) an active character to expand to (code) as replacement text. Within the
(code), the (parameters) (#1, #2, etc.) will be replaced by those absorbed. The (char) is
made active within the current TEX group level, but the definition is global. This function
is therefore suited to cases where an active character definition should be applied only in
some context (where the (char) is again made active).

\char_set_active_eq:NN (char) (function)

Makes (char) an active character equivalent in meaning to the (function) (which may
itself be an active character). The (char) is made active within the current TEX group
level, and the definition is also local.

\char_gset_active_eq:NN (char) (function)

Makes (char) an active character equivalent in meaning to the (function) (which may
itself be an active character). The (char) is made active within the current TEX group
level, but the definition is global. This function is therefore suited to cases where an
active character definition should be applied only in some context (where the (char) is
again made active).

203

\peek_N_type:TF \peek_N_type:TF {(true code)} {(false code)}

Updated: 2012-12-20

Tests if the next (token) in the input stream can be safely grabbed as an N-type argument.
The test will be (false) if the next (token) is either an explicit or implicit begin-group
or end-group token (with any character code), or an explicit or implicit space character
(with character code 32 and category code 10), or an outer token (never used in IXTEX3)
and (true) in all other cases. Note that a (true) result ensures that the next (token) is a
valid N-type argument. However, if the next (token) is for instance \c_space_token, the
test will take the (false) branch, even though the next (token) is in fact a valid N-type
argument. The (token) will be left in the input stream after the (true code) or (false
code) (as appropriate to the result of the test).

204

__driver_box_use_clip:N

New: 2011-11-11

Part XXIV
The 13drivers package
Drivers

TEX relies on drivers in order to carry out a number of tasks, such as using color, including
graphics and setting up hyper-links. The nature of the code required depends on the exact
driver in use. Currently, I#TEX3 is aware of the following drivers:

e pdfmode: The “driver” for direct PDF output by both pdfTEX and LuaTgX (no
separate driver is used in this case: the engine deals with PDF creation itself).

e dvips: The dvips program, which works in conjugation with pdfTEX or LualgX
in DVI mode.

e dvipdfmx: The dvipdfmx program, which works in conjugation with pdfTEX or
LuaTgX in DVI mode.

e xdvipdfmx: The driver used by XHIEX.

The code here is all very low-level, and should not in general be used outside of the
kernel. It is also important to note that many of the functions here are closely tied to

the immediate level “up”: several variable values must be in the correct locations for the
driver code to function.

1 Box clipping

__driver_box_use_clip:N (box)

Inserts the content of the (boz) at the current insertion point such that any material

outside of the bounding box will not be displayed by the driver. The material in the

(boz) is still placed in the output stream: the clipping takes place at a driver level.
This function should only be used within a surrounding horizontal box construct.

205

2 Box rotation and scaling

__driver_box_rotate_begin: __driver_box_rotate_begin:
__driver_box_rotate_end: \box_use:N \1__box_internal_box

__driver_box_rotate_end:

New: 2011-09-01
Updated: 2013-12-27

__driver_box_scale_begin:
__driver_box_scale_end:

New: 2011-09-02
Updated: 2013-12-27

Rotates the (box material) anti-clockwise around the current insertion point. The angle
of rotation (in degrees counter-clockwise) and the sine and cosine of this angle should
be stored in \1__box_angle_fp, \1__box_sin_fp and \1__box_cos_fp, respectively.
Typically, the box material inserted between the beginning and end markers will be
stored in \1__box_internal_box: this fact is required by some drivers to obtain the
correct output.

__driver_box_scale_begin:
(box material)
__driver_box_scale_end:

Scales the (box material) (which should be either a \box_use:N or \hbox:n construct).
The (box material) is scaled by the values stored in \1__box_scale_x_fp and \1__-
box_scale_y_£fp in the horizontal and vertical directions, respectively. This function is
also reused when resizing boxes: at a driver level, only scalings are supported and so the
higher-level code must convert the absolute sizes to scale factors.

3 Color support

__driver_color_ensure_current: __driver_color_ensure_current:

New: 2011-09-03
Updated: 2012-05-18

Ensures that the color used to typeset material is that which was set when the material
was placed in a box. This function is therefore required inside any “color safe” box to
ensure that the box may be inserted in a location where the foreground color has been
altered, while preserving the color used in the box.

Part XXV
Implementation
1 [I3bootstrap implementation

1 (¥initex | package)
> (@@=expl)

206

\expl_pdfstrcmp

1.1 Format-specific code

The very first thing to do is to bootstrap the iniTEX system so that everything else will
actually work. TEX does not start with some pretty basic character codes set up.

s (¥initex)

+ \catcode ‘\{ = 1 \relax

s \catcode ‘\} = 2 \relax

6 \catcode ‘\# = 6 \relax

7 \catcode ‘\~ = 7 \relax

¢ (/initex)

Tab characters should not show up in the code, but to be on the safe side.

o (*initex)

10 \catcode ‘\""I = 10 \relax

1 (/initex)

For LuaTgX, the extra primitives need to be enabled. This is not needed in package
mode: plain TEX and ConTgEXt have the primitives enabled while ITEX 2¢ has them
with the prefix luatex (which is handled in [3names).

12 (¥initex)
13 \begingroup\expandafter\expandafter\expandafter\endgroup
12 \expandafter\ifx\csname directlua\endcsname\relax
15 \directlua{tex.enableprimitives (’’, tex.extraprimitives ())}
16 \fi
7 (/initex)

~

1.2 The \pdfstrcmp primitive with X4TEX and LuaTgX

Only pdfTEX has a primitive called \pdfstrcmp. The X#TEX version is just \strcmp, so
there is some shuffling to do. As this is still a real primitive, using the pdfTEX name is
“safe”.

12 \begingroup\expandafter\expandafter\expandafter\endgroup

10 \expandafter\ifx\csname pdfstrcmp\endcsname\relax

20 \let\pdfstrcmp\strcmp
o \fi

If LuaTgX is in use then no primitive \ (pdf)strcmp is available. However, it can be
emulated using some Lua code. Since this is not the primitive, we do not use a misleading
name: instead, a temporary version is set up as \expl_pdfstrcmp. The latter is then
picked up and moved to the correct place by I3names. In earlier versions of the code,
the pdftexcmds package was loaded to do this task. However, that raises some issues in
“generic” (it fails with ConTEXt MkIV), and also adds a hardly-needed dependency.
Note that LuaTgX prior to version 0.36 is not supported by expl3: here that means
simply skipping the definition, which will then be picked up later. This definition may
need to be done twice: one “now” and once at the start of every job. The latter can occur
in package mode if for example a custom format is being constructed. To achieve this
while not requiring a separate file, the Lua code is saved into a macro then used twice.

22 \begingroup

207

23 \expandafter\ifx\csname directlua\endcsname\relax

2 \else

2% \ifnum\luatexversion<36 Y

2 \else

27 \catcode‘_=11 %

28 \catcode‘\:=11 %

29 \def\tempa

30 {70

31 13kernel = 13kernel or { }

32 function 13kernel.strcmp (A, B)
33 if A == B then

34 tex.write ("0")

35 elseif A < B then

36 tex.write ("-1")

37 else
38 tex.write ("1")
39 end
40 end
41 }
4 \directlua{\tempa}
A test for LuaTEX in IniTEX mode.
43 \ifnum 0%
a4 \directlua
a5 4
46 if status.ini_version then
a7 tex.write("1")
48 end
49 >0 %
50 \global\everyjob\expandafter
51 {%

52 \the\expandafter\everyjob
53 \expandafter\luatex_directlua:D\expandafter{\tempaly,
54 }

55 \fi

56 \long\gdef\expl_pdfstrcmp#1#2},

57 {h

58 \luatex_directlua:D

59 {h

60 13kernel.strcmp

61 (

62 "\luatex_luaescapestring:D {#1}" ,
63 "\luatex_luaescapestring:D {#2}"
64)

65 Y

66 }

67 \fi

68 \fi
e \endgroup
(End definition for \expl_pdfstrcmp. This function is documented on page ?7.)

208

1.3 Engine requirements

The code currently requires functionality equivalent to \pdfstrcmp in addition to e-TEX.
This is picked up by testing for the \pdfstrcmp primitive or emulation as \expl_-
pdfstrcmp, as the e-TEX primitives must be available if it is.

70 \begingroup

71 \def\next{\endgroup}

72 \def\ShortText{Required primitives not found}},

73 \def\LongText

74 %
75 LaTeX3 requires the e-TeX primitives and \string\pdfstrcmp.\LineBreak
76 \LineBreak

7 These are available in engine versions:\LineBreak
78 - pdfTeX 1.30\LineBreak

79 - XeTeX 0.9994\LineBreak

80 - LuaTeX 0.40\LineBreak

81 or later.\LineBreak

82 \LineBreak

83 YA

e \expandafter\ifx\csname pdfstrcmp\endcsname\relax
8 \catcode‘_=11 %

86 \expandafter\ifx\csname expl_pdfstrcmp\endcsname\relax
87 (*initex)

88 \def\LineBreak{~"J})

89 \edef\next

90 {%

o1 \newlinechar ‘\noexpand\~"J\relax

92 \errhelp

03 {%

94 \LongText

95 For pdfTeX and XeTeX the ’-etex’ command-line switch is also
96 needed. \LineBreak

o7 \LineBreak

98 Format building will abort!\LineBreak
99 i

100 \errmessage{\ShortText}},

101 \endgroup

102 \noexpand\end

103 }%

104 (/initex)
105 (*package)

106 \def\LineBreak{\noexpand\MessageBreak}},

107 \expandafter\ifx\csname PackageError\endcsname\relax
108 \def\LineBreak{~"J}}

109 \begingroup

110 \def\PackageError#1#2#3},

111 {%

112 \endgroup

113 \errhelp{#3}},

114 \errmessage{#1 Error: #2!}

209

115 }%

116 \fi

117 \edef\next

118 %

119 \noexpand\PackageError{expl3}{\ShortText}
120 {\LongText Loading of expl3 will abort!}}
121 \endgroup

122 \noexpand\endinput

123 }%

122 (/package)

125 \fi

126 \fi

127 \next

1.4 Extending allocators

In format mode, allocating registers is handled by I3alloc. However, in package mode
it’s much safer to rely on more general code. For example, the ability to extend TEX’s
allocation routine to allow for e-TEX has been around since 1997 in the etex package.

Loading this support is delayed until here as we are now sure that the -TEX ex-
tensions and \pdfstrcmp or equivalent are available. Thus there is no danger of an
“uncontrolled” error if the engine requirements are not met.

For XTEX only, load etex as otherwise we are likely to get into trouble with registers.
Some inserts are reserved also as these have to be from the standard pool. Note that
\reserveinserts is \outer and so is accessed here by csname. In earlier versions,
loading etex was done directly and so \reserveinserts appeared in the code: this then
required a \relax after \RequirePackage to prevent an error with “unsafe” definitions
as seen for example with capoptions. The optional loading here is done using a group
and \ifx test as we are not quite in the position to have a single name for \pdfstrcmp
just yet.

s (*package)

120 \begingroup

130 \def\@tempa{LaTeX2e}
131 \def\next{}

1

]

132 \ifx\fmtname\@tempa

133 \def\next

134 {7

135 \RequirePackage{etex},

136 \csname reserveinserts\endcsname{32})
137 }

138 \fi

130 \expandafter\endgroup

120 \next

1 (/package)

If LuaTgX is in use there are more allocators to create. ConTgEXt already does
that, so skip any loading in that case: this is done using the \newattribute allocator.
Otherwise, there is a need for a test to differentiate between KTEX 2 and plain.

210

12 (*package)
143 \ifdefined\directlua
144 \ifdefined\newattribute

145 \else

146 \ifdefined\RequirePackage
147 \RequirePackage{luatex}
148 \else

149 \input luatex.sty 7

150 \fi

151 \fi

150 \fi

153 (/package)

1.5 The ETEX3 code environment

The code environment is now set up.

\ExplSyntax0ff Before changing any category codes, in package mode we need to save the situation before
loading. Note the set up here means that once applied \ExplSyntax0ff will be a “do
nothing” command until \ExplSyntax0On is used. For format mode, there is no need to
save category codes so that step is skipped.

152 \protected\def\ExplSyntax0ff{}
155 (*package)
156 \protected\edef \ExplSyntax0ff

157 {7

158 \protected\def\ExplSyntaxOff{}J

159 \catcode 9 = \the\catcode 9\relax
160 \catcode 32 = \the\catcode 32\relax
161 \catcode 34 = \the\catcode 34\relax
162 \catcode 38 = \the\catcode 38\relax
163 \catcode 58 = \the\catcode 58\relax
164 \catcode 94 = \the\catcode 94\relax
165 \catcode 95 = \the\catcode 95\relax
166 \catcode 124 = \the\catcode 124\relax
167 \catcode 126 = \the\catcode 126\relax
168 \endlinechar = \the\endlinechar\relax
169 \chardef\csname\detokenize{l__kernel_expl_bool}\endcsname = O\relax
170 }

171 {/package)

(End definition for \ExplSyntaxOff. This function is documented on page 6.)
The code environment is now set up.

172 \catcode 9 = 9\relax
173 \catcode 32 = 9\relax
174 \catcode 34 = 12\relax
175 \catcode 58 = 11\relax
176 \catcode 94 = T7\relax
177 \catcode 95 = 11\relax
178 \catcode 124 = 12\relax
179 \catcode 126 = 10\relax

211

180

\endlinechar = 32\relax

\1__kernel_expl_bool The status for experimental code syntax: this is on at present.

\ExplSyntaxOn

181

\chardef\1l__kernel_expl_bool = 1 ~

(End definition for \1__kernel_expl_bool. This variable is documented on page 7.)

The idea here is that multiple \ExplSyntax0On calls are not going to mess up category
codes, and that multiple calls to \ExplSyntax0ff are also not wasting time. Applying
\ExplSyntax0n will alter the definition of \ExplSyntax0ff and so in package mode this
function should not be used until after the end of the loading process!

182

189

190

191

192

193

194

196

197

198

\protected \def \ExplSyntaxOn

{
\bool_if:NF \1__kernel_expl_bool
{
\cs_set_protected_nopar:Npx \ExplSyntaxOff
{
\char_set_catcode:nn { 9 } { \char_value_catcode:n { 9 } }
\char_set_catcode:nn { 32 } { \char_value_catcode:n { 32 } }
\char_set_catcode:nn { 34 } { \char_value_catcode:n { 34 } }
\char_set_catcode:nn { 38 } { \char_value_catcode:n { 38 } }
\char_set_catcode:nn { 58 } { \char_value_catcode:n { 58 } }
\char_set_catcode:nn { 94 } { \char_value_catcode:n { 94 } }
\char_set_catcode:nn { 95 } { \char_value_catcode:n { 95 } }
\char_set_catcode:nn { 124 } { \char_value_catcode:n { 124 } }
\char_set_catcode:nn { 126 } { \char_value_catcode:n { 126 } }
\tex_endlinechar:D =
\tex_the:D \tex_endlinechar:D \scan_stop:
\bool_set_false:N \1__kernel_expl_bool
\cs_set_protected_nopar:Npn \ExplSyntaxO0ff { }
}
}
\char_set_catcode_ignore:n {92} ¥ tab
\char_set_catcode_ignore:n { 32 } 7 space
\char_set_catcode_other:n { 34 } 7 double quote
\char_set_catcode_alignment:n { 38 } J ampersand
\char_set_catcode_letter:n {58} ¥% colon
\char_set_catcode_math_superscript:n { 94 } ¥ circumflex
\char_set_catcode_letter:n { 95 } ¥ underscore
\char_set_catcode_other:n { 124 } % pipe
\char_set_catcode_space:n { 126 } % tilde
\tex_endlinechar:D = 32 \scan_stop:
\bool_set_true:N \1__kernel_expl_bool
}

(End definition for \ExplSyntaxOn. This function is documented on page 6.)

(/initex | package)

212

\tex_undefined:D

2 I13names implementation

216 (¥initex | package)

No prefix substitution here.
217 <@©:>
The code here simply renames all of the primitives to new, internal, names. In format
mode, it also deletes all of the existing names (although some do come back later).
This function does not exist at all, but is the name used by the plain TEX format for an

undefined function. So it should be marked here as “taken”.
(End definition for \tex_undefined:D. This function is documented on page 77.)

The \let primitive is renamed by hand first as it is essential for the entire process
to follow. This also uses \global, as that way we avoid leaving an unneeded csname in
the hash table.

215 \let \tex_global:D \global
210 \let \tex_let:D \let

Everything is inside a (rather long) group, which keeps __kernel_primitive:NN
trapped.

220 \begingroup

A temporary function to actually do the renaming. This also allows the original names
to be removed in format mode.

21 \long \def __kernel_primitive:NN #1#2

222 {

223 \tex_global:D \tex_let:D #2 #1

224 (*initex)

225 \tex_global:D \tex_let:D #1 \tex_undefined:D

226 (/initex)

227 }
(End definition for __kernel_primitive:NN.)

In the current incarnation of this package, all TEX primitives are given a new name
of the form \tex_oldname:D. But first three special cases which have symbolic original
names. These are given modified new names, so that they may be entered without
catcode tricks.

25 __kernel_primitive:NN \ \tex_space:D

29 __kernel_primitive:NN \/ \tex_italiccorrection:D

230 __kernel_primitive:NN \- \tex_hyphen:D
Now all the other primitives.

231 __kernel_primitive:NN \let \tex_let:D

232 __kernel_primitive:NN \def \tex_def:D

233 __kernel_primitive:NN \edef \tex_edef:D

23 __kernel_primitive:NN \gdef \tex_gdef:D

235 __kernel_primitive:NN \xdef \tex_xdef:D

236 __kernel_primitive:NN \chardef \tex_chardef:D

237 __kernel_primitive:NN \countdef \tex_countdef:D

238 __kernel_primitive:NN \dimendef \tex_dimendef :D

239 __kernel_primitive:NN \skipdef \tex_skipdef:D

213

240

__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel _primitive:
__kernel_primitive:
__kernel_primitive:
__kernel _primitive:
__kernel_primitive:
__kernel_primitive:
__kernel _primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel _primitive:
__kernel_primitive:
__kernel_primitive:
__kernel _primitive:
__kernel_primitive:
__kernel_primitive:
__kernel _primitive:
__kernel_primitive:
__kernel_primitive:
__kernel _primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:

NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN

\muskipdef
\mathchardef
\toksdef
\futurelet
\advance
\divide
\multiply
\font

\fam
\global
\long
\outer
\setlanguage
\globaldefs
\afterassignment
\aftergroup
\expandafter
\noexpand
\begingroup
\endgroup
\halign
\valign

\cr

\crcr
\noalign
\omit

\span
\tabskip
\everycr
\if

\ifcase
\ifcat
\ifnum
\ifodd
\ifdim
\ifeof
\ifhbox
\ifvbox
\ifvoid
\ifx
\iffalse
\iftrue
\ifhmode
\ifmmode
\ifvmode
\ifinner
\else

\fi

\or
\immediate

214

\tex_muskipdef :D
\tex_mathchardef :D
\tex_toksdef:D
\tex_futurelet:D
\tex_advance:D
\tex_divide:D
\tex_multiply:D
\tex_font:D
\tex_fam:D
\tex_global:D
\tex_long:D
\tex_outer:D
\tex_setlanguage:D
\tex_globaldefs:D

\tex_afterassignment:D

\tex_aftergroup:D
\tex_expandafter:D
\tex_noexpand:D
\tex_begingroup:D
\tex_endgroup:D
\tex_halign:D
\tex_valign:D
\tex_cr:D
\tex_crcr:D
\tex_noalign:D
\tex_omit:D
\tex_span:D
\tex_tabskip:D
\tex_everycr:D
\tex_if:D
\tex_ifcase:D
\tex_ifcat:D
\tex_ifnum:D
\tex_ifodd:D
\tex_ifdim:D
\tex_ifeof:D
\tex_ifhbox:D
\tex_ifvbox:D
\tex_ifvoid:D
\tex_ifx:D
\tex_iffalse:D
\tex_iftrue:D
\tex_ifhmode:
\tex_ifmmode:
\tex_ifvmode:
\tex_ifinner:
\tex_else:D
\tex_fi:D
\tex_or:D
\tex_immediate:D

O o uUo

__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel _primitive:
__kernel_primitive:
__kernel_primitive:
__kernel _primitive:
__kernel_primitive:
__kernel_primitive:
__kernel _primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel _primitive:
__kernel_primitive:
__kernel_primitive:
__kernel _primitive:
__kernel_primitive:
__kernel_primitive:
__kernel _primitive:
__kernel_primitive:
__kernel_primitive:
__kernel _primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:

NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN

\closeout
\openin

\openout

\read

\write

\closein
\newlinechar
\input

\endinput
\inputlineno
\errmessage
\message

\show

\showthe
\showbox
\showlists
\errhelp
\errorcontextlines
\tracingcommands
\tracinglostchars
\tracingmacros
\tracingonline
\tracingoutput
\tracingpages
\tracingparagraphs
\tracingrestores
\tracingstats
\pausing
\showboxbreadth
\showboxdepth
\batchmode
\errorstopmode
\nonstopmode
\scrollmode

\end

\csname
\endcsname
\ignorespaces
\relax

\the

\mag

\language

\mark

\topmark
\firstmark
\botmark
\splitfirstmark
\splitbotmark
\fontname
\escapechar

215

\tex_closeout:D
\tex_openin:D
\tex_openout:D
\tex_read:D
\tex_write:D
\tex_closein:D
\tex_newlinechar:D
\tex_input:D
\tex_endinput:D
\tex_inputlineno:D
\tex_errmessage:D
\tex_message:D
\tex_show:D
\tex_showthe:D
\tex_showbox:D
\tex_showlists:D
\tex_errhelp:D
\tex_errorcontextlines:D
\tex_tracingcommands:D
\tex_tracinglostchars:D
\tex_tracingmacros:D
\tex_tracingonline:D
\tex_tracingoutput:D
\tex_tracingpages:D
\tex_tracingparagraphs:D
\tex_tracingrestores:D
\tex_tracingstats:D
\tex_pausing:D
\tex_showboxbreadth:D
\tex_showboxdepth:D
\tex_batchmode:D
\tex_errorstopmode:D
\tex_nonstopmode:D
\tex_scrollmode:D
\tex_end:D
\tex_csname:D
\tex_endcsname:D
\tex_ignorespaces:D
\tex_relax:D
\tex_the:D

\tex_mag:D
\tex_language:D
\tex_mark:D
\tex_topmark:D
\tex_firstmark:D
\tex_botmark:D
\tex_splitfirstmark:D
\tex_splitbotmark:D
\tex_fontname:D
\tex_escapechar:D

__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel _primitive:
__kernel_primitive:
__kernel_primitive:
__kernel _primitive:
__kernel_primitive:
__kernel_primitive:
__kernel _primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel _primitive:
__kernel_primitive:
__kernel_primitive:
__kernel _primitive:
__kernel_primitive:
__kernel_primitive:
__kernel _primitive:
__kernel_primitive:
__kernel_primitive:
__kernel _primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:

NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN

\endlinechar
\mathchoice
\delimiter
\mathaccent
\mathchar

\mskip

\radical

\vcenter

\mkern

\above
\abovewithdelims
\atop
\atopwithdelims
\over
\overwithdelims
\displaystyle
\textstyle
\scriptstyle
\scriptscriptstyle
\nonscript

\egno

\legno
\abovedisplayshortskip
\abovedisplayskip
\belowdisplayshortskip
\belowdisplayskip
\displaywidowpenalty
\displayindent
\displaywidth
\everydisplay
\predisplaysize
\predisplaypenalty
\postdisplaypenalty
\mathbin
\mathclose
\mathinner

\mathop
\displaylimits
\limits

\nolimits
\mathopen

\mathord
\mathpunct
\mathrel

\overline
\underline

\left

\right
\binoppenalty
\relpenalty

216

\tex_endlinechar:D
\tex_mathchoice:D
\tex_delimiter:D
\tex_mathaccent:D
\tex_mathchar:D
\tex_mskip:D
\tex_radical:D
\tex_vcenter:D
\tex_mkern:D
\tex_above:D
\tex_abovewithdelims:D
\tex_atop:D
\tex_atopwithdelims:D
\tex_over:D
\tex_overwithdelims:D
\tex_displaystyle:D
\tex_textstyle:D
\tex_scriptstyle:D
\tex_scriptscriptstyle:D
\tex_nonscript:D
\tex_eqno:D
\tex_leqno:D

\tex_abovedisplayshortskip:D

\tex_abovedisplayskip:D

\tex_belowdisplayshortskip:D

\tex_belowdisplayskip:D
\tex_displaywidowpenalty:D
\tex_displayindent:D
\tex_displaywidth:D
\tex_everydisplay:D
\tex_predisplaysize:D
\tex_predisplaypenalty:D
\tex_postdisplaypenalty:D
\tex_mathbin:D
\tex_mathclose:D
\tex_mathinner:D
\tex_mathop:D
\tex_displaylimits:D
\tex_limits:D
\tex_nolimits:D
\tex_mathopen:D
\tex_mathord:D
\tex_mathpunct:D
\tex_mathrel:D
\tex_overline:D
\tex_underline:D
\tex_left:D

\tex_right:D
\tex_binoppenalty:D
\tex_relpenalty:D

390

391

392

394

395

396

397

398

400

401

__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel _primitive:
__kernel_primitive:
__kernel_primitive:
__kernel _primitive:
__kernel_primitive:
__kernel_primitive:
__kernel _primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel _primitive:
__kernel_primitive:
__kernel_primitive:
__kernel _primitive:
__kernel_primitive:
__kernel_primitive:
__kernel _primitive:
__kernel_primitive:
__kernel_primitive:
__kernel _primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:

NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN

\delimitershortfall
\delimiterfactor
\nulldelimiterspace
\everymath
\mathsurround
\medmuskip
\thinmuskip
\thickmuskip
\scriptspace
\noboundary
\accent

\char
\discretionary
\hfil

\hfilneg

\hfill

\hskip

\hss

\vfil

\vfilneg

\vfill

\vskip

\vss

\unskip

\kern

\unkern

\hrule

\vrule

\leaders
\cleaders
\xleaders
\lastkern
\lastskip
\indent

\par

\noindent
\vadjust
\baselineskip
\lineskip
\lineskiplimit
\clubpenalty
\widowpenalty
\exhyphenpenalty
\hyphenpenalty
\linepenalty
\doublehyphendemerits
\finalhyphendemerits
\adjdemerits
\hangafter
\hangindent

217

\tex_delimitershortfall:D

\tex_delimiterfactor:D

\tex_nulldelimiterspace:D

\tex_everymath:D
\tex_mathsurround:D
\tex_medmuskip:D
\tex_thinmuskip:D
\tex_thickmuskip:D
\tex_scriptspace:D
\tex_noboundary:D
\tex_accent:D
\tex_char:D
\tex_discretionary:D
\tex_hfil:D
\tex_hfilneg:D
\tex_hfill:D
\tex_hskip:D
\tex_hss:D
\tex_vfil:D
\tex_vfilneg:D
\tex_vfill:D
\tex_vskip:D
\tex_vss:D
\tex_unskip:D
\tex_kern:D
\tex_unkern:D
\tex_hrule:D
\tex_vrule:D
\tex_leaders:D
\tex_cleaders:D
\tex_xleaders:D
\tex_lastkern:D
\tex_lastskip:D
\tex_indent:D
\tex_par:D
\tex_noindent:D
\tex_vadjust:D
\tex_baselineskip:D
\tex_lineskip:D
\tex_lineskiplimit:D
\tex_clubpenalty:D
\tex_widowpenalty:D
\tex_exhyphenpenalty:D
\tex_hyphenpenalty:D
\tex_linepenalty:D

\tex_doublehyphendemerits:D
\tex_finalhyphendemerits:D

\tex_adjdemerits:D
\tex_hangafter:D
\tex_hangindent:D

__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel _primitive:
__kernel_primitive:
__kernel_primitive:
__kernel _primitive:
__kernel_primitive:
__kernel_primitive:
__kernel _primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel _primitive:
__kernel_primitive:
__kernel_primitive:
__kernel _primitive:
__kernel_primitive:
__kernel_primitive:
__kernel _primitive:
__kernel_primitive:
__kernel_primitive:
__kernel _primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:

NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN

\parshape

\hsize
\lefthyphenmin
\righthyphenmin
\leftskip
\rightskip
\looseness
\parskip
\parindent
\uchyph
\emergencystretch
\pretolerance
\tolerance
\spaceskip
\xspaceskip
\parfillskip
\everypar
\prevgraf
\spacefactor
\shipout

\vsize
\interlinepenalty
\brokenpenalty
\topskip
\maxdeadcycles
\maxdepth
\output
\deadcycles
\pagedepth
\pagestretch
\pagefilstretch
\pagefillstretch
\pagefilllstretch
\pageshrink
\pagegoal
\pagetotal
\outputpenalty
\hoffset
\voffset

\insert
\holdinginserts
\floatingpenalty
\insertpenalties
\lower

\moveleft
\moveright
\raise

\copy

\lastbox

\vsplit

218

\tex_parshape:D
\tex_hsize:D
\tex_lefthyphenmin:D
\tex_righthyphenmin:D
\tex_leftskip:D
\tex_rightskip:D
\tex_looseness:D
\tex_parskip:D
\tex_parindent:D
\tex_uchyph:D
\tex_emergencystretch:D
\tex_pretolerance:D
\tex_tolerance:D
\tex_spaceskip:D
\tex_xspaceskip:D
\tex_parfillskip:D
\tex_everypar:D
\tex_prevgraf:D
\tex_spacefactor:D
\tex_shipout:D
\tex_vsize:D
\tex_interlinepenalty:D
\tex_brokenpenalty:D
\tex_topskip:D
\tex_maxdeadcycles:D
\tex_maxdepth:D
\tex_output:D
\tex_deadcycles:D
\tex_pagedepth:D
\tex_pagestretch:D
\tex_pagefilstretch:D
\tex_pagefillstretch:D
\tex_pagefilllstretch:D
\tex_pageshrink:D
\tex_pagegoal:D
\tex_pagetotal:D
\tex_outputpenalty:D
\tex_hoffset:D
\tex_voffset:D
\tex_insert:D
\tex_holdinginserts:D
\tex_floatingpenalty:D
\tex_insertpenalties:D
\tex_lower:D
\tex_moveleft:D
\tex_moveright:D
\tex_raise:D
\tex_copy:D
\tex_lastbox:D
\tex_vsplit:D

490

491

492

493

494

495

496

497

498

499

500

501

539

__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel _primitive:
__kernel_primitive:
__kernel_primitive:
__kernel _primitive:
__kernel_primitive:
__kernel_primitive:
__kernel _primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel _primitive:
__kernel_primitive:
__kernel_primitive:
__kernel _primitive:
__kernel_primitive:
__kernel_primitive:
__kernel _primitive:
__kernel_primitive:
__kernel_primitive:
__kernel _primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:
__kernel_primitive:

NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN

\unhbox
\unhcopy
\unvbox
\unvcopy
\setbox

\hbox

\vbox

\vtop
\prevdepth
\badness
\hbadness
\vbadness
\hfuzz

\vfuzz
\overfullrule
\boxmaxdepth
\splitmaxdepth
\splittopskip
\everyhbox
\everyvbox
\nullfont
\textfont
\scriptfont
\scriptscriptfont
\fontdimen
\hyphenchar
\skewchar
\defaulthyphenchar
\defaultskewchar
\number
\romannumeral
\string
\lowercase
\uppercase
\meaning
\penalty
\unpenalty
\lastpenalty
\special
\dump
\patterns
\hyphenation
\time

\day

\month

\year
\jobname
\everyjob
\count

\dimen

219

\tex_unhbox:D
\tex_unhcopy:D
\tex_unvbox:D
\tex_unvcopy:D
\tex_setbox:D
\tex_hbox:D
\tex_vbox:D
\tex_vtop:D
\tex_prevdepth:D
\tex_badness:D
\tex_hbadness:D
\tex_vbadness:D
\tex_hfuzz:D
\tex_vfuzz:D
\tex_overfullrule:D
\tex_boxmaxdepth:D
\tex_splitmaxdepth:D
\tex_splittopskip:D
\tex_everyhbox:D
\tex_everyvbox:D
\tex_nullfont:D
\tex_textfont:D
\tex_scriptfont:D
\tex_scriptscriptfont:D
\tex_fontdimen:D
\tex_hyphenchar:D
\tex_skewchar:D
\tex_defaulthyphenchar:D
\tex_defaultskewchar:D
\tex_number:D
\tex_romannumeral :D
\tex_string:D
\tex_lowercase:D
\tex_uppercase:D
\tex_meaning:D
\tex_penalty:D
\tex_unpenalty:D
\tex_lastpenalty:D
\tex_special:D
\tex_dump:D
\tex_patterns:D
\tex_hyphenation:D
\tex_time:D
\tex_day:D
\tex_month:D
\tex_year:D
\tex_jobname:D
\tex_everyjob:D
\tex_count:D
\tex_dimen:D

540 __kernel_primitive:NN \skip \tex_skip:D

ss1 __kernel_primitive:NN \toks \tex_toks:D

si2 __kernel_primitive:NN \muskip \tex_muskip:D
543 __kernel_primitive:NN \box \tex_box:D

see __kernel_primitive:NN \wd \tex_wd:D

545 __kernel_primitive:NN \ht \tex_ht:D

546 __kernel_primitive:NN \dp \tex_dp:D

ss7 __kernel_primitive:NN \catcode \tex_catcode:D
548 __kernel_primitive:NN \delcode \tex_delcode:D
549 __kernel_primitive:NN \sfcode \tex_sfcode:D
sso __kernel_primitive:NN \lccode \tex_lccode:D
551 __kernel_primitive:NN \uccode \tex_uccode:D
552 __kernel_primitive:NN \mathcode \tex_mathcode:D

Since IXTEX3 requires at least the e-TEX extensions, we also rename the additional prim-

itives. These are all given the prefix \etex_.
553 __kernel_primitive:NN \ifdefined \etex_ifdefined:D
sss __kernel_primitive:NN \ifcsname \etex_ifcsname:D
555 __kernel _primitive:NN \unless \etex_unless:D
556 __kernel_primitive:NN \eTeXversion \etex_eTeXversion:D
ss7 __kernel_primitive:NN \eTeXrevision \etex_eTeXrevision:D
555 __kernel _primitive:NN \marks \etex_marks:D
550 __kernel_primitive:NN \topmarks \etex_topmarks:D
se0 __kernel_primitive:NN \firstmarks \etex_firstmarks:D
sei __kernel _primitive:NN \botmarks \etex_botmarks:D
562 __kernel_primitive:NN \splitfirstmarks \etex_splitfirstmarks:D
s63 __kernel_primitive:NN \splitbotmarks \etex_splitbotmarks:D
ses __kernel _primitive:NN \unexpanded \etex_unexpanded:D
565 __kernel_primitive:NN \detokenize \etex_detokenize:D
se6 __kernel_primitive:NN \scantokens \etex_scantokens:D
s7 __kernel_primitive:NN \showtokens \etex_showtokens:D
568 __kernel_primitive:NN \readline \etex_readline:D

seo __kernel_primitive:NN \tracingassigns \etex_tracingassigns:D

s7o __kernel _primitive:NN \tracingscantokens \etex_tracingscantokens:D
s71 __kernel_primitive:NN \tracingnesting \etex_tracingnesting:D

s> __kernel_primitive:NN \tracingifs \etex_tracingifs:D

53 __kernel _primitive:NN \currentiflevel \etex_currentiflevel:D

s7a __kernel_primitive:NN \currentifbranch \etex_currentifbranch:D
575 __kernel_primitive:NN \currentiftype \etex_currentiftype:D

s7e __kernel_primitive:NN \tracinggroups \etex_tracinggroups:D

577 __kernel_primitive:NN \currentgrouplevel \etex_currentgrouplevel:D
s75 __kernel_primitive:NN \currentgrouptype \etex_currentgrouptype:D
579 __kernel_primitive:NN \showgroups \etex_showgroups:D

580 __kernel_primitive:NN \showifs \etex_showifs:D

ssi __kernel_primitive:NN \interactionmode \etex_interactionmode:D
s> __kernel _primitive:NN \lastnodetype \etex_lastnodetype:D

583 __kernel_primitive:NN \iffontchar \etex_iffontchar:D

ses __kernel_primitive:NN \fontcharht \etex_fontcharht:D

ses __kernel_primitive:NN \fontchardp \etex_fontchardp:D

586 __kernel_primitive:NN \fontcharwd \etex_fontcharwd:D

220

587 __kernel_primitive:NN \fontcharic \etex_fontcharic:D

ses __kernel_primitive:NN \parshapeindent \etex_parshapeindent:D
ss90 __kernel_primitive:NN \parshapelength \etex_parshapelength:D
s00 __kernel_primitive:NN \parshapedimen \etex_parshapedimen:D
so0 __kernel_primitive:NN \numexpr \etex_numexpr:D

592 __kernel_primitive:NN \dimexpr \etex_dimexpr:D

503 __kernel_primitive:NN \glueexpr \etex_glueexpr:D

soo __kernel_primitive:NN \muexpr \etex_muexpr:D

595 __kernel_primitive:NN \gluestretch \etex_gluestretch:D

596 __kernel_primitive:NN \glueshrink \etex_glueshrink:D

so7 __kernel_primitive:NN \gluestretchorder \etex_gluestretchorder:D
598 __kernel_primitive:NN \glueshrinkorder \etex_glueshrinkorder:D

599 __kernel_primitive:NN \gluetomu \etex_gluetomu:D

60 __kernel_primitive:NN \mutoglue \etex_mutoglue:D

601 __kernel_primitive:NN \lastlinefit \etex_lastlinefit:D

602 __kernel_primitive:NN \interlinepenalties \etex_interlinepenalties:D
603 __kernel_primitive:NN \clubpenalties \etex_clubpenalties:D

604 __kernel _primitive:NN \widowpenalties \etex_widowpenalties:D

605 __kernel_primitive:NN \displaywidowpenalties \etex_displaywidowpenalties:D
o5 __kernel primitive:NN \middle \etex_middle:D

607 __kernel_primitive:NN \savinghyphcodes \etex_savinghyphcodes:D

608 __kernel_primitive:NN \savingvdiscards \etex_savingvdiscards:D

6o __kernel_primitive:NN \pagediscards \etex_pagediscards:D

610 __kernel_primitive:NN \splitdiscards \etex_splitdiscards:D

611 __kernel_primitive:NN \TeXXeTstate \etex_TeXXeTstate:D

o2 __kernel_primitive:NN \beginL \etex_beginL:D

613 __kernel_primitive:NN \endL \etex_endL:D

614 __kernel_primitive:NN \beginR \etex_beginR:D

615 __kernel_primitive:NN \endR \etex_endR:D

616 __kernel_primitive:NN \predisplaydirection \etex_predisplaydirection:D
617 __kernel_primitive:NN \everyeof \etex_everyeof :D

615 __kernel_primitive:NN \protected \etex_protected:D

The newer primitives are more complex: there are an awful lot of them, and we don’t use
them all at the moment. So the following is selective. In the case of the pdfTEX primitives,
we retain pdf at the start of the names only for directly PDF-related primitives, as there
are a lot of pdfTEX primitives that start \pdf... but are not related to PDF output.
These ones related to PDF output.

619 __kernel_primitive:NN \pdfcreationdate \pdftex_pdfcreationdate:D
e0 __kernel_primitive:NN \pdfcolorstack \pdftex_pdfcolorstack:D

621 __kernel _primitive:NN \pdfcompresslevel \pdftex_pdfcompresslevel:D
62 __kernel_primitive:NN \pdfdecimaldigits \pdftex_pdfdecimaldigits:D
o3 __kernel_primitive:NN \pdfhorigin \pdftex_pdfhorigin:D

624 __kernel_primitive:NN \pdfinfo \pdftex_pdfinfo:D

o5 __kernel_primitive:NN \pdflastxform \pdftex_pdflastxform:D

o6 __kernel_primitive:NN \pdfliteral \pdftex_pdfliteral:D

o7 __kernel_primitive:NN \pdfminorversion \pdftex_pdfminorversion:D
628 __kernel_primitive:NN \pdfobjcompresslevel \pdftex_pdfobjcompresslevel:D
o0 __kernel_primitive:NN \pdfoutput \pdftex_pdfoutput:D

630 __kernel_primitive:NN \pdfrefxform \pdftex_pdfrefxform:D

221

631 __kernel_primitive:NN \pdfrestore \pdftex_pdfrestore:D

62 __kernel_primitive:NN \pdfsave \pdftex_pdfsave:D
633 __kernel _primitive:NN \pdfsetmatrix \pdftex_pdfsetmatrix:D
63« __kernel_primitive:NN \pdfpkresolution \pdftex_pdfpkresolution:D
635 __kernel_primitive:NN \pdftexrevision \pdftex_pdftextrevision:D
636 __kernel _primitive:NN \pdfvorigin \pdftex_pdfvorigin:D
637 __kernel_primitive:NN \pdfxform \pdftex_pdfxform:D
While these are not.
633 __kernel_primitive:NN \pdfstrcmp \pdftex_strcmp:D

XATEX-specific primitives. Note that XqTEX’s \strcmp is handled earlier and is “rolled
up” into \pdfstrcmp.

639 __kernel primitive:NN \XeTeXversion \xetex_XeTeXversion:D
Primitives from LuaTgX.

640 __kernel_primitive:NN \catcodetable \luatex_catcodetable:D

621 __kernel_primitive:NN \directlua \luatex_directlua:D

642 __kernel_primitive:NN \initcatcodetable \luatex_initcatcodetable:D

643 __kernel_primitive:NN \latelua \luatex_latelua:D

644 __kernel_primitive:NN \luaescapestring \luatex_luaescapestring:D

645 __kernel_primitive:NN \luatexversion \luatex_luatexversion:D

646 __kernel_primitive:NN \savecatcodetable \luatex_savecatcodetable:D

67 __kernel_primitive:NN \Uchar \luatex_Uchar:D

Slightly more awkward are the directional primitives in LuaTEX. These come from Omega
via Aleph, but we do not support those engines and so it seems most sensible to treat
them as LuaTgX primitives for prefix purposes.

es __kernel_primitive:NN \bodydir \luatex_bodydir:D
649 __kernel_primitive:NN \mathdir \luatex_mathdir:D
650 __kernel_primitive:NN \pagedir \luatex_pagedir:D
es1 __kernel primitive:NN \pardir \luatex_pardir:D
652 __kernel_primitive:NN \textdir \luatex_textdir:D

The job is done: close the group (using the primitive renamed!).
653 \tex_endgroup:D

If the underlying engine is LuaTEX then the \pdfstrcmp primitive is emulated as \expl_-
pdfstrcmp as part of the bootstrap process. That can be detected as \pdftex_strcmp:D
will not be defined: is that is the case, copy the code and then remove the temporary
emulation.

05« \etex_ifdefined:D \pdftex_strcmp:D
55 \tex_else:D
o6 \tex_let:D \pdftex_strcmp:D \expl_pdfstrcmp
o7 \tex_let:D \expl_pdfstrcmp \tex_undefined:D
st \tex_fi:D

KTEX 2¢ will have moved a few primitives, so these are sorted out. A convenient
test for INTREX 2¢ is the \@@end saved primitive.
o (*package)
o0 \etex_ifdefined:D \@@end
661 \tex_let:D \tex_end:D \@@end

222

62 \tex_let:D \tex_everydisplay:D \frozen@everydisplay
es \tex_let:D \tex_everymath:D \frozen@everymath
66« \tex_let:D \tex_hyphen:D \@@hyph
665 \tex_let:D \tex_input:D \@@input
666 \tex_let:D \tex_italiccorrection:D \@@italiccorr
667 \tex_let:D \tex_underline:D \@Cunderline
That is also true for the LuaTEX primitives under BTEX 2¢.
668 \tex_let:D \luatex_catcodetable:D \luatexcatcodetable
669 \tex_let:D \luatex_initcatcodetable:D \luatexinitcatcodetable
670 \tex_let:D \luatex_latelua:D \luatexlatelua
671 \tex_let:D \luatex_luaescapestring:D \luatexluaescapestring
672 \tex_let:D \luatex_savecatcodetable:D \luatexsavecatcodetable

673 \tex_let:D \luatex_Uchar:D \luatexUchar

Which also covers those slightly odd ones.

o7+ \tex_let:D \luatex_bodydir:D \luatexbodydir
675 \tex_let:D \luatex_mathdir:D \luatexmathdir
o76 \tex_let:D \luatex_pagedir:D \luatexpagedir
677 \tex_let:D \luatex_pardir:D \luatexpardir
678 \tex_let:D \luatex_textdir:D \luatextextdir
670 \tex_£fi:D

For ConTEXt, two tests are needed. Both Mark IT and Mark IV move several primi-
tives: these are all covered by the first test, again using \end as a marker. For Mark IV,
a few more primitives are moved: they are implemented using some Lua code in the
current ConTEXt.

650 \etex_ifdefined:D \normalend

681 \tex_let:D \tex_outer:D \normalouter

6> \tex_let:D \tex_input:D \normalinput

683 \tex_let:D \tex_end:D \normalend

e« \tex_let:D \tex_language:D \normallanguage

685 \tex_let:D \tex_vcenter:D \normalvcneter

686 \tex_let:D \tex_over:D \normalover

67 \tex_let:D \tex_mathop:D \normalmathop

688 \tex_let:D \tex_month:D \normalmonth

6o \tex_let:D \tex_everyjob:D \normaleveryjob

eo0o \tex_let:D \etex_unexpanded:D \normalunexpanded

601 \tex_ fi:D

60> \etex_ifdefined:D \mormalitaliccorrection

603 \tex_let:D \tex_hoffset:D \normalhoffset

604 \tex_let:D \tex_italiccorrection:D \normalitaliccorrection

695 \tex_let:D \tex_voffset:D \normalvoffset

696 \tex_let:D \etex_showtokens:D \normalshowtokens

eo7 \tex_let:D \luatex_bodydir:D \spac_directions_normal_body_dir
698 \tex_let:D \luatex_pagedir:D \spac_directions_normal_page_dir
600 \tex_f£fi:D

700 \etex_ifdefined:D \normalleft

701 \tex_let:D \tex_left:D \normalleft
702 \tex_let:D \tex_middle:D \normalmiddle
705 \tex_let:D \tex_right:D \normalright

223

\if _true:
\if_false:
\or:

\else:

\fi:
\reverse_if:
\if:

\if _charcode:
\if_catcode:

s = = 5 =

\if_meaning:

\if_mode_math:

\if _mode_horizontal:
\if_mode_vertical:
\if _mode_inner:

\if_cs_exist:N
\if_cs_exist:w
\cs:w

\cs_end:

\exp_after:wN
\exp_not:N
\exp_not:n

70+ \tex_f£fi:D
705 (/package)

706 {/initex | package)

3 I13basics implementation

7 (*initex | package)

=]

3.1 Renaming some TEX primitives (again)

Having given all the TEX primitives a consistent name, we need to give sensible names
to the ones we actually want to use. These will be defined as needed in the appropriate
modules, but do a few now, just to get started.?

Then some conditionals.

06 \tex_let:D \if_true: \tex_iftrue:D

00 \tex_let:D \if_false: \tex_iffalse:D
70 \tex_let:D \or: \tex_or:D

711 \tex_let:D \else: \tex_else:D

712 \tex_let:D \fi: \tex_f£i:D

713 \tex_let:D \reverse_if:N \etex_unless:D
714 \tex_let:D \if:w \tex_if:D

715 \tex_let:D \if_charcode:w \tex_if:D

716 \tex_let:D \if_catcode:w \tex_ifcat:D
717 \tex_let:D \if_meaning:w \tex_ifx:D

(End definition for \if_true: and others. These functions are documented on page 2/.)

TEX lets us detect some if its modes.
712 \tex_let:D \if_mode_math: \tex_ifmmode:
710 \tex_let:D \if_mode_horizontal: \tex_ifhmode:
720 \tex_let:D \if_mode_vertical: \tex_ifvmode:
721 \tex_let:D \if_mode_inner: \tex_ifinner:D

O o o

(End definition for \if_mode_math: and others. These functions are documented on page 2/.)

Building csnames and testing if control sequences exist.
722 \tex_let:D \if_cs_exist:N
723 \tex_let:D \if_cs_exist:w
72 \tex_let:D \cs:w
75 \tex_let:D \cs_end:

\etex_ifdefined:D
\etex_ifcsname:D
\tex_csname:D
\tex_endcsname:D

(End definition for \if_cs_exist:N and others. These functions are documented on page 17.)

The three \exp_ functions are used in the I3expan module where they are described.
726 \tex_let:D \exp_after:wN
727 \tex_let:D \exp_not:N
75 \tex_let:D \exp_not:n

\tex_expandafter:D
\tex_noexpand:D
\etex_unexpanded:D

2This renaming gets expensive in terms of csname usage, an alternative scheme would be to just use
the \tex...:D name in the cases where no good alternative exists.

224

\token_to_meaning:N
\token_to_str:N
\cs_meaning:N

\scan_stop:
\group_begin:
\group_end:

\if_int_compare:w
__int_to_roman:w

\group_insert_after:N

\exp_args:Nc
\exp_args:cc

\token_to_meaning:c
\token_to_str:c
\cs_meaning:c

(End definition for \exp_after:wN, \exp_not:N, and \exp_not:n. These functions are documented on
page 33.)

Examining a control sequence or token.
720 \tex_let:D \token_to_meaning:N \tex_meaning:D
720 \tex_let:D \token_to_str:N \tex_string:D
731 \tex_let:D \cs_meaning:N \tex_meaning:D

(End definition for \token_to_meaning:N, \token_to_str:N, and \cs_meaning:N. These functions are
documented on page 16.)

The next three are basic functions for which there also exist versions that are safe inside
alignments. These safe versions are defined in the 13prg module.

732 \tex_let:D \scan_stop: \tex_relax:D
733 \tex_let:D \group_begin: \tex_begingroup:D
722 \tex_let:D \group_end: \tex_endgroup:D

(End definition for \scan_stop:, \group_begin:, and \group_end:. These functions are documented
on page 9.)

For integers.
735 \tex_let:D \if_int_compare:w \tex_ifnum:D
726 \tex_let:D __int_to_roman:w \tex_romannumeral:D

(End definition for \if_int_compare:w and __int_to_roman:w. These functions are documented on
page 7/.)

Adding material after the end of a group.
737 \tex_let:D \group_insert_after:N \tex_aftergroup:D

(End definition for \group_insert_after:N. This function is documented on page 9.)

Discussed in [3expan, but needed much earlier.
72s \tex_long:D \tex_def:D \exp_args:Nc #1#2
720 { \exp_after:wN #1 \cs:w #2 \cs_end: }
720 \tex_long:D \tex_def:D \exp_args:cc #1#2
1 { \cs:w #1 \exp_after:wN \cs_end: \cs:w #2 \cs_end: }

(End definition for \exp_args:Nc and \exp_args:cc. These functions are documented on page 77.)

A small number of variants defined by hand. Some of the necessary functions (\use_-
i:nn, \use_ii:nn, and \exp_args:NNc) are not defined at that point yet, but will be
defined before those variants are used. The \cs_meaning:c command must check for an
undefined control sequence to avoid defining it mistakenly.

72 \tex_def:D \token_to_str:c { \exp_args:Nc \token_to_str:N }

73 \tex_long:D \tex_def:D \cs_meaning:c #1

744 {

745 \if_cs_exist:w #1 \cs_end:

746 \exp_after:wN \use_i:nn

747 \else:

748 \exp_after:wN \use_ii:nn

749 \fi:

750 { \exp_args:Nc \cs_meaning:N {#1} }

225

\c_minus_one

\c_zero

\c_sixteen

\c_

six

\c_seven

\c_twelve

\c_max_register_

\cs_set_nopar:
\cs_set_nopar:

\cs_set:

\cs_set:
\cs_set_protected_nopar:
\cs_set_protected_nopar:
\cs_set_protected:
\cs_set_protected:

int

Npn
Npx
Npn
Npx
Npn
Npx
Npn
Npx

751 { \tl_to_str:n {undefined} }

752 }

753 \tex_let:D \token_to_meaning:c = \cs_meaning:c
(End definition for \token_to_meaning:c, \token_to_str:c, and \cs_meaning:c. These functions are
documented on page 77.)

3.2 Defining some constants

We need the constants \c_minus_one and \c_sixteen now for writing information to the
log and the terminal and \c_zero which is used by some functions in the I3alloc module.
The rest are defined in the I3int module — at least for the ones that can be defined
with \tex_chardef:D or \tex_mathchardef :D. For other constants the 13int module is
required but it can’t be used until the allocation has been set up properly! The actual
allocation mechanism is in 13alloc and as TEX wants to reserve count registers 0-9, the
first available one is 10 so we use that for \c_minus_one.

7

o

s+ (*package)

75 \tex_let:D \c_minus_one \m@ne

76 (/package)

757 (*initex)

75 \tex_countdef:D \c_minus_one = 10 ~
70 \c_minus_one = -1 ~

760 {/initex)

761 \tex_chardef:D \c_sixteen = 16 ~

762 \tex_chardef:D \c_zero =0
763 \tex_chardef:D \c_six =6 ~
762 \tex_chardef:D \c_seven =7
765 \tex_chardef:D \c_twelve = 12 ~

(End definition for \c_minus_one, \c_zero, and \c_sixteen. These variables are documented on page
73.)

This is here as this particular integer is needed both in package mode and to bootstrap
[3alloc, and is documented in [3int.

766 \etex_ifdefined:D \luatex_luatexversion:D

767 \tex_chardef:D \c_max_register_int = 65 535 ~

s \tex_else:D

769 \tex_mathchardef:D \c_max_register_int = 32 767 ~

770 \tex_fi:D

(End definition for \c_max_register_int. This variable is documented on page 73.)

3.3 Defining functions

We start by providing functions for the typical definition functions. First the local ones.

All assignment functions in I#TEX3 should be naturally protected; after all, the TEX
primitives for assignments are and it can be a cause of problems if others aren’t.

771 \tex_let:D \cs_set_nopar:Npn \tex_def:D
772 \tex_let:D \cs_set_nopar:Npx \tex_edef:D
773 \etex_protected:D \cs_set_nopar:Npn \cs_set:Npn

226

772 { \tex_long:D \cs_set_nopar:Npn }

775 \etex_protected:D \cs_set_nopar:Npn \cs_set:Npx

776 { \tex_long:D \cs_set_nopar:Npx }

777 \etex_protected:D \cs_set_nopar:Npn \cs_set_protected_nopar:Npn
s { \etex_protected:D \cs_set_nopar:Npn }

770 \etex_protected:D \cs_set_nopar:Npn \cs_set_protected_nopar:Npx
720 { \etex_protected:D \cs_set_nopar:Npx }

761 \cs_set_protected_nopar:Npn \cs_set_protected:Npn

22 { \etex_protected:D \tex_long:D \cs_set_nopar:Npn }

733 \cs_set_protected_nopar:Npn \cs_set_protected:Npx

72 { \etex_protected:D \tex_long:D \cs_set_nopar:Npx }

(End definition for \cs_set_nopar:Npn and others. These functions are documented on page ?7.)

\cs_gset_nopar:Npn Global versions of the above functions.

\cs_gset_nopar: Npx 755 \tex_let:D \cs_gset_nopar:Npn \tex_gdef:D
\cs_gset:Npn 76 \tex_let:D \cs_gset_nopar:Npx \tex_xdef:D
\cs_gset :Npx 757 \cs_set_protected_nopar:Npn \cs_gset:Npn
\cs_gset_protected_nopar:Npn 75 { \tex_long:D \cs_gset_nopar:Npn }
\cs_gset_protected_nopar :Npx 750 \cs_set_protected_nopar:Npn \cs_gset:Npx

790 { \tex_long:D \cs_gset_nopar:Npx }

71 \cs_set_protected_nopar:Npn \cs_gset_protected_nopar:Npn
72 { \etex_protected:D \cs_gset_nopar:Npn }

793 \cs_set_protected_nopar:Npn \cs_gset_protected_nopar:Npx
700 { \etex_protected:D \cs_gset_nopar:Npx }

705 \cs_set_protected_nopar:Npn \cs_gset_protected:Npn

796 { \etex_protected:D \tex_long:D \cs_gset_nopar:Npn }
707 \cs_set_protected_nopar:Npn \cs_gset_protected:Npx

s { \etex_protected:D \tex_long:D \cs_gset_nopar:Npx }

\cs_gset_protected:Npn
\cs_gset_protected:Npx

(End definition for \cs_gset_nopar:Npn and others. These functions are documented on page 77.)

3.4 Selecting tokens

\1__exp_internal_tl Scratch token list variable for I3expan, used by \use:x, used in defining conditionals. We
don’t use t1 methods because I3basics is loaded earlier.
799 \cs_set_nopar:Npn \1__exp_internal_tl { }
(End definition for \1__exp_internal_t1l. This variable is documented on page 3/.)

\use:c This macro grabs its argument and returns a csname from it.
s0 \cs_set:Npn \use:c #1 { \cs:w #1 \cs_end: }

(End definition for \use:c. This function is documented on page 17.)

\use:x Fully expands its argument and passes it to the input stream. Uses the reserved \1__-
exp_internal_tl which will be set up in 13expan.
s \cs_set_protected:Npn \use:x #1
802 {
803 \cs_set_nopar:Npx \1__exp_internal_tl {#1}
804 \1__exp_internal_tl

805 }

227

(End definition for \use:x. This function is documented on page 20.)

\use:n These macros grab their arguments and returns them back to the input (with outer braces
\use:nn removed).
\use:nnn s \cs_set:Npn \use:n #1 {#1}
\use:nnnn 207 \cs_set:Npn \use:nn #1#2 {#1#2}
205 \cs_set:Npn \use:nnn #1#2#3 {#1#2#3}
s0 \cs_set:Npn \use:nnnn #1#2#3#4 {#1#2#3#4}

(End definition for \use:n and others. These functions are documented on page 77.)

\use_i:nn The equivalent to ITEX 2¢’s \@firstoftwo and \@secondoftwo.
\use_ii:nn s10 \cs_set:Npn \use_i:nn #1#2 {#1}
s11 \cs_set:Npn \use_ii:nn #1#2 {#2}

(End definition for \use_i:nn and \use_ii:nn. These functions are documented on page 19.)

\use_i:nnn We also need something for picking up arguments from a longer list.

\use_ii:nnn g2 \cs_set:Npn \use_i:nnn #1#2#3 {#1}
\use_iii:nnn ¢13 \cs_set:Npn \use_ii:nnn #1#2#3 {#2}
\use_i_ii:nnn s14 \cs_set:Npn \use_iii:nnn #1#2#3 {#3}

\use_i:nnnn s15 \cs_set:Npn \use_i_ii:nnn #1#2#3 {#1#2}
\use ii:nnnn s16 \cs_set:Npn \use_i:nnnn #1#2#3#4 {#1}
B g7 \cs_set:Npn \use_ii:nnnn #1#2#3#4 {#2}
s15 \cs_set:Npn \use_iii:nnnn #1#2#3#4 {#3}
g0 \cs_set:Npn \use_iv:nnnn #1#2#3#4 {#4}

(End definition for \use_i:nnn and others. These functions are documented on page 19.)

\use_iii:nnnn
\use_iv:nnnn

\use_none_delimit_by_q_nil:w Functions that gobble everything until they see either \q_nil, \q_stop, or \q_-
\use none delinit by q stop:w recursion_stop, respectively.
\use_none_delimit_by g recursion_stop:w &0 \cs_set:Npn \use_none_delimit_by_q_nil:w #1 \q_nil { }
e1 \cs_set:Npn \use_none_delimit_by_q_stop:w #1 \g_stop { }
s> \cs_set:Npn \use_none_delimit_by_q_recursion_stop:w #1 \g_recursion_stop { }

(End definition for \use_none_delimit_by_q_nil:w, \use_none_delimit_by_q_stop:w, and \use_none_delimit_by_q_recurs
These functions are documented on page 47.)

\use_i_delimit_by_q_nil:nw Same as above but execute first argument after gobbling. Very useful when you need to
\use_i_delimit_by_q_stop:nw skip the rest of a mapping sequence but want an easy way to control what should be
\use i delimit by q recursion stop:nv expanded next.
23 \cs_set:Npn \use_i_delimit_by_q_nil:nw #1#2 \g_nil {#1}
e24 \cs_set:Npn \use_i_delimit_by_q_stop:nw #1#2 \q_stop {#1}
o5 \cs_set:Npn \use_i_delimit_by_q_recursion_stop:nw #1#2 \q_recursion_stop {#1}
(End definition for \use_i_delimit_by_q_nil:nw, \use_i_delimit_by_q_stop:nw, and \use_i_delimit_by_q_recursion_stc
These functions are documented on page 47.)

228

\use_none:n
\use_none:nn
\use_none:nnn
\use_none:nnnn
\use_none :nnnnn
\use_none :nnnnnn
\use_none :nnnnnnn
\use_none:nnnnnnnn
\use_none :nnnnnnnnn

\prg_return_true:
\prg_return_false:

3.5 Gobbling tokens from input

To gobble tokens from the input we use a standard naming convention: the number of
tokens gobbled is given by the number of n’s following the : in the name. Although we
could define functions to remove ten arguments or more using separate calls of \use_-
none :nnnnn, this is very non-intuitive to the programmer who will assume that expanding
such a function once will take care of gobbling all the tokens in one go.

226 \cs_set:Npn \use_none:n #1 {1}
&7 \cs_set:Npn \use_none:nn #1#2 {12
2 \cs_set:Npn \use_none:nnn #1#2#3 {1}
220 \cs_set:Npn \use_none:nnnn #1#2#3#4 {1}
s30 \cs_set:Npn \use_none:nnnnn #1#2#3#4#5 {1}
s31 \cs_set:Npn \use_none:nnnnnn #1#2#3#4#5#6 {1}
522 \cs_set:Npn \use_none:nnnnnnn #1#2#3#4#5#6#7 {1}
33 \cs_set:Npn \use_none:nnnnnnnn #1#2#3#4#5#6#7#8 { }

53¢ \cs_set:Npn \use_none:nnnnnnnnn #1#2#3#4#5#6#7#8#9 { }

(End definition for \use_none:n and others. These functions are documented on page 77?.)

3.6 Conditional processing and definitions

Underneath any predicate function (_p) or other conditional forms (TF, etc.) is a built-in
logic saying that it after all of the testing and processing must return the (state) this
leaves TEX in. Therefore, a simple user interface could be something like

\if _meaning:w #1#2
\prg_return_true:
\else:
\if _meaning:w #1#3
\prg_return_true:
\else:
\prg_return_false:
\fi:
\fi:

Usually, a TEX programmer would have to insert a number of \exp_after:wNs to ensure
the state value is returned at exactly the point where the last conditional is finished.
However, that obscures the code and forces the TEX programmer to prove that he/she
knows the 2™ — 1 table. We therefore provide the simpler interface.

The idea here is that __int_to_roman:w will expand fully any \else: and the \fi: that
are waiting to be discarded, before reaching the \c_zero which will leave the expansion
null. The code can then leave either the first or second argument in the input stream.
This means that all of the branching code has to contain at least two tokens: see how
the logical tests are actually implemented to see this.

e35 \cs_set_nopar:Npn \prg_return_true:

836 { \exp_after:wN \use_i:nn __int_to_roman:w }

#37 \cs_set_nopar:Npn \prg_return_false:

838 { \exp_after:wN \use_ii:nn __int_to_roman:w}

229

\prg_set_conditional:Npnn
\prg_new_conditional:Npnn
\prg_set_protected_conditional:Npnn
\prg_new_protected _conditional:Npmn

\prg_set_conditional:Nnn
\prg_new_conditional:Nnn
\prg_set_protected _conditional:lnn
\prg_new_protected_conditional:Nnn

An extended state space could be implemented by including a more elaborate function in
place of \use_i:nn/\use_ii:nn. Provided two arguments are absorbed then the code

will work.
(End definition for \prg_return_true: and \prg_return_false:. These functions are documented on
page 37.)

The user functions for the types using parameter text from the programmer. The various
functions only differ by which function is used for the assignment. For those Npnn type
functions, we must grab the parameter text, reading everything up to a left brace before
continuing. Then split the base function into name and signature, and feed {(name)}
{(signature)} (boolean) {(set or new)} {(maybe protected)} {(parameters)}y {TF,...}
{(code)} to the auxiliary function responsible for defining all conditionals.

s30 \cs_set_protected_nopar:Npn \prg_set_conditional:Npnn

a0 { __prg_generate_conditional_parm:nnNpnn { set } { } }

21 \cs_set_protected_nopar:Npn \prg_new_conditional:Npnn

s> { __prg_generate_conditional_parm:nnNpnn { new } { } }

23 \cs_set_protected_nopar:Npn \prg_set_protected_conditional:Npnn

sas { __prg_generate_conditional_parm:nnNpnn { set } { _protected } }

25 \cs_set_protected_nopar:Npn \prg_new_protected_conditional:Npnn

a6 { __prg_generate_conditional_parm:nnNpnn { new } { _protected } }

27 \cs_set_protected:Npn __prg_generate_conditional_parm:nnNpnn #1#2#3#4#
848 {

849 __cs_split_function:NN #3 __prg_generate_conditional :nnNnnnnn
850 {#1} {#2} {#4}
851 }

(End definition for \prg_set_conditional:Npnn and others. These functions are documented on page
35.)

The user functions for the types automatically inserting the correct parameter text based
on the signature. The various functions only differ by which function is used for the
assignment. Split the base function into name and signature. The second auxiliary
generates the parameter text from the number of letters in the signature. Then feed
{{name)} {(signature)} (boolean) {(set or new)} {(maybe protected)} {{parameters)}
{TF, ...} {(code)} to the auxiliary function responsible for defining all conditionals. If
the (signature) has more than 9 letters, the definition is aborted since TEX macros have
at most 9 arguments. The erroneous case where the function name contains no colon is
captured later.

s> \cs_set_protected_nopar:Npn \prg_set_conditional:Nnn

e3 { __prg_generate_conditional_count:nnNnn { set } { } }

s \CS_set_protected_nopar:Npn \prg_new_conditional:Nnn

o5 { __prg_generate_conditional_count:nnNnn { new } { } }

ss6 \cs_set_protected_nopar:Npn \prg_set_protected_conditional:Nnn

857 { __prg_generate_conditional_count:nnNnn { set } { _protected } }

s5s \Ccs_set_protected_nopar:Npn \prg_new_protected_conditional:Nnn

ss0 { __prg_generate_conditional_count:nnNnn { new } { _protected } }

s0 \Ccs_set_protected:Npn __prg_generate_conditional_count:nnNnn #1#2#3

861 {

862 __cs_split_function:NN #3 __prg_generate_conditional_count:nnNnnnn

230

863 {#1} {#2}

864 }

s65 \CcS_set_protected:Npn __prg_generate_conditional_count:nnNnnnn #1#2#3#4#5
866 {

867 __cs_parm_from_arg_count :nnF

868 { __prg_generate_conditional :nnNnnnnn {#1} {#2} #3 {#4} {#5} }
869 { \tl_count:n {#2} }

870 {

871 __msg_kernel_error:nnxx { kernel } { bad-number-of-arguments }
872 { \token_to_str:c { #1 : #2 } }

873 { \tl_count:n {#2} }

874 \use_none:nn

875 }

876 }

(End definition for \prg_set_conditional:Nnn and others. These functions are documented on page
??)

The workhorse here is going through a list of desired forms, i.e., p, TF, T and F. The first
three arguments come from splitting up the base form of the conditional, which gives the
name, signature and a boolean to signal whether or not there was a colon in the name.
In the absence of a colon, we throw an error and don’t define any conditional. The fourth
and fifth arguments build up the defining function. The sixth is the parameters to use
(possibly empty), the seventh is the list of forms to define, the eighth is the replacement
text which we will augment when defining the forms. The use of \etex_detokenize:D
makes the later loop more robust.

e77 \cs_set_protected:Npn __prg_generate_conditional:nnNnnnnn #1#2#3#4#5#6#7#8
878 {

879 \if _meaning:w \c_false_bool #3

880 __msg_kernel_error:nnx { kernel } { missing-colon }
881 { \token_to_str:c {#1} }

882 \exp_after:wN \use_none:nn

883 \fi:

884 \use:x

885 {

886 \exp_not:N __prg_generate_conditional:nnnnnnw

887 \exp_not:n { {#4} {#5} {#1} {#2} {#6} {#8} }

888 \etex_detokenize:D {#7}

889 \exp_not:n { , \q_recursion_tail , \g_recursion_stop }

890 }

891 T
Looping through the list of desired forms. First are six arguments and seventh is the
form. Use the form to call the correct type. If the form does not exist, the \use:c
construction results in \relax, and the error message is displayed (unless the form is
empty, to allow for {T, , F}), then \use_none:nnnnnnn cleans up. Otherwise, the error
message is removed by the variant form.

22 \cs_set_protected:Npn __prg_generate_conditional :nnnnnnw #1#2#3#4#5#6#7 ,

893 {

804 \if _meaning:w \g_recursion_tail #7

231

895 \exp_after:wN \use_none_delimit_by_q_recursion_stop:w
896 \fi:

897 \use:c { __prg_generate_ #7 _form:wnnnnnn }

898 \tl_if_empty:nF {#7}

899 {

900 __msg_kernel_error:nnxx

901 { kernel } { conditional-form-unknown }
902 {#7} { \token_to_str:c { #3 : #4 } }

903 }

904 \use_none:nnnnnnn

905 \q_stop

906 {#1} {#2} {#3} {#4} {#5} {#6}

907 __prg_generate_conditional:nnnnnnw {#1} {#2} {#3} {#4} {#5} {#6}
908 }

(End definition for __prg_generate_conditional :nnNnnnnn and __prg_generate_conditional:nnnnnnw.)

How to generate the various forms. Those functions take the following arguments: 1:
set or new, 2: empty or _protected, 3: function name 4: signature, 5: parameter text
(or empty), 6: replacement. Remember that the logic-returning functions expect two
arguments to be present after \c_zero: notice the construction of the different variants
relies on this, and that the TF variant will be slightly faster than the T version. The p
form is only valid for expandable tests, we check for that by making sure that the second
argument is empty.

o0 \cs_set_protected:Npn __prg_generate_p_form:wnnnnnn #1 \q_stop #2#3#4#5#6#7

910 {

011 \if _meaning:w \scan_stop: #3 \scan_stop:

012 \exp_after:wN \use_i:nn

013 \else:

014 \exp_after:wN \use_ii:nn

915 \fi:

916 {

017 \exp_args:cc { cs_ #2 #3 :Npn } { #4 _p: #5 } #6

018 { #7 \c_zero \c_true_bool \c_false_bool }

919 }

920 {

021 __msg_kernel_error:nnx { kernel } { protected-predicate }
922 { \token_to_str:c { #4 _p: #5 } }

923 }

924 T

o5 \cs_set_protected:Npn __prg_generate_T_form:wnnnnnn #1 \q_stop #2#3#4#5#6#7
926 {

927 \exp_args:cc { cs_ #2 #3 :Npn } { #4 : #5 T } #6

928 { #7 \c_zero \use:n \use_none:n }

929 }

030 \cs_set_protected:Npn __prg_generate_F_form:wnnnnnn #1 \qg_stop #2#3#4#5#6#7
931 {

032 \exp_args:cc { cs_ #2 #3 :Npn } { #4 : #5 F } #6

033 { #7 \c_zero { } }

934 }

232

\prg_set_eq_conditional:NNn
\prg_new_eq_conditional:NNn

;5 \cs_set_protected:Npn __prg_generate_TF_form:wnnnnnn #1 \q_stop #2#3#4#5#6#7
936 {

937 \exp_args:cc { cs_ #2 #3 :Npn } { #4 : #5 TF } #6

038 { #7 \c_zero }

939 }

(End definition for __prg_generate_p_form:wnnnnnn and others.)

The setting-equal functions. Split the two functions and feed a first auxiliary {(name;)}
{(signature;)} (boolean,) {(names)} {({signatures)} (booleansy) (copying function) (conditions)
, \q_recursion_tail , \g_recursion_stop

910 \cs_set_protected_nopar:Npn \prg_set_eq_conditional:NNn

041 { __prg_set_eq_conditional:NNNn \cs_set_eq:cc }

o> \cs_set_protected_nopar:Npn \prg_new_eq_conditional:NNn

o3 { __prg_set_eq_conditional:NNNn \cs_new_eq:cc }

« \cs_set_protected:Npn __prg_set_eq_conditional:NNNn #1#2#3#4

9

945 {

946 \use:x

947 {

048 \exp_not:N __prg_set_eq_conditional :nnNnnNNw
949 __cs_split_function:NN #2 \prg_do_nothing:
950 __cs_split_function:NN #3 \prg_do_nothing:
051 \exp_not:N #1

952 \etex_detokenize:D {#4}

953 \exp_not:n { , \g_recursion_tail , \g_recursion_stop }
954 }

955 }

(End definition for \prg_set_eq_conditional:NNn and \prg_new_eq_conditional:NNn. These functions
are documented on page 37.)

Split the function to be defined, and setup a manual clist loop over argument #6 of the
first auxiliary. The second auxiliary receives twice three arguments coming from splitting
the function to be defined and the function to copy. Make sure that both functions
contained a colon, otherwise we don’t know how to build conditionals, hence abort. Call
the looping macro, with arguments {(name;)} {(signature;)} {(names)} {({signatures)}
(copying function) and followed by the comma list. At each step in the loop, make sure
that the conditional form we copy is defined, and copy it, otherwise abort.

056 \cs_set_protected:Npn __prg_set_eq_conditional:nnNnnNNw #1#2#3#4#5#6
957 {

958 \if _meaning:w \c_false_bool #3

950 __msg_kernel_error:nnx { kernel } { missing-colon }
960 { \token_to_str:c {#1} }

961 \exp_after:wN \use_none_delimit_by_q_recursion_stop:w
962 \fi:

963 \if _meaning:w \c_false_bool #6

964 __msg_kernel_error:nnx { kernel } { missing-colon }
965 { \token_to_str:c {#4} }

966 \exp_after:wN \use_none_delimit_by_q_recursion_stop:w
967 \fi:

968 __prg_set_eq_conditional_loop:nnnnNw {#1} {#2} {#4} {#5}

233

969 }
o0 \cs_set_protected:Npn __prg_set_eq_conditional_loop:nnnnNw #1#2#3#4#5#6 ,

971 {

972 \if _meaning:w \g_recursion_tail #6

973 \exp_after:wN \use_none_delimit_by_q_recursion_stop:w

974 \fi:

975 \use:c { __prg_set_eq_conditional_ #6 _form:wNnnnn }

076 \tl_if_empty:nF {#6}

977 {

978 __msg_kernel_error:nnxx

079 { kernel } { conditional-form-unknown }

980 {#6} { \token_to_str:c { #1 : #2 } }

981 }

082 \use_none:nnnnnn

983 \q_stop

084 #5 {#1} {#2} {#3} {#4}

985 __prg_set_eq_conditional_loop:nnnnNw {#1} {#2} {#3} {#4} #5

986 }

os7 \cs_set:Npn __prg_set_eq_conditional_p_form:wNnnnn #1 \q_stop #2#3#4#5#6
988 {

989 __chk_if_exist_cs:c { #5 _p : #6 }

990 #2 { #3 _p : #4 } { #5 _p : #6 }

991 }

92 \cs_set:Npn __prg_set_eq_conditional TF_form:wNnnnn #1 \q_stop #2#3#4#5#6
993 {

994 __chk_if_exist_cs:c { #5 : #6 TF }

995 #2 { #3 : #4 TF } { #5 : #6 TF }

996 }

207 \cs_set:Npn __prg_set_eq_conditional T_form:wNnnnn #1 \q_stop #2#3#4#5#6
998 {

999 __chk_if_exist_cs:c { #5 : #6 T)

1000 #2 { #3 : #4 T } { #5 : #6 T }

1001 }

w002 \cs_set:Npn __prg_set_eq_conditional F_form:wNnnnn #1 \q_stop #2#3#4#5#6
1003 {

1004 __chk_if_exist_cs:c { #5 : #6 F }

1005 #2 { #3 c#4 F } { #5 . #6 F }

1006 }

(End definition for __prg_set_eq_conditional :nnNnnNNw and __prg_set_eq_conditional_loop:nnnnNw.)

All that is left is to define the canonical boolean true and false. I think Michael
originated the idea of expandable boolean tests. At first these were supposed to expand
into either TT or TF to be tested using \if:w but this was later changed to 00 and 01,
so they could be used in logical operations. Later again they were changed to being
numerical constants with values of 1 for true and 0 for false. We need this from the
get-go.

\c_true_bool Here are the canonical boolean values.

\c_false_bool 1007 \tex_chardef:D \c_true_bool
1008 \tex_chardef:D \c_false_bool

1]
o =
?

234

(End definition for \c_true_bool and \c_false_bool. These variables are documented on page 21.)

3.7 Dissecting a control sequence

\cs_to_str:N This converts a control sequence into the character string of its name, removing the
leading escape character. This turns out to be a non-trivial matter as there a different
cases:

e The usual case of a printable escape character;

e the case of a non-printable escape characters, e.g., when the value of the
\escapechar is negative;

e when the escape character is a space.

One approach to solve this is to test how many tokens result from \token_to_str:N \a.
If there are two tokens, then the escape character is printable, while if it is non-printable
then only one is present.

However, there is an additional complication: the control sequence itself may start
with a space. Clearly that should not be lost in the process of converting to a string.
So the approach adopted is a little more intricate still. When the escape character
is printable, \token_to_str:N,_ yields the escape character itself and a space. The
character codes are different, thus the \if:w test is false, and TEX reads __cs_to_-
str:N after turning the following control sequence into a string; this auxiliary removes
the escape character, and stops the expansion of the initial __int_to_roman:w. The
second case is that the escape character is not printable. Then the \if :w test is unfinished
after reading a the space from \token_to_str:N_ \, and the auxiliary __cs_to_str:w
is expanded, feeding - as a second character for the test; the test is false, and TEX skips to
\fi:, then performs \token_to_str:N, and stops the __int_to_roman:w with \c_zero.
The last case is that the escape character is itself a space. In this case, the \if :w test
is true, and the auxiliary __cs_to_str:w comes into play, inserting -__int_value:w,
which expands \c_zero to the character 0. The initial __int_to_roman:w then sees 0,
which is not a terminated number, followed by the escape character, a space, which is
removed, terminating the argument of __int_to_roman:w. In all three cases, \cs_to_-
str:N takes two expansion steps to be fully expanded.

1000 \cs_set_nopar:Npn \cs_to_str:N

1010 {

1011 __int_to_roman:w

1012 \if:w \token_to_str:N \ __cs_to_str:w \fi:
1013 \exp_after:wN __cs_to_str:N \token_to_str:N
1014 T

1015 \cs_set:Npn __cs_to_str:N #1 { \c_zero }
w016 \cs_set:Npn __cs_to_str:w #1 __cs_to_str:N
1017 { - __int_value:w \fi: \exp_after:wN \c_zero }
(End definition for \cs_to_str:N. This function is documented on page 18.)

__cs_split_function:NN This function takes a function name and splits it into name with the escape char removed
and argument specification. In addition to this, a third argument, a boolean (true) or

235

__cs_get_function_name:N
__cs_get_function_signature:N

(false) is returned with (true) for when there is a colon in the function and (false) if there
is not. Lastly, the second argument of __cs_split_function:NN is supposed to be a
function taking three variables, one for name, one for signature, and one for the boolean.
For example, __cs_split_function:NN \foo_bar:cnx \use_i:nnn as input becomes
\use_i:nnn {foo_bar} {cnx} \c_true_bool.

We can’t use a literal : because it has the wrong catcode here, so it’s transformed
from @ with \tex_lowercase:D.

First ensure that we actually get a properly evaluated string by expanding \cs_-
to_str:N twice. If the function contained a colon, the auxiliary takes as #1 the function
name, delimited by the first colon, then the signature #2, delimited by \q_mark, then
\c_true_bool as #3, and #4 cleans up until \q_stop. Otherwise, the #1 contains the
function name and \q_mark \c_true_bool, #2 is empty, #3 is \c_false_bool, and #4
cleans up. In both cases, #5 is the (processor). The second auxiliary trims the trailing
\g_mark from the function name if present (that is, if the original function had no colon).

101s \group_begin:

1019 \tex_lccode:D ‘\@ = ‘\: \scan_stop:
1020 \tex_catcode:D ‘\@ = 12 ~

1021 \tex_lowercase:D

1022 {

1023 \group_end:

1024 \cs_set:Npn __cs_split_function:NN #1

1025 {

1026 \exp_after:wN \exp_after:wN

1027 \exp_after:wN __cs_split_function_auxi:w

1028 \cs_to_str:N #1 \q_mark \c_true_bool

1029 @ \g_mark \c_false_bool

1030 \q_stop

1031 }

1032 \cs_set:Npn __cs_split_function_auxi:w #1 @ #2 \q_mark #3#4 \q_stop #5
1033 { __cs_split_function_auxii:w #5 #1 \q_mark \g_stop {#2} #3 }
1034 \cs_set:Npn __cs_split_function_auxii:w #1#2 \q_mark #3 \g_stop
1035 { #1 {#2} }

1036 }

(End definition for __cs_split_function:NN.)

Simple wrappers.
1037 \cs_set:Npn __cs_get_function_name:N #1
s { __cs_split_function:NN #1 \use_i:nnn }
1039 \cs_set:Npn __cs_get_function_signature:N #1
w0 { __cs_split_function:NN #1 \use_ii:nnn }

(End definition for __cs_get_function_name:N and __cs_get_function_signature:N.)

3.8 Exist or free

A control sequence is said to ezist (to be used) if has an entry in the hash table and its
meaning is different from the primitive \relax token. A control sequence is said to be
free (to be defined) if it does not already exist.

236

\cs_if_exist_p:N Two versions for checking existence. For the N form we firstly check for \scan_stop: and
then if it is in the hash table. There is no problem when inputting something like \else:
\cs_if_exist:NTF or \fi: as TEX will only ever skip input in case the token tested against is \scan_stop:.

\cs_if_exist_p:c

\cs_if_exist:cTF

1041

1042

1043

1044

1045

1046

\prg_set_conditional:Npnn \cs_if_exist:N #1 { p , T , F , TF }
{
\if _meaning:w #1 \scan_stop:
\prg_return_false:
\else:
\if_cs_exist:N #1
\prg_return_true:
\else:
\prg_return_false:
\fi:
\fi:
}

For the ¢ form we firstly check if it is in the hash table and then for \scan_stop: so
that we do not add it to the hash table unless it was already there. Here we have to be
careful as the text to be skipped if the first test is false may contain tokens that disturb
the scanner. Therefore, we ensure that the second test is performed after the first one
has concluded completely.

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

s \prg_set_conditional:Npnn \cs_if_exist:c #1 { p , T , F , TF }

{
\if_cs_exist:w #1 \cs_end:
\exp_after:wN \use_i:nn
\else:
\exp_after:wN \use_ii:nn
\fi:
{
\exp_after:wN \if_meaning:w \cs:w #1 \cs_end: \scan_stop:
\prg_return_false:
\else:
\prg_return_true:
\fi:
}
\prg_return_false:

}

(End definition for \cs_if_exist:N and \cs_if_exist:c. These functions are documented on page 77.)

\cs_if_free_p:N The logical reversal of the above.

\cs_if_free_p:c
\cs_if_free:NTF
\cs_if_free:cTF

1069

1070

\prg_set_conditional:Npnn \cs_if_free:N #1 { p , T , F , TF }
{
\if _meaning:w #1 \scan_stop:
\prg_return_true:
\else:
\if_cs_exist:N #1
\prg_return_false:
\else:
\prg_return_true:

237

\cs_if_exist_use:NTF
\cs_if_exist_use:cTF
\cs_if_exist_use:N
\cs_if_exist_use:c

1078 \fi:

1079 \fi:

1080 }

w081 \prg_set_conditional:Npnn \cs_if_free:c #1 { p , T , F , TF }
1082 {

1083 \if_cs_exist:w #1 \cs_end:
1084 \exp_after:wN \use_i:nn
1085 \else:

1086 \exp_after:wN \use_ii:nn
1087 \fi:

1088 {

1089 \exp_after:wN \if_meaning:w \cs:w #1 \cs_end: \scan_stop:
1090 \prg_return_true:

1091 \else:

1092 \prg_return_false:
1003 \fi:

1094 }

1095 { \prg_return_true: }
1096 }

(End definition for \cs_if_free:N and \cs_if_free:c. These functions are documented on page 77.)

The \cs_if_exist_use:... functions cannot be implemented as conditionals because
the true branch must leave both the control sequence itself and the true code in the input
stream. For the ¢ variants, we are careful not to put the control sequence in the hash
table if it does not exist.

1007 \cs_set:Npn \cs_if_exist_use:NTF #1#2
1098 { \cs_if_exist:NTF #1 { #1 #2 } }
1000 \cs_set:Npn \cs_if_exist_use:NF #1
oo { \cs_if_exist:NTF #1 { #1 } }
101 \cs_set:Npn \cs_if_exist_use:NT #1 #2
1102 { \cs_if_exist:NTF #1 { #1 #2 } { } }
1103 \cs_set:Npn \cs_if_exist_use:N #1
o { \cs_if_exist:NTF #1 { #1 } { } }
5 \cs_set:Npn \cs_if_exist_use:cTF #1#2
1os { \cs_if_exist:cTF {#1} { \use:c {#1} #2 } }
107 \cs_set:Npn \cs_if_exist_use:cF #1
s { \cs_if_exist:cTF {#1} { \use:c {#1} } }
1100 \cs_set:Npn \cs_if_exist_use:cT #1#2
o { \cs_if_exist:cTF {#1} { \use:c {#1} #2 } { } }
111 \cs_set:Npn \cs_if_exist_use:c #1
2 { \cs_if_exist:cTF {#1} { \use:c {#1} } { } }
(End definition for \cs_if_exist_use:NTF and \cs_if_exist_use:cTF. These functions are documented
on page 77.)

-
oy

3.9 Defining and checking (new) functions

We provide two kinds of functions that can be used to define control sequences. On the
one hand we have functions that check if their argument doesn’t already exist, they are

238

\iow_log:x
\iow_term:x

__msg_kernel_error:nnxx

__msg_kernel_error:nnx

__msg_kernel_error:nn

\m

sg_line_context:

__chk_if free_cs:N

\

chk_if free_cs:c

called \..._new. The second type of defining functions doesn’t check if the argument is
already defined.

Before we can define them, we need some auxiliary macros that allow us to generate
error messages. The definitions here are only temporary, they will be redefined later on.

We define a routine to write only to the log file. And a similar one for writing to both
the log file and the terminal. These will be redefined later by I3io.

1113 \cs_set_protected_nopar:Npn \iow_log:x

12 { \tex_immediate:D \tex_write:D \c_minus_one }

1115 \cs_set_protected_nopar:Npn \iow_term:x

e { \tex_immediate:D \tex_write:D \c_sixteen }

(End definition for \iow_log:x and \iow_term:x. These functions are documented on page ?7.)

If an internal error occurs before I TEX3 has loaded [3msg then the code should issue a
usable if terse error message and halt. This can only happen if a coding error is made by
the team, so this is a reasonable response.

117 \cs_set_protected:Npn __msg_kernel_error:nnxx #1#2#3#4

1118 {

1119 \tex_errmessage:D

1120 {

1121 N N e
1122 Argh,~internal~LaTeX3~error! ~°J ~7J

1123 Module ~ #1 , ~ message~name~"#2": ~7J

1124 Arguments~’#3’~and~’#4’ ~7J ~7J

1125 This~is~one~for~The~LaTeX3~Project:~bailing~out
1126 }

1127 \tex_end:D

1128 }

11209 \cs_set_protected:Npn __msg_kernel_error:nnx #1#2#3
10 { __msg_kernel_error:nnxx {#1} {#2} {#3} { } }
1131 \cs_set_protected:Npn __msg_kernel_error:nn #1#2
us2 { __msg_kernel_error:nnxx {#1} {#2} { } { } }

(End definition for __msg_kernel_error:nnxx, __msg_kernel_error:nnx, and __msg_kernel_error:nn.)

Another one from 13msg which will be altered later.
1133 \cs_set_nopar:Npn \msg_line_context:
132 { on~line~ \tex_the:D \tex_inputlineno:D }

(End definition for \msg_line_context:. This function is documented on page 1/2.)

This command is called by \cs_new_nopar:Npn and \cs_new_eq:NN etc. to make sure
that the argument sequence is not already in use. If it is, an error is signalled. It checks
if (esname) is undefined or \scan_stop:. Otherwise an error message is issued. We have
to make sure we don’t put the argument into the conditional processing since it may be
an \if... type function!

1135 \cs_set_protected:Npn __chk_if_free_cs:N #1

1136 {

1137 \cs_if_free:NF #1

1138 {

239

1139 __msg_kernel_error:nnxx { kernel } { command-already-defined }
1140 { \token_to_str:N #1 } { \token_to_meaning:N #1 }

1141 }

142 }

1143 (*package}

114s \tex_ifodd:D \1@expl@log@functions@bool

1145 \cs_set_protected:Npn __chk_if_free_cs:N #1

1146 {

1147 \cs_if_free:NF #1

1148 {

1149 __msg_kernel_error:nnxx { kernel } { command-already-defined }
1150 { \token_to_str:N #1 } { \token_to_meaning:N #1 }

1151 }

1152 \iow_log:x { Defining~\token_to_str:N #1~ \msg_line_context: }

1153 F

1154 \fi:

155 (/package)
1156 \cs_set_protected_nopar:Npn __chk_if_free_cs:c
1157 { \exp_args:Nc __chk_if_free_cs:N }

(End definition for __chk_if_free_cs:N and __chk_if_free_cs:c.)

__chk_if_exist_var:N Create the checking function for variable definitions when the option is set.
s (*package)

150 \tex_ifodd:D \1@expl@check@declarations@bool

1160 \cs_set_protected:Npn __chk_if_exist_var:N #1

11

o

1161 {

1162 \cs_if_exist:NF #1

1163 {

1164 __msg_kernel_error:nnx { check } { non-declared-variable }
1165 { \token_to_str:N #1 }

1166 }

1167 }

1168 \fi:

160 (/package)
(End definition for __chk_if_exist_var:N.)

__chk_if_exist_cs:N This function issues an error message when the control sequence in its argument does
__chk_if_exist_cs:c not exist.

170 \cs_set_protected:Npn __chk_if_exist_cs:N #1

1171 {

172 \cs_if_exist:NF #1

1173 {

1174 __msg_kernel_error:nnx { kernel } { command-not-defined }
1175 { \token_to_str:N #1 }

1176 }

1177 T

17s \cs_set_protected_nopar:Npn __chk_if_exist_cs:c
uro { \exp_args:Nc __chk_if_exist_cs:N }
(End definition for __chk_if_exist_cs:N and __chk_if_exist_cs:c.)

240

\cs_new_nopar:
\cs_new_nopar:

\cs_new:

\cs_new:
\cs_new_protected_nopar:
\cs_new_protected_nopar:
\cs_new_protected:
\cs_new_protected:

\cs_set_nopar:
\cs_set_nopar:
\cs_gset_nopar:
\cs_gset_nopar:
\cs_new_nopar:
\cs_new_nopar:

\cs_set:
\cs_set:
\cs_gset:
\cs_gset:
\cs_new:
\cs_new:

Npn
Npx
Npn
Npx
Npn
Npx
Npn
Npx

cpn
cpx
cpn
cpx
cpn
cpx

cpn
cpx
cpn
cpx
cpn
cpx

3.10 More new definitions

Function which check that the control sequence is free before defining it.

150 \cs_set:Npn __cs_tmp:w #1#2

1181 {

1182

1183 {
1184

1185

1186 }
1187 }

1ss __cs_tmp:
1180 __cs_tmp:
1190 __CS_tmp :
101 __cs_tmp:
1102 __cs_tmp:
1103 __CS_tmp :
1104 __cs_tmp:
1105 __cs_tmp:

w
W
W
w
W
W
w
W

\cs_set_protected:Npn #1 #i#1

__chk_if_free_cs:N ##1
#2 ##1

\cs_new_nopar:Npn
\cs_new_nopar :Npx
\cs_new:Npn
\cs_new:Npx

\cs_gset_nopar:Npn
\cs_gset_nopar:Npx
\cs_gset :Npn
\cs_gset :Npx

\cs_new_protected_nopar:Npn \cs_gset_protected_nopar:Npn
\cs_new_protected_nopar:Npx \cs_gset_protected_nopar:Npx

\cs_new_protected:Npn
\cs_new_protected:Npx

\cs_gset_protected:Npn
\cs_gset_protected:Npx

(End definition for \cs_new_nopar:Npn and others. These functions are documented on page ?7.)

Like \cs_set_nopar:Npn and \cs_new_nopar:Npn, except that the first argument con-
sists of the sequence of characters that should be used to form the name of the desired
control sequence (the c stands for csname argument, see the expansion module). Global
versions are also provided.

\cs_set_nopar: cpn(string)(rep-text) will turn (string) into a csname and then as-
sign (rep-text) to it by using \cs_set_nopar:Npn. This means that there might be a

parameter string between the two arguments.

1106 \cs_set:Npn __cs_tmp:w #1#2

1197

1198

1190 __cs_tmp:
1200 __CS_tmp :
o1 __cs_tmp:
1202 __cs_tmp:
1203 __CS_tmp :

w

\cs_set_nopar:cpx

{ \cs_new_protected_nopar:Npn #1 { \exp_args:Nc #2 } }
__cs_tmp:w \cs_set_nopar:cpn \cs_set_nopar:Npn
\cs_set_nopar:Npx

w \cs_gset_nopar:cpn \cs_gset_nopar:Npn
w \cs_gset_nopar:cpx \cs_gset_nopar:Npx
w \cs_new_nopar:cpn \cs_new_nopar:Npn

w

\cs_new_nopar:cpx

\cs_new_nopar:Npx

(End definition for \cs_set_nopar:cpn and others. These functions are documented on page ?7.)

Variants of the \cs_set:Npn versions which make a csname out of the first arguments.
We may also do this globally.

1204 __CS_tmp:
1205 __cs_tmp:
1206 __cs_tmp:
1207 __CS_tmp:
1208 __cs_tmp:
1209 __cs_tmp:

W
w
w
W
w
w

\cs_set:cpn \cs_set:Npn
\cs_set:cpx \cs_set:Npx

\cs_gset:cpn \cs_gset:Npn
\cs_gset:cpx \cs_gset:Npx

\cs_new:cpn \cs_new:Npn
\cs_new:cpx \cs_new:Npx

(End definition for \cs_set:cpn and others. These functions are documented on page 77?.)

241

\cs_set_protected_nopar:cpn

\cs_set_protected_nopar:cpx

\cs_gset_protected_nopar:cpn

\cs_gset_protected_nopar:cpx

\cs_new_protected_nopar:cpn

\cs_new_protected_nopar:cpx

\cs_set_protected:
\cs_set_protected:
\cs_gset_protected:
\cs_gset_protected:
\cs_new_protected:
\cs_new_protected:

\cs_set_eq:
\cs_set_eq:
\cs_set_eq:
\cs_set_eq:
\cs_gset_eq:
\cs_gset_eq:
\cs_gset_eq:
\cs_gset_eq:
\cs_new_eq:
\cs_new_eq:
\cs_new_eq:
\cs_new_eq:

cpn
cpx
cpn
cpx
cpn
cpx

NN
cN
Nc
cc
NN
cN
Nc
cc
NN
cN
Nc
cc

Variants of the \cs_set_protected_nopar:Npn versions which make a csname out of
the first arguments. We may also do this globally.

1210 __cs_tmp:w \cs_set_protected_nopar:cpn \cs_set_protected_nopar:Npn
1211 __cs_tmp:w \cs_set_protected_nopar:cpx \cs_set_protected_nopar:pr
112 __cs_tmp:w \cs_gset_protected_nopar:cpn \cs_gset_protected_nopar:Npn
1213 __cs_tmp:w \cs_gset_protected_nopar:cpx \cs_gset_protected_nopar:Npx
1214 __cs_tmp:w \cs_new_protected_nopar:cpn \cs_new_protected_nopar:an
1215 __cs_tmp:w \cs_new_protected_nopar:cpx \cs_new_protected_nopar:Npx

(End definition for \cs_set_protected_nopar:cpn and others. These functions are documented on page
??.)

Variants of the \cs_set_protected:Npn versions which make a csname out of the first
arguments. We may also do this globally.
1216 __cs_tmp:w \cs_set_protected:cpn \cs_set_protected:Npn
117 __cs_tmp:w \cs_set_protected:cpx \cs_set_protected:Npx
115 __cs_tmp:w \cs_gset_protected:cpn \cs_gset_protected:Npn
1210 __cs_tmp:w \cs_gset_protected:cpx \cs_gset_protected:Npx
1220 __cs_tmp:w \cs_new_protected:cpn \cs_new_protected:Npn
1221 __cs_tmp:w \cs_new_protected:cpx \cs_new_protected:Npx
(End definition for \cs_set_protected:cpn and others. These functions are documented on page 77.)

3.11 Copying definitions

These macros allow us to copy the definition of a control sequence to another control
sequence.
The = sign allows us to define funny char tokens like = itself or , with this function.
For the definition of \c_space_char{~} to work we need the ~ after the =.
\cs_set_eq:NN is long to avoid problems with a literal argument of \par. While
\cs_new_eq:NN will probably never be correct with a first argument of \par, define it
long in order to throw an “already defined” error rather than “runaway argument”.
1222 \cs_new_protected:Npn \cs_set_eq:NN #1 { \tex_let:D #1 =~ }
1223 \cs_new_protected_nopar:Npn \cs_set_eq:cN { \exp_args:Nc \cs_set_eq:NN }
1224 \cs_new_protected_nopar:Npn \cs_set_eq:Nc { \exp_args:NNc \cs_set_eq:NN }
1225 \cs_new_protected_nopar:Npn \cs_set_eq:cc { \exp_args:Ncc \cs_set_eq:NN }
1226 \cs_new_protected_nopar:Npn \cs_gset_eq:NN { \tex_global:D \cs_set_eq:NN }
1227 \cs_new_protected_nopar:Npn \cs_gset_eq:Nc { \exp_args:NNc \cs_gset_eq:NN }
1226 \cs_new_protected_nopar:Npn \cs_gset_eq:cN { \exp_args:Nc \cs_gset_eq:NN }
1220 \cs_new_protected_nopar:Npn \cs_gset_eq:cc { \exp_args:Ncc \cs_gset_eq:NN }
1230 \cs_new_protected:Npn \cs_new_eq:NN #1

1231 {

1232 __chk_if free_cs:N #1

1233 \tex_global:D \cs_set_eq:NN #1
1234 }

1235 \cs_new_protected_nopar:Npn \cs_new_eq:cN { \exp_args:Nc \cs_new_eq:NN }
1236 \cs_new_protected_nopar:Npn \cs_new_eq:Nc { \exp_args:NNc \cs_new_eq:NN }
1237 \cs_new_protected_nopar:Npn \cs_new_eq:cc { \exp_args:Ncc \cs_new_eq:NN }

(End definition for \cs_set_eq:NN and others. These functions are documented on page 77.)

242

\cs_undefine:N
\cs_undefine:c

__cs_parn_from_arg_count:nnf

3.12 Undefining functions

The following function is used to free the main memory from the definition of some
function that isn’t in use any longer. The c variant is careful not to add the control
sequence to the hash table if it isn’t there yet, and it also avoids nesting TEX conditionals
in case #1 is unbalanced in this matter.

1233 \cs_new_protected:Npn \cs_undefine:N #1

1239 { \cs_gset_eq:NN #1 \tex_undefined:D }

1220 \cs_new_protected:Npn \cs_undefine:c #1

1241 {

1242 \if_cs_exist:w #1 \cs_end:

1243 \exp_after:wN \use:n

1244 \else:

1245 \exp_after:wN \use_none:n

1246 \fi:

1247 { \cs_gset_eq:cN {#1} \tex_undefined:D }
1248 }

(End definition for \cs_undefine:N and \cs_undefine:c. These functions are documented on page 77.)

3.13 Generating parameter text from argument count

EXTREX3 provides shorthands to define control sequences and conditionals with a simple
parameter text, derived directly from the signature, or more generally from knowing the
number of arguments, between 0 and 9. This function expands to its first argument,
untouched, followed by a brace group containing the parameter text {#1...#n}, where
n is the result of evaluating the second argument (as described in \int_eval:n). If the
second argument gives a result outside the range [0, 9], the third argument is returned
instead, normally an error message. Some of the functions use here are not defined yet,
but will be defined before this function is called.

1220 \cs_set_protected:Npn __cs_parm_from_arg_count:nnF #1#2

1250 {

1251 \exp_args:Nx __cs_parm_from_arg_count_test:nnF
1252 {

1253 \exp_after:wN \exp_not:n

1254 \if_case:w __int_eval:w #2 __int_eval_end:
1255 { }

1256 \or: { ##1 }

1257 \or: { ##1##2 }

1258 \or: { ##1##2##3 }

1259 \or: { ##1##2##3##4 }

1260 \or: { ##1##2H##3I##4AHHE }

1261 N\or: { ##1##2#H#3HH#AHHOHHEC T

1262 N\or: { ##1#H2HHSHH#AHHOHHCHHT }

1263 \or: { ##1#H2HHIHH#AHHOHHCHHTHES T

1264 N\or: { #H#1##2HHBHHAHHOHHCHHTHESHHO T

1265 \else: { \c_false_bool }

1266 \fi:

1267 }

243

__cs_count_signature:N
__cs_count_signature:c

\cs_generate from arg count:Nlinn
\cs_generate from arg count:clnn
\cs_generate_from_arg_count:Ncan

1268 {#1}
1269 }
170 \cs_set_protected:Npn __cs_parm_from_arg_count_test:nnF #1#2

1271 {

1272 \if_meaning:w \c_false_bool #1
1273 \exp_after:wN \use_ii:nn

1274 \else:

1275 \exp_after:wN \use_i:nn

1276 \fi:

1277 { #2 {#1} }

1278 }

(End definition for __cs_parm_from_arg_count :nnF.)

3.14 Defining functions from a given number of arguments

Counting the number of tokens in the signature, i.e., the number of arguments the func-
tion should take. Since this is not used in any time-critical function, we simply use
\tl_count:n if there is a signature, otherwise —1 arguments to signal an error. We need
a variant form right away.

1270 \cs_new:Npn __cs_count_signature:N #1

1so { \int_eval:n { __cs_split_function:NN #1 __cs_count_signature:nnN } }

1s1 \cs_new:Npn __cs_count_signature:nnN #1#2#3

1282 {

1283 \if_meaning:w \c_true_bool #3
1284 \tl_count:n {#2}

1285 \else :

1286 \c_minus_one

1287 \fi:

1288 }

1250 \cs_new_nopar:Npn __cs_count_signature:c
1200 { \exp_args:Nc __cs_count_signature:N }

(End definition for __cs_count_signature:N and __cs_count_signature:c.)

We provide a constructor function for defining functions with a given number of argu-
ments. For this we need to choose the correct parameter text and then use that when
defining. Since TEX supports from zero to nine arguments, we use a simple switch to
choose the correct parameter text, ensuring the result is returned after finishing the
conditional. If it is not between zero and nine, we throw an error.

1: function to define, 2: with what to define it, 3: the number of args it requires and
4: the replacement text

1201 \cs_new_protected:Npn \cs_generate_from_arg_count:NNnn #1#2#3#4

1292 {

1203 __cs_parm_from_arg_count:nnF { \use:nnn #2 #1 } {#3}

1294 {

1295 __msg_kernel_error:nnxx { kernel } { bad-number-of-arguments }
1206 { \token_to_str:N #1 } { \int_eval:n {#3} }

1297 ¥

1208 {#4}

244

1299 }

A variant form we need right away, plus one which is used elsewhere but which is most
logically created here.

1300 \cs_new_protected_nopar:Npn \cs_generate_from_arg_count:cNnn

1301 { \exp_args:Nc \cs_generate_from_arg_count:NNnn }

1302 \cs_new_protected_nopar:Npn \cs_generate_from_arg_count:Ncnn

1303 { \exp_args:NNc \cs_generate_from_arg_count:NNnn }

(End definition for \cs_generate_from_arg_count:NNnn, \cs_generate_from_arg count:cNmnn, and
\cs_generate_from_arg_count:Ncnn. These functions are documented on page 77.)

3.15 Using the signature to define functions

We can now combine some of the tools we have to provide a simple interface for defining
functions. We define some simpler functions with user interface \cs_set:Nn \foo_bar:nn {#1,#2},
i.e., the number of arguments is read from the signature.

\cs_set:Nn We want to define \cs_set:Nn as

\cs_set:Nx

\cs_set_nopar:Nn \cs_set_protected:Npn \cs_set:Nn #1#2

\cs_set_nopar:Nx 1
\cs_set_protected:Nn \cs_generate_from_arg_count:NNnn #1 \cs_set:Npn
\cs_set_protected:Nx { __cs_count_signature:N #1 } {#2}

e ¥

\cs_set_protected_nopar:Nn

\cs_set_protected_nopar:Nx 1y, gho1t. to define \cs_set :Nn we need just use \cs_set: Npn, everything else is the same

for each variant. Therefore, we can make it simpler by temporarily defining a function
to do this for us.

\cs_gset:Nn
\cs_gset:Nx
\cs_gset_nopar:Nn

\ N N 1304 \cs_set:Npn __cs_tmp:w #1#2#3
cs_gset_nopar:Nx

1305 {
\cs_gset_protected:Nn 1306 \cs_new_protected_nopar:cpx { cs_ #1 : #2 }
\cs_gset_protected:Nx 1307 {
\cs_gset_protected_nopar:Nn 1308 \exp_not:N __cs_generate_from_signature:NNn
\cs_gset_protected_nopar:Nx 1300 \exp_after:wN \exp_not:N \cs:w cs_ #1 : #3 \cs_end:
\cs_new:Nn 1310 }
\cs_new:Nx 1311 }
\cs_new_nopar:Nn 1512 \cs_new_protected:Npn __cs_generate_from_signature:NNn #1#2
\cs_new_nopar : Nx s o
\cs_new_protected:Nn 1314 ;I_;;_split_function:NN #2 __cs_generate_from_signature:nnNNNn
1315
\cs_new_protected:Nx e}

\cs_new_protected_nopar:Nn 1317 \cs_new_protected:Npn __cs_generate_from_signature:nnNNNn #1#2#3#4#5#6

\cs_new_protected_nopar:Nx e 1

1319 \bool_if:NTF #3

1320 {

1321 \cs_generate_from_arg_count :NNnn
1322 #5 #4 { \tl_count:n {#2} } {#6}
1323 }

1324 {

245

1325 __msg_kernel_error:nnx { kernel } { missing-colon }

1326 { \token_to_str:N #5 }
1327 }
1328 ¥

Then we define the 24 variants beginning with N.
1320 __cs_tmp:w { set } {Nn } { Npn }
1330 __cs_tmp:w { set } {Nx } { Npx }
1331 __cs_tmp:w { set_nopar } {Nn 2} { Npn }
1332 __cs_tmp:w { set_nopar } {Nx } { Npx }
1333 __cs_tmp:w { set_protected } {Nn } { Npn }
1334 __cs_tmp:w { set_protected } {Nx } { Npx }
1335 __cs_tmp:w { set_protected_nopar } { Nn } { Npn }
1336 __cs_tmp:w { set_protected_nopar } { Nx } { Npx }
1337 __cs_tmp:w { gset } {Nn 2} { Npn }
1333 __cs_tmp:w { gset } {Nx } { Npx }
1330 __cs_tmp:w { gset_nopar } {Nn } { Npn }
1300 __cs_tmp:w { gset_nopar } {Nx } { Npx }
1301 __cs_tmp:w { gset_protected } {Nn } { Npn }
1322 __cs_tmp:w { gset_protected } {Nx } { Npx }
123 __cs_tmp:w { gset_protected_nopar } { Nn } { Npn }
1304 __cs_tmp:w { gset_protected_nopar } { Nx } { Npx }
135 __cs_tmp:w { new } {Nn } { Npn }
1306 __cs_tmp:w { new } {Nx } { Npx }
1307 __cs_tmp:w { new_nopar } {Nn } { Npn }
138 __cs_tmp:w { new_nopar } { Nx } { Npx }
1300 __cs_tmp:w { new_protected } {Nn } { Npn }
1350 __cs_tmp:w { new_protected } {Nx } { Npx }
1351 __cs_tmp:w { new_protected_nopar } { Nn } { Npn }
1352 __cs_tmp:w { new_protected_nopar } { Nx } { Npx }

(End definition for \cs_set:Nn and others. These functions are documented on page 77.)

\cs_set:cn The 24 ¢ variants simply use \exp_args:Nc.
\cs_set:cx 1353 \cs_set:Npn __cs_tmp:w #1#2

\cs_set_nopar:cn 1354 {
\cs_set_nopar:cx 1355 \cs_new_protected_nopar:cpx { cs_ #1 : c #2 }

\cs_set_protected:cn 1356 {

\cs_set_protected:cx 1357 \exp_not:N \exp_args:Nc
\cs_set_protected_nopar:cn 1358 \exp_after:wN \exp_not:N \cs:w cs_ #1 : N #2 \cs_end:
\cs_set_protected_nopar:cx 139) }

1360
\cs_gset:cn 161 __cs_tmp:w { set } {n}
\cs_gset:cx 1362 __cs_tmp:w { set } {x}
\cs_gset_nopar:cn 1363 __cs_tmp:w { set_nopar } {n}
\cs_gset_nopar:cx 1364 __cs_tmp:w { set_nopar } {x}
\cs_gset_protected:cn 1365 __cs_tmp:w { set_protected } {n}
\cs_gset_protected:cx 1366 __cs_tmp:w { set_protected } {x}
\cs_gset_protected_nopar:cn 1367 __cs_tmp:w { set_protected_nopar } { n }
\cs_gset_protected_nopar:cx 1366 __cs_tmp:w { set_protected_nopar } { x }
\cs_new:cn 1360 __cs_tmp:w { gset } {n}

\cs_new:cx

\cs_new_nopar:cn 26
\cs_new_nopar:cx
\cs_new_protected:cn
\cs_new_protected:cx
\cs_new_protected_nopar:cn

\cs_new_protected_nopar:cx

1370 __cs_tmp:w { gset } {x1}
1571 __cs_tmp:w { gset_nopar } {n}
172 __cs_tmp:w { gset_nopar } {x1}
1373 __cs_tmp:w { gset_protected } {n}
1574 __cs_tmp:w { gset_protected } {x1}
1375 __cs_tmp:w { gset_protected_nopar } { n }
1376 __cs_tmp:w { gset_protected_nopar } { x }
1377 __cs_tmp:w { new } {n}
1378 __cs_tmp:w { new } {x7
1370 __cs_tmp:w { new_nopar } {n}
1330 __cs_tmp:w { new_nopar } {x}
1331 __cs_tmp:w { new_protected } {n}
132 __cs_tmp:w { new_protected } {x1}
1383 __cs_tmp:w { new_protected_nopar } { n }
133 __cs_tmp:w { new_protected_nopar } { x }

(End definition for \cs_set:cn and others. These functions are documented on page 77.)

3.16 Checking control sequence equality

\cs_if_eq_p:NN Check if two control sequences are identical.

\cs_if_eq_p:cN 1385 \prg_new_conditional:Npnn \cs_if_eq:NN #1#2 { p , T , F , TF }
\cs_if_eq_p:Nc 1386 {

\cs_if_eq_p:cc 1387 \if_meaning:w #1#2

\cs_if_eq:NNTF 1388 \prg_return_true: \else: \prg_return_false: \fi:
\cs_if_eq:cNTF e}

\cs_if_eq:NcTF 1300 \cs_new_nopar:Npn \cs_if_eq_p:cN
1301 \cs_new_nopar:Npn \cs_if_eq:cNTF
1302 \cs_new_nopar:Npn \cs_if_eq:cNT
1303 \cs_new_nopar:Npn \cs_if_eq:cNF
1304 \cs_new_nopar:Npn \cs_if_eq_p:Nc
130 \cs_new_nopar:Npn \cs_if_eq:NcTF
1305 \cs_new_nopar:Npn \cs_if_eq:NcT
1307 \cs_new_nopar:Npn \cs_if_eq:NcF
130 \cs_new_nopar:Npn \cs_if_eq_p:cc
1399 \cs_new_nopar:Npn \cs_if_eq:ccTF
oo \cs_new_nopar:Npn \cs_if_eq:ccT
101 \cs_new_nopar:Npn \cs_if_eq:ccF

\exp_args:Nc \cs_if_eq_p:NN }
\exp_args:Nc \cs_if_eq:NNTF }
\exp_args:Nc \cs_if_eq:NNT }
\exp_args:Nc \cs_if_eq:NNF }
\exp_args:NNc \cs_if_eq_p:NN }
\exp_args:NNc \cs_if_eq:NNTF }
\exp_args:NNc \cs_if_eq:NNT }
\exp_args:NNc \cs_if_eq:NNF }
\exp_args:Ncc \cs_if_eq_p:NN }
\exp_args:Ncc \cs_if_eq:NNTF }
\exp_args:Ncc \cs_if_eq:NNT }
\exp_args:Ncc \cs_if_eq:NNF }

\cs_if_eq:ccTF

{
{
{
{
{
{
{
{
{
{
{
{

(End definition for \cs_if_eq:NN and others. These functions are documented on page 77.)

3.17 Diagnostic functions

__kernel_register_show:N Check that the variable exists, then apply the \showthe primitive to the variable. The
__kernel_register_show:c odd-looking \use:n gives a nicer output.

102 \cs_new_protected:Npn __kernel_register_show:N #1

1403 {

1404 \cs_if_exist:NTF #1

1405 { \tex_showthe:D \use:n {#1} }
1406 {

247

1407 __msg_kernel_error:nnx { kernel } { variable-not-defined }
1408 { \token_to_str:N #1 }

1409 }

1410 ¥

111 \cs_new_protected_nopar:Npn __kernel_register_show:c

1412 { \exp_args:Nc __kernel_register_show:N }

(End definition for __kernel_register_show:N and __kernel_register_show:c.)

\cs_show:N Some control sequences have a very long name or meaning. Thus, simply using TEX’s
\cs_show:c primitive \show could lead to overlong lines. The output of this primitive is mimicked
to some extent: a line-break is added after the first colon in the meaning (this is what
TEX does for macros and five \...mark primitives). Then the re-built string is given
to \iow_wrap:nnnN for line-wrapping. The \cs_show:c command converts its argument
to a control sequence within a group to avoid showing \relax for undefined control
sequences.
1413 \group_begin:
us \tex_lccode:D ‘? = ‘: \scan_stop:
uis \tex_catcode:D ‘7 = 12 \scan_stop:
1116 \tex_lowercase:D

1417 {

1418 \group_end:

1419 \cs_new_protected:Npn \cs_show:N #1

1420 {

1421 __msg_show_variable:n

1422 {

1423 > ~ \token_to_str:N #1 =

1424 \exp_after:wN __cs_show:www \cs_meaning:N #1
1425 \use_none:nn ? \prg_do_nothing:
1426 }

1427 }

1428 \cs_new:Npn __cs_show:www #1 7 { #1 7 \\ }
1429 }

1130 \cs_new_protected_nopar:Npn \cs_show:c
ust { \group_begin: \exp_args:NNc \group_end: \cs_show:N }

(End definition for \cs_show:N and \cs_show:c. These functions are documented on page ?77.)

3.18 Engine specific definitions

\xetex_if_engine_p: In some cases it will be useful to know which engine we’re running. This can all be
\luatex_if_engine_p: hard-coded for speed.

\pdftex_if_engine_p: 12 \cs_new_eq:NN \luatex_if_engine:T \use_none:n
\xetex_if_engine:TF 133 \cs_new_eq:NN \luatex_if_engine:F \use:n
\luatex_if_engine:TF 132 \cs_new_eq:NN \luatex_if_engine:TF \use_ii:nn

\pdftex_if_engine:TF 135 \cs_new_eq:NN \pdftex_if_engine:T \use:n
16 \cs_new_eq:NN \pdftex_if_engine:F \use_none:n
137 \cs_new_eq:NN \pdftex_if_engine:TF \use_i:nn
13 \cs_new_eq:NN \xetex_if_engine:T \use_none:n
13 \cs_new_eq:NN \xetex_if_engine:F \use:n

248

\prg_do_nothing:

\str_if_eq_p:nn
\str_if_eq_x_p:nn
\str_if_eq:nnTF
\str_if_eq_x:nnTF

w0 \cs_new_eq:NN \xetex_if_engine:TF \use_ii:nn
s \cs_new_eq:NN \luatex_if_engine_p: \c_false_bool
s \cs_new_eq:NN \pdftex_if_engine_p: \c_true_bool

143 \cs_new_eq:NN \xetex_if_engine_p:

142 \cs_if_exist:NT
1445 {
1446
1447
1448

1449

1454 T
\cs_if_exist:NT
1456 {

1463
1464

1465 }

(End definition for \xetex_if_engine:, \luatex_if_engine:, and \pdftex_if_engine:.

\cs_gset_eq:
\cs_gset_eq:
\cs_gset_eq:
\cs_gset_eq:
\cs_gset_eq:
\cs_gset_eq:
\cs_gset_eq:
\cs_gset_eq:

\cs_gset_eq:
\cs_gset_eq:
\cs_gset_eq:
\cs_gset_eq:
\cs_gset_eq:
\cs_gset_eq:
\cs_gset_eq:
\cs_gset_eq:

\xetex_XeTeXversion:D

NN
NN
NN
NN
NN
NN
NN
NN

\pdftex_if_engine:T
\pdftex_if_engine:F
\pdftex_if_engine:TF
\xetex_if_engine:T
\xetex_if_engine:F
\xetex_if_engine:TF
\pdftex_if_engine_p:
\xetex_if_engine_p:

\luatex_directlua:D

NN
NN
NN
NN
NN
NN
NN
NN

\luatex_if_engine:T
\luatex_if_engine:F
\luatex_if_engine:TF
\pdftex_if_engine:T
\pdftex_if_engine:F
\pdftex_if_engine:TF
\luatex_if_engine_p:
\pdftex_if_engine_p:

tions are documented on page 25.)

3.19 Doing nothing functions

This does not fit anywhere else!

1ss \cs_new_nopar:Npn \prg_do_nothing: { }

\c_false_bool

\use_none:n
\use:n
\use_ii:nn
\use:n
\use_none:n
\use_i:nn
\c_false_bool
\c_true_bool

\use:n
\use_none:n
\use_i:nn
\use_none:n
\use:n
\use_ii:nn
\c_true_bool
\c_false_bool

(End definition for \prg_do_nothing:. This function is documented on page 9.)

3.20 String comparisons

These func-

Modern engines provide a direct way of comparing two token lists, but returning a num-
ber. This set of conditionals therefore make life a bit clearer. The nn and xx versions are
created directly as this is most efficient. These should eventually move somewhere else.

1467
1468 {
1469

1470 = \c_zero
1471

>}

14

2

1473

1474 {

249

\prg_new_conditional:Npnn \str_if_eq:nn #1#2 { p , T , F , TF }

\prg_return_true: \else: \prg_return_false: \fi:

\prg_new_conditional:Npnn \str_if_eq x:nn #1#2 { p , T , F , TF }

\if _int_compare:w \pdftex_strcmp:D { \exp_not:n {#1} } { \exp_not:n {#2} }

__str_if_eq_x_return:nn

\str_case:nn
\str_case_x:nn
\str_case:nnTF

\str_case_x:nnTF

__prg_case_end:nw

1477

}

\if_int_compare:w \pdftex_strcmp:D {#1} {#2} = \c_zero
\prg_return_true: \else: \prg_return_false: \fi:

(End definition for \str_if_eq:nn and \str_if_eq_x:nn. These functions are documented on page 22.)

It turns out that we often need to compare a token list with the result of applying
some function to it, and return with \prg_return_true/false:. This test is similar to
\str_if_eq:nnTF, but hard-coded for speed.

1480

1481

1482

1483

1484

1485

\cs_

{

}

new:Npn __str_if_eq_x_return:nn #1 #2

\if_int_compare:w \pdftex_strcmp:D {#1} {#2} = \c_zero
\prg_return_true:

\else:
\prg_return_false:

\fi:

(End definition for __str_if_eq_x_return:nn.)

The aim here is to allow the case statement to be evaluated using a known number of
expansion steps (two), and without needing to use an explicit “end of recursion” marker.
That is achieved by using the test input as the final case, as this will always be true. The
trick is then to tidy up the output such that the appropriate case code plus either the
true or false branch code is inserted.

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

\cs_

{

}

\cs_.

{

}

\cs_.

{

}

\cs_

{

}

\cs_

{

\cs_.

{

new:Npn \str_case:nn #1#2

\tex_romannumeral:D
__str_case:nnTF {#1} {#2} { } { }

new:Npn \str_case:nnT #1#2#3

\tex_romannumeral:D
__str_case:nnTF {#1} {#2} {#3} { }

new:Npn \str_case:nnF #1#2

\tex_romannumeral :D
__str_case:nnTF {#1} {#2} { }

new:Npn \str_case:nnTF #1#2

\tex_romannumeral :D
__str_case:nnTF {#1} {#2}

new:Npn __str_case:nnTF #1#2#3#4
__str_case:nw {#1} #2 {#1} { } \q_mark {#3} \q_mark {#4} \q_stop }
new:Npn __str_case:nw #1#2#3
\str_if_eq:nnTF {#1} {#2}
{ __str_case_end:nw {#3} }

250

__prg_break_point:Nn
__prg_map_break:Nn

1512 { __str_case:nw {#1} }

1513 }

1514 \cs_new:Npn \str_case_x:nn #1#2

1515 {

1516 \tex_romannumeral:D

1517 __str_case_x:nnTF {#1} {#2} { } { }
1518 3

1510 \cs_new:Npn \str_case_x:nnT #1#2#3
1520 {

1521 \tex_romannumeral :D

1522 __str_case_x:nnTF {#1} {#2} {#3} { }
1523 }

152 \cs_new:Npn \str_case_x:nnF #1#2

1525 {

1526 \tex_romannumeral :D

1527 __str_case_x:nnTF {#1} {#2} { }
1528 }

1520 \cs_new:Npn \str_case_x:nnTF #1#2
1530 {

1531 \tex_romannumeral:D

1532 __str_case_x:nnTF {#1} {#2}

1533 }

1532 \cs_new:Npn __str_case_x:nnTF #1#2#3#4
1535 { __str_case_x:nw {#1} #2 {#1} { } \q_mark {#3} \g_mark {#4} \g_stop }
153 \cs_new:Npn __str_case_x:nw #1#2#3

1537 {

1538 \str_if_eq_x:nnTF {#1} {#2}
1539 { __str_case_end:nw {#3} }
1540 { __str_case_x:nw {#1} }
1541 T

To tidy up the recursion, there are two outcomes. If there was a hit to one of the cases
searched for, then #1 will be the code to insert, #2 will be the next case to check on and
#3 will be all of the rest of the cases code. That means that #4 will be the true branch
code, and #5 will be tidy up the spare \q_mark and the false branch. On the other
hand, if none of the cases matched then we arrive here using the “termination” case of
comparing the search with itself. That means that #1 will be empty, #2 will be the first
\g_mark and so #4 will be the false code (the true code is mopped up by #3).

122 \cs_new:Npn __prg_case_end:nw #1#2#3 \q_mark #4#5 \q_stop

1543 { \c_zero #1 #4 }

1544 \cs_new_eq:NN __str_case_end:nw __prg_case_end:nw

(End definition for \str_case:nn and \str_case_x:nn. These functions are documented on page 26.)

3.21 Breaking out of mapping functions

In inline mappings, the nesting level must be reset at the end of the mapping, even when
the user decides to break out. This is done by putting the code that must be performed
as an argument of __prg_break_point:Nn. The breaking functions are then defined
to jump to that point and perform the argument of __prg_break_point:Nn, before

251

__prg_break_point:
__prg_break:
__prg_break:n

\str_case:nnn
\str_case_x:nnn

\exp_after:wl
\exp_not:N
\exp_not:n

the user’s code (if any). There is a check that we close the correct loop, otherwise we
continue breaking.

1545 \cs_new_eq:NN __prg_break_point:Nn \use_ii:nn

1526 \cs_new:Npn __prg_map_break:Nn #1#2#3 __prg_break_point:Nn #4#5

1547 {

1548 #5

1549 \if _meaning:w #1 #4

1550 \exp_after:wN \use_iii:nnn
1551 \fi:

1552 __prg_map_break:Nn #1 {#2}
1553 }

(End definition for __prg_break_point:Nn and __prg_map_break:Nn. These functions are documented
on page 43.)

Very simple analogues of __prg_break_point:Nn and __prg_map_break:Nn, for use
in fast short-term recursions which are not mappings, do not need to support nesting,
and in which nothing has to be done at the end of the loop.

1554 \cs_new_eq:NN __prg_break_point: \prg_do_nothing:

1555 \cs_new:Npn __prg_break: #1 __prg_break_point: { }

1556 \cs_new:Npn __prg_break:n #1#2 __prg_break_point: {#1}
(End definition for __prg_break_point:. This function is documented on page 77.)

3.22 Deprecated functions
Deprecated 2013-07-15.

1557 \cs_new_eq:NN \str_case:nnn \str_case:nnF
1556 \cs_new_eq:NN \str_case_x:nnn \str_case_x:nnF

(End definition for \str_case:nnn and \str_case_x:nnn. These functions are documented on page 77?.)

1550 (/initex | package)

4 13expan implementation

160 (*initex | package)
1561 (@@zexp>

These are defined in I3basics.
(End definition for \exp_after:wN. This function is documented on page 33.)

4.1 General expansion

In this section a general mechanism for defining functions to handle argument handling is
defined. These general expansion functions are expandable unless x is used. (Any version
of x is going to have to use one of the KTEX3 names for \cs_set_nopar:Npx at some
point, and so is never going to be expandable.)

The definition of expansion functions with this technique happens in section 4.3. In
section 4.2 some common cases are coded by a more direct method for efficiency, typically
using calls to \exp_after:wN.

252

\1__exp_internal_t1 This scratch token list variable is defined in I3basics, as it is needed “early”. This is just

a reminder that is the case!
(End definition for \1__exp_internal_t1l. This variable is documented on page 3/.)

This code uses internal functions with names that start with \:: to perform the
expansions. All macros are long as this turned out to be desirable since the tokens
undergoing expansion may be arbitrary user input.

An argument manipulator \::(Z) always has signature #1\: : : #2#3 where #1 holds
the remaining argument manipulations to be performed, \::: serves as an end marker
for the list of manipulations, #2 is the carried over result of the previous expansion steps
and #3 is the argument about to be processed. One exception to this rule is \: : p, which
has to grab an argument delimited by a left brace.

#1 is the result of an expansion step, #2 is the remaining argument manipulations and #3
is the current result of the expansion chain. This auxiliary function moves #1 back after
#3 in the input stream and checks if any expansion is left to be done by calling #2. In
by far the most cases we will require to add a set of braces to the result of an argument
manipulation so it is more effective to do it directly here. Actually, so far only the ¢ of
the final argument manipulation variants does not require a set of braces.

1562 \cs_new:Npn __exp_arg_next:nnn #1#2#3 { #2 \::: { #3 {#1} } }

1563 \cs_new:Npn __exp_arg_next:Nnn #1#2#3 { #2 \::: { #3 #1 } }

(End definition for __exp_arg_next:nnn.)

\::: The end marker is just another name for the identity function.
1564 \cs_new:Npn \::: #1 {#1}
(End definition for \:::.)

\::n This function is used to skip an argument that doesn’t need to be expanded.
1565 \cs_new:Npn \::n #1 \::: #2#3 { #1 \::: { #2 {#3} } }
(End definition for \::n.)

\::N This function is used to skip an argument that consists of a single token and doesn’t need
to be expanded.
e \cs_new:Npn \::N #1 \::: #2#3 { #1 \::: {#2#3} }
(End definition for \::N.)

\::p This function is used to skip an argument that is delimited by a left brace and doesn’t
need to be expanded. It should not be wrapped in braces in the result.
o7 \cs_new:Npn \::p #1 \::: #2#3# { #1 \::: {#2#3} }
(End definition for \::p.)

\::c This function is used to skip an argument that is turned into a control sequence without
expansion.
1565 \cs_new:Npn \::c #1 \::: #2#3
160 { \exp_after:wN __exp_arg _next:Nnn \cs:w #3 \cs_end: {#1} {#2} }
(End definition for \::c.)

253

\:

\:

:0

. f

\exp_stop_f£:

~ -

< <

This function is used to expand an argument once.

1570 \cs_new:Npn \::o #1 \::: #2#3

1571 { \exp_after:wN __exp_arg_next:nnn \exp_after:wN {#3} {#1} {#2} }
(End definition for \::o.)

This function is used to expand a token list until the first unexpandable token is found.
The underlying \romannumeral -‘0 expands everything in its way to find something
terminating the number and thereby expands the function in front of it. This scanning
procedure is terminated once the expansion hits something non-expandable or a space.
We introduce \exp_stop_f: to mark such an end of expansion marker; in case the
scanner hits a number, this number also terminates the scanning and is left untouched.
In the example shown earlier the scanning was stopped once TEX had fully expanded
\cs_set_eq:Nc \aaa { b \1_tmpa_tl b }into \cs_set_eq:NN \aaa = \blurb which
then turned out to contain the non-expandable token \cs_set_eq:NN. Since the expan-
sion of \romannumeral -‘0 is (null), we wind up with a fully expanded list, only TEX
has not tried to execute any of the non-expandable tokens. This is what differentiates
this function from the x argument type.

1572 \cs_new:Npn \::f #1 \::: #2#3

1573 {

1574 \exp_after:wN __exp_arg_next:nnn

1575 \exp_after:wN { \tex_romannumeral:D -‘0 #3 }
1576 {#1} {#2}

1577 T

1576 \use:nn { \cs_new_eq:NN \exp_stop_f: } { ~ }
(End definition for \::f.)

This function is used to expand an argument fully.
1579 \cs_new_protected:Npn \::x #1 \::: #2#3

1580 {

1581 \cs_set_nopar:Npx \1__exp_internal_tl { {#3} }

1582 \exp_after:wN __exp_arg_next:nnn \1__exp_internal_tl {#1} {#2}
1583 }

(End definition for \::x.)

These functions return the value of a register, i.e., one of t1, clist, int, skip, dim
and muskip. The V version expects a single token whereas v like ¢ creates a csname
from its argument given in braces and then evaluates it as if it was a V. The primitive
\romannumeral sets off an expansion similar to an f type expansion, which we will
terminate using \c_zero. The argument is returned in braces.

1ss \cs_new:Npn \::V #1 \::: #2#3

1585 {

1586 \exp_after:wN __exp_arg_next:nnn

1587 \exp_after:wN { \tex_romannumeral:D __exp_eval_register:N #3 }
1588 {#1} {#2}

1589 }

1500 \cs_new:Npn \::v # 1\::: #2#3

1591 {

254

__exp_eval_register:N

\

exp_eval_register:c

1502 \exp_after:wN __exp_arg_next:nnn
1503 \exp_after:wN { \tex_romannumeral:D __exp_eval_register:c {#3} }
1504 {#1} {#2}
1595 ¥
(End definition for \::v.)

This function evaluates a register. Now a register might exist as one of two things: A
parameter-less macro or a built-in TEX register such as \count. For the TEX registers we
have to utilize a \the whereas for the macros we merely have to expand them once. The
trick is to find out when to use \the and when not to. What we do here is try to find
out whether the token will expand to something else when hit with \exp_after:wN. The
technique is to compare the meaning of the register in question when it has been prefixed
with \exp_not:N and the register itself. If it is a macro, the prefixed \exp_not:N will
temporarily turn it into the primitive \scan_stop:.

1505 \cs_new:Npn __exp_eval_register:N #1

1597 {

1598 \exp_after:wN \if_meaning:w \exp_not:N #1 #1
If the token was not a macro it may be a malformed variable from a ¢ expansion in which
case it is equal to the primitive \scan_stop:. In that case we throw an error. We could
let TEX do it for us but that would result in the rather obscure

! You can’t use ‘\relax’ after \the.

which while quite true doesn’t give many hints as to what actually went wrong. We
provide something more sensible.

1509 \if_meaning:w \scan_stop: #1

1600 __exp_eval_error_msg:w

1601 \fi:
The next bit requires some explanation. The function must be initiated by the primitive
\romannumeral and we want to terminate this expansion chain by inserting the \c_zero
integer constant. However, we have to expand the register #1 before we do that. If it is a
TEX register, we need to execute the sequence \exp_after:wN \c_zero \tex_the:D #1
and if it is a macro we need to execute \exp_after:wN \c_zero #1. We therefore issue
the longer of the two sequences and if the register is a macro, we remove the \tex_the:D.

1602 \else:

1603 \exp_after:wN \use_i_ii:nnn

1604 \fi:

1605 \exp_after:wN \c_zero \tex_the:D #1

1606 }

1607 \cs_new:Npn __exp_eval_register:c #1

wose { \exp_after:wN __exp_eval_register:N \cs:w #1 \cs_end: }

Clean up nicely, then call the undefined control sequence. The result is an error message
looking like this:

! Undefined control sequence.
<argument> \LaTeX3 error:

Erroneous variable used!
1.55 \tl_set:Nv \1_tmpa_tl {undefined_tl}

255

\exp_args:No
\exp_args:NNo
\exp_args:NNNo

\exp_args:Nc
\exp_args:cc

\exp_args:NNc
\exp_args:Ncc
\exp_args:Nccc

\exp_args:Nf
\exp_args:NV
\exp_args:Nv

1600 \cs_new:Npn __exp_eval_error_msg:w #1 \tex_the:D #2

1610 {

1611 \fi:

1612 \fi:

1613 __msg_kernel_expandable_error:nnn { kernel } { bad-variable } {#2}
1614 \c_zero

1615 3

(End definition for __exp_eval_register:N and __exp_eval_register:c.)

4.2 Hand-tuned definitions

One of the most important features of these functions is that they are fully expandable
and therefore allow to prefix them with \tex_global:D for example.

Those lovely runs of expansion!

1616 \cs_new:Npn \exp_args:No #1#2 { \exp_after:wN #1 \exp_after:wN {#2} }

1617 \cs_new:Npn \exp_args:NNo #1#2#3

1618 { \exp_after:wN #1 \exp_after:wN #2 \exp_after:wN {#3} }

1610 \cs_new:Npn \exp_args:NNNo #1#2#3#4

160 { \exp_after:wN #1 \exp_after:wN#2 \exp_after:wN #3 \exp_after:wN {#4} }
(End definition for \exp_args:No. This function is documented on page 31.)

In I3basics.
(End definition for \exp_args:Nc and \exp_args:cc. These functions are documented on page ?7.)

Here are the functions that turn their argument into csnames but are expandable.

1621 \cs_new:Npn \exp_args:NNc #1#2#3

162 { \exp_after:wN #1 \exp_after:wN #2 \cs:w # 3\cs_end: }

1623 \cs_new:Npn \exp_args:Ncc #1#2#3

wos { \exp_after:wN #1 \cs:w #2 \exp_after:wN \cs_end: \cs:w #3 \cs_end: }
1625 \cs_new:Npn \exp_args:Nccc #1#2#3#4

1626 {

1627 \exp_after:wN #1

1628 \cs:w #2 \exp_after:wN \cs_end:
1629 \cs:w #3 \exp_after:wN \cs_end:
1630 \cs:w #4 \cs_end:

1631 }

(End definition for \exp_args:NNc, \exp_args:Ncc, and \exp_args:Nccc. These functions are docu-
mented on page 77.)

1632 \cs_new:Npn \exp_args:Nf #1#2

1633 { \exp_after:wN #1 \exp_after:wN { \tex_romannumeral:D -‘0 #2 } }
1632 \cs_new:Npn \exp_args:Nv #1#2

1635 {

1636 \exp_after:wN #1 \exp_after:wN

1637 { \tex_romannumeral:D __exp_eval_register:c {#2} }

1638 ¥

1630 \cs_new:Npn \exp_args:NV #1#2

256

\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:

NNV
NNv
NNf
NVV
Ncf
Nco

1640

1641

1642

1643

{

}

\exp_after:wN #1 \exp_after:wN
{ \tex_romannumeral:D __exp_eval_register:N #2 }

(End definition for \exp_args:Nf, \exp_args:NV, and \exp_args:Nv. These functions are documented
on page 50.)

Some more hand-tuned function with three arguments. If we forced that an o argument
always has braces, we could implement \exp_args:Nco with less tokens and only two
arguments.

1624 \cs_new:Npn \exp_args:NNf #1#2#3

1645

1646

1647

1648

1649

1650

1651

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

{

}

\cs_

{

}

\cs_

{

}

\cs_

{

}

\cs_

{

}

\exp_after:wN #1
\exp_after:wN #2
\exp_after:wN { \tex_romannumeral:D -‘0 #3 }

new:Npn \exp_args:NNv #1#2#3

\exp_after:wN #1

\exp_after:wN #2

\exp_after:wN { \tex_romannumeral:D __exp_eval_register:c {#3} }
new:Npn \exp_args:NNV #1#2#3

\exp_after:wN #1

\exp_after:wN #2

\exp_after:wN { \tex_romannumeral:D __exp_eval_register:N #3 }
new:Npn \exp_args:Nco #1#2#3

\exp_after:wN #1

\cs:w #2 \exp_after:wN \cs_end:

\exp_after:wN {#3}

new:Npn \exp_args:Ncf #1#2#3

\exp_after:wN #1

\cs:w #2 \exp_after:wN \cs_end:
\exp_after:wN { \tex_romannumeral:D -‘0 #3 }

1674 \cs_new:Npn \exp_args:NVV #1#2#3

1675

1676

1677

1678

1679

1680

{

}

\exp_after:wN #1

\exp_after:wN { \tex_romannumeral:D \exp_after:wN
__exp_eval_register:N \exp_after:wN #2 \exp_after:wN }

\exp_after:wN { \tex_romannumeral:D __exp_eval_register:N #3 }

(End definition for \exp_args:NNV and others. These functions are documented on page 77.)

257

\exp_args:Ncco

\exp_args:NcNc

\exp_args:NcNo

\exp_args:NNNV

\exp_args:Nx

\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:
\exp_args:

Nnc
Nfo
Nff
Nnf
Nno
NnV
Noo
Nof
Noc
NNx
Ncx
Nnx
Nox
Nxo
Nxx

A few more that we can hand-tune.
1651 \cs_new:Npn \exp_args:NNNV #1#2#3#4

1682 {

1683 \exp_after:wN #1

1684 \exp_after:wN #2

1685 \exp_after:wN #3

1686 \exp_after:wN { \tex_romannumeral:D __exp_eval_register:N #4 }
1687 T

s \cs_new:Npn \exp_args:NcNc #1#2#3#4
1689 {

1690 \exp_after:wN #1

1601 \cs:w #2 \exp_after:wN \cs_end:
1692 \exp_after:wN #3

1603 \cs:w #4 \cs_end:

1694 }

1605 \cs_new:Npn \exp_args:NcNo #1#2#3#4
1696 {

1607 \exp_after:wN #1

1608 \cs:w #2 \exp_after:wN \cs_end:
1699 \exp_after:wN #3

1700 \exp_after:wN {#4}

1701 }

1702 \cs_new:Npn \exp_args:Ncco #1#2#3#4
1703 {

1704 \exp_after:wN #1

1705 \cs:w #2 \exp_after:wN \cs_end:
1706 \cs:w #3 \exp_after:wN \cs_end:
1707 \exp_after:wN {#4}

1708 T

(End definition for \exp_args:Ncco and others. These functions are documented on page ?77.)

4.3 Definitions with the automated technique

Some of these could be done more efficiently, but the complexity of coding then becomes
an issue. Notice that the auto-generated functions are all not long: they don’t actually
take any arguments themselves.

1700 \cs_new_protected_nopar:Npn \exp_args:Nx { \::x \::: }
(End definition for \exp_args:Nx. This function is documented on page 30.)

Here are the actual function definitions, using the helper functions above.

1710 \cs_new_nopar:Npn \exp_args:Nnc { \::n \::c \::: }

1711 \cs_new_nopar:Npn \exp_args:Nfo { \::f \::o \::: }

1712 \cs_new_nopar:Npn \exp_args:Nff { \::f \::f \::: }

1713 \cs_new_nopar:Npn \exp_args:Nnf { \::n \::f \::: }

1712 \cs_new_nopar:Npn \exp_args:Nno { \::n \::o \::: }

1715 \cs_new_nopar:Npn \exp_args:NnV { \::n \::V \::: }
258

1716 \cs_new_nopar:Npn \exp_args:Noo { \::0 \::0 \::: }
1717 \cs_new_nopar:Npn \exp_args:Nof { \::o \::f \::: }
1715 \cs_new_nopar:Npn \exp_args:Noc { \::0 \::c \::: }
1719 \cs_new_protected_nopar:Npn \exp_args:NNx { \::N \::x \::: }
1720 \cs_new_protected_nopar:Npn \exp_args:Ncx { \::c \::x \::: }
1721 \cs_new_protected_nopar:Npn \exp_args:Nnx { \::n \::x \::: }
1722 \cs_new_protected_nopar:Npn \exp_args:Nox { \::o \::x \::: }
1723 \cs_new_protected_nopar:Npn \exp_args:Nxo { \::x \::0 \::: }
1724 \cs_new_protected_nopar:Npn \exp_args:Nxx { \::x \::x \::: }

(End definition for \exp_args:Nnc and others. These functions are documented on page 77?.)

\exp_args:NNno

\exp_args:NNoo 1725 \cs_new_nopar:Npn \exp_args:NNno { \::N \::n \::o \::: }
\exp_args:Nnnc 1726 \cs_new_nopar:Npn \exp_args:NNoo { \::N \::0 \::0 \::: }
\exp_args:Nnno 1727 \cs_new_nopar:Npn \exp_args:Nnnc { \::n \::n \::c \::: }
\exp_args:Nooo 1726 \cs_new_nopar:Npn \exp_args:Nnno { \::n \::n \::0 \::: }
\exp_args: NNnx 1720 \cs_new_nopar:Npn \exp_args:Nooo { \::0 \::0 \::0 \::: }
\exp_args : NNox 1730 \cs_new_protected_nopar:Npn \exp_args:NNnx { \::N \::n \::x \::: }
\exp_args : Nnnx 1731 \cs_new_protected_nopar:Npn \exp_args:NNox { \::N \::o \::x \::: }
\exp_args : Nnox 1732 \cs_new_protected_nopar:Npn \exp_args:Nnnx { \::n \::n \::x \::: }
- 1733 \cs_new_protected_nopar:Npn \exp_args:Nnox { \::n \::o \::x \::: }
\exp_args:Necx 172 \cs_new_protected_nopar:Npn \exp_args:Nccx { \::c \::c \::x \::: }
\exp_args:Nenx 1735 \cs_new_protected_nopar:Npn \exp_args:Ncnx { \::c \::n \::x \::: }
\exp_args:Noox \cs_new_protected_nopar:Npn \exp_args:Noox { \::o \::o \::x \::: }

(End definition for \exp_args:NNno and others. These functions are documented on page 77.)

4.4 Last-unbraced versions

There are a few places where the last argument needs to be available unbraced. First
some helper macros.

1737 \cs_new:Npn __exp_arg_last_unbraced:nn #1#2 { #2#1 }

1735 \cs_new:Npn \::f_unbraced \::: #1#2

1739 {

1740 \exp_after:wN __exp_arg_last_unbraced:nn

1741 \exp_after:wN { \tex_romannumeral:D -‘0 #2 } {#1}

1742 }

1723 \cs_new:Npn \::o_unbraced \::: #1#2

waa - { \exp_after:wN __exp_arg_last_unbraced:nn \exp_after:wN {#2} {#1} }
175 \cs_new:Npn \::V_unbraced \::: #1#2

s

1747 \exp_after:wN __exp_arg_last_unbraced:nn

1748 \exp_after:wN { \tex_romannumeral:D __exp_eval_register:N #2 } {#1}
1749}

1750 \cs_new:Npn \::v_unbraced \::: #1#2

1751 {

1752 \exp_after:wN __exp_arg_last_unbraced:nn

1753 \exp_after:wN { \tex_romannumeral:D __exp_eval_register:c {#2} } {#1}
1754 }

1755 \cs_new_protected:Npn \::x_unbraced \::: #1#2

259

1756 {

1757 \cs_set_nopar:Npx \1__exp_internal_tl { \exp_not:n {#1} #2 }
1758 \1__exp_internal_tl

1759 T

(End definition for __exp_arg_last_unbraced:nn.)

\exp_last_unbraced:NV Now the business end: most of these are hand-tuned for speed, but the general system is
\exp_last_unbraced:Nv in place.

\exp_last_unbraced:Nf 1760 \cs_new:Npn \exp_last_unbraced:NV #1#2

\exp_last_unbraced:No et { \exp_after:wN #1 \tex_romannumeral:D __exp_eval_register:N #2 }
\exp_last_unbraced:Nco 1762 \cs_new:Npn \exp_last_unbraced:Nv #1#2

\exp_last_unbraced:NcV 1763 { \exp_after:wN #1 \tex_romannumeral:D __exp_eval_register:c {#2} }

\exp_last_unbraced: NNV 1764 \cs_new:Npn \exp_last_unbraced:No #1#2 { \exp_after:wN #1 #2 }
1765 \cs_new:Npn \exp_last_unbraced:Nf #1#2

76 { \exp_after:wN #1 \tex_romannumeral:D -‘0 #2 }

1767 \cs_new:Npn \exp_last_unbraced:Nco #1#2#3

1768 { \exp_after:wN #1 \cs:w #2 \exp_after:wN \cs_end: #3 }

1760 \cs_new:Npn \exp_last_unbraced:NcV #1#2#3

\exp_last_unbraced:NNo
\exp_last_unbraced:NNNV
\exp_last_unbraced:NNNo

\exp_last_unbraced:Nno

\exp_last_unbraced:Noo

1770 {
\exp_last_unbraced:Nfo - \exp_after:wN #1
\exp_last_unbraced:NnNo 1772 \cs:w #2 \exp_after:wN \cs_end:
\exp_last_unbraced:Nx 1773 \tex_romannumeral:D __exp_eval_register:N #3
1774 }
1775 \cs_new:Npn \exp_last_unbraced:NNV #1#2#3
1776 {

1777 \exp_after:wN #1

1778 \exp_after:wN #2

1779 \tex_romannumeral:D __exp_eval_register:N #3
1780 }

1751 \cs_new:Npn \exp_last_unbraced:NNo #1#2#3

w2 { \exp_after:wN #1 \exp_after:wN #2 #3 }

1753 \cs_new:Npn \exp_last_unbraced:NNNV #1#2#3#4

1784 {

1785 \exp_after:wN #1

1786 \exp_after:wN #2

1787 \exp_after:wN #3

1788 \tex_romannumeral:D __exp_eval_register:N #4
1789 T

1790 \cs_new:Npn \exp_last_unbraced:NNNo #1#2#3#4

191 { \exp_after:wN #1 \exp_after:wN #2 \exp_after:wN #3 #4 }

1792 \cs_new_nopar:Npn \exp_last_unbraced:Nno { \::n \::o_unbraced \::: }

17903 \cs_new_nopar:Npn \exp_last_unbraced:Noo { \::0 \::o_unbraced \::: }

1794 \cs_new_nopar:Npn \exp_last_unbraced:Nfo { \::f \::o_unbraced \::: }

1705 \cs_new_nopar:Npn \exp_last_unbraced:NnNo { \::n \::N \::o_unbraced \::: }
179 \cs_new_protected_nopar:Npn \exp_last_unbraced:Nx { \::x_unbraced \::: }

(End definition for \exp_last_unbraced:NV. This function is documented on page 32.)

\exp_last_two_unbraced:Noo If #2 is a single token then this can be implemented as

260

\exp_not:
\exp_not:
\exp_not:
\exp_not:

4 < H 0 O

\exp_not:

\cs_generate_variant:Nn

\cs_new:Npn \exp_last_two_unbraced:Noo #1 #2 #3
{ \exp_after:wN \exp_after:wN \exp_after:wN #1 \exp_after:wN #2 #3 }

However, for robustness this is not suitable. Instead, a bit of a shuffle is used to ensure
that #2 can be multiple tokens.

1707 \cs_new:Npn \exp_last_two_unbraced:Noo #1#2#3

195 { \exp_after:wN __exp_last_two_unbraced:noN \exp_after:wN {#3} {#2} #1 }
1799 \cs_new:Npn __exp_last_two_unbraced:noN #1#2#3

1800 { \exp_after:wN #3 #2 #1 }

(End definition for \exp_last_two_unbraced:Noo. This function is documented on page 32.)

4.5 Preventing expansion

101 \cs_new:Npn \exp_not:o #1 { \etex_unexpanded:D \exp_after:wN {#1} }

1502 \cs_new:Npn \exp_not:c #1 { \exp_after:wN \exp_not:N \cs:w #1 \cs_end: }
1803 \cs_new:an \exp_not:f #1

10e { \etex_unexpanded:D \exp_after:wN { \tex_romannumeral:D -‘0 #1 } }
1505 \cs_new:Npn \exp_not:V #1

1806 {

1807 \etex_unexpanded:D \exp_after:wN

1808 { \tex_romannumeral:D __exp_eval_register:N #1 }
1809 }

1510 \cs_new:Npn \exp_not:v #1

1811 {

1812 \etex_unexpanded:D \exp_after:wN

1813 { \tex_romannumeral:D __exp_eval_register:c {#1} }
1814 T

(End definition for \exp_not:o. This function is documented on page 33.)

4.6 Defining function variants
1815 <@@:CS>

#1 : Base form of a function; e.g., \t1l_set:Nn
#2 : One or more variant argument specifiers; e.g., {Nx,c,cx}

After making sure that the base form exists, test whether it is protected or not and
define __cs_tmp:w as either \cs_new_nopar:Npx or \cs_new_protected_nopar:Npx,
which is then used to define all the variants (except those involving x-expansion, always
protected). Split up the original base function only once, to grab its name and signature.
Then we wish to iterate through the comma list of variant argument specifiers, which we
first convert to a string: the reason is explained later.

1516 \cs_new_protected:Npn \cs_generate_variant:Nn #1#2

1817 {

1818 __chk_if_exist_cs:N #1

1819 __cs_generate_variant:N #1

1820 \exp_after:wN __cs_split_function:NN
1821 \exp_after:wN #1

261

1822 \exp_after:wN __cs_generate_variant:nnNN

1823 \exp_after:wN #1
1824 \etex_detokenize:D {#2} , \scan_stop: , \g_recursion_stop
1825 T

(End definition for \cs_generate_variant:Nn. This function is documented on page 28.)

The goal here is to pick up protected parent functions. There are four cases: the parent
function can be a primitive or a macro, and can be expandable or not. For non-expandable
primitives, all variants should be protected; skipping the \else: branch is safe because
all primitive TEX conditionals are expandable.

The other case where variants should be protected is when the parent function is a
protected macro: then protected appears in the meaning before the fist occurrence of
macro. The ww auxiliary removes everything in the meaning string after the first ma. We
use ma rather than the full macro because the meaning of the \firstmark primitive (and
four others) can contain an arbitrary string after a leading firstmark:. Then, look for
pr in the part we extracted: no need to look for anything longer: the only strings we
can have are an empty string, \long ,, \protected,,, \protected\long,, \first, \top,
\bot, \splittop, or \splitbot, with \ replaced by the appropriate escape character. If
pr appears in the part before ma, the first \q_mark is taken as an argument of the wwNw
auxiliary, and #3 is \cs_new_protected_nopar:Npx, otherwise it is \cs_new_nopar :Npx.

1826 \group_begin:

127 \tex_catcode:D ‘\M = 12 \scan_stop:
1828 \tex_catcode:D ‘\A 12 \scan_stop:
120 \tex_catcode:D ‘\P = 12 \scan_stop:
130 \tex_catcode:D ‘\R = 12 \scan_stop:
1831 \tex_lowercase:D

1832 {

1833 \group_end:

1834 \cs_new_protected:Npn __cs_generate_variant:N #1
1835 {

1836 \exp_after:wN \if_meaning:w \exp_not:N #1 #1
1837 \cs_set_eq:NN __cs_tmp:w \cs_new_protected_nopar:Npx
1838 \else:

1839 \exp_after:wN __cs_generate_variant:ww

1840 \token_to_meaning:N #1 MA \q_mark

1841 \gq_mark \cs_new_protected_nopar:Npx

1842 PR

1843 \q_mark \cs_new_nopar:Npx

1844 \q_StOp

1845 \fi:

1846 }

1847 \cs_new_protected:Npn __cs_generate_variant:ww #1 MA #2 \q_mark
1848 { __cs_generate_variant:wwNw #1 }

1849 \cs_new_protected:Npn __cs_generate_variant:wwNw
1850 #1 PR #2 \q_mark #3 #4 \q_stop

1851 {

1852 \cs_set_eq:NN __cs_tmp:w #3

1853 }

262

1854 }

(End definition for __cs_generate_variant:N.)

#1 : Base name.

#2 : DBase signature.
#3 : Boolean.

#4 : Base function.

If the boolean is \c_false_bool, the base function has no colon and we abort with
an error; otherwise, set off a loop through the desired variant forms. The original function
is retained as #4 for efficiency.

155 \cs_new_protected:Npn __cs_generate_variant:nnNN #1#2#3#4

1856 {

1857 \if _meaning:w \c_false_bool #3

1858 __msg_kernel_error:nnx { kernel } { missing-colon }
1859 { \token_to_str:c {#1} }

1860 \exp_after:wN \use_none_delimit_by_q_recursion_stop:w
1861 \fi:

1862 __cs_generate_variant:Nnnw #4 {#1}{#2}

1863 }

(End definition for __cs_generate_variant:nnNN.)

#1 : Base function.

#2 : Base name.

#3 : DBase signature.

#4 : Beginning of variant signature.

First check whether to terminate the loop over variant forms. Then, for each variant
form, construct a new function name using the original base name, the variant signature
consisting of [letters and the last k — [letters of the base signature (of length k). For
example, for a base function \prop_put :Nnn which needs a cV variant form, we want the
new signature to be cVn.

There are further subtleties:

e In \cs_generate_variant:Nn \foo:nnTF {xxTF}, it would be better to define
\foo:xxTF using \exp_args:Nxx, rather than a hypothetical \exp_args:NxxTF.
Thus, we wish to trim a common trailing part from the base signature and the
variant signature.

e In \cs_generate_variant:Nn \foo:on {ox}, the function \foo:ox should be de-
fined using \exp_args:Nnx, not \exp_args:Nox, to avoid double o expansion.

o Lastly, \cs_generate_variant:Nn \foo:on {xn} should trigger an error, because
we do not have a means to replace o-expansion by x-expansion.

All this boils down to a few rules. Only n and N-type arguments can be replaced by
\cs_generate_variant:Nn. Other argument types are allowed to be passed unchanged
from the base form to the variant: in the process they are changed to n (except for two
cases: N and p-type arguments). A common trailing part is ignored.

263

We compare the base and variant signatures one character at a time within x-
expansion. The result is given to __cs_generate_variant:wwNN in the form (processed
variant signature) \q_mark (errors) \q_stop (base function) (new function). If all went
well, (errors) is empty; otherwise, it is a kernel error message, followed by some clean-up
code (\use_none:nnnn).

Note the space after #3 and after the following brace group. Those are ignored by
TEX when fetching the last argument for __cs_generate_variant_loop:nNwN, but can
be used as a delimiter for __cs_generate_variant_loop_end:nwwwNNnn.

156+ \cs_new_protected:Npn __cs_generate_variant:Nnnw #1#2#3#4 ,

1865 {

1866 \if _meaning:w \scan_stop: #4

1867 \exp_after:wN \use_none_delimit_by_q_recursion_stop:w
1868 \fi:

1869 \use:x

1870 {

1871 \exp_not:N __cs_generate_variant:wwNN

1872 __cs_generate_variant_loop:nNwN { }

1873 #4

1874 __cs_generate_variant_loop_end:nwwwNNnn

1875 \q_mark

1876 #3 ~

1877 { ~ {3} \fi: __cs_generate_variant_loop_long:wNNnn } ~
1878 {1}

1879 \q_stop

1880 \exp_not:N #1 {#2} {#4}

1881 }

1882 __cs_generate_variant:Nnnw #1 {#2} {#3}

1883 }

(End definition for __cs_generate_variant:Nnnw.)

#1 : Last few (consecutive) letters common between the base and variant (in fact, __-
cs_generate_variant_same:N (letter) for each letter).

#2 : Next variant letter.
#3 : Remainder of variant form.
#4 : Next base letter.

The first argument is populated by __cs_generate_variant_loop_same:w when
a variant letter and a base letter match. It is flushed into the input stream whenever the
two letters are different: if the loop ends before, the argument is dropped, which means
that trailing common letters are ignored.

The case where the two letters are different is only allowed with a base letter of
N or n. Otherwise, call __cs_generate_variant_loop_invalid:NNwNNnn to remove
the end of the loop, get arguments at the end of the loop, and place an appropriate
error message as a second argument of __cs_generate_variant:wwNN. If the letters
are distinct and the base letter is indeed n or N, leave in the input stream whatever
argument was collected, and the next variant letter #2, then loop by calling __cs_-
generate_variant_loop:nNwN.

The loop can stop in three ways.

264

If the end of the variant form is encountered first, #2 is __cs_generate_variant_-
loop_end:nwwwNNnn (expanded by the conditional \if :w), which inserts some to-
kens to end the conditional; grabs the (base name) as #7, the (variant signature)
#8, the (next base letter) #1 and the part #3 of the base signature that wasn’t read
yet; and combines those into the (new function) to be defined.

If the end of the base form is encountered first, #4 is ~{}\fi: which ends the condi-
tional (with an empty expansion), followed by __cs_generate_variant_loop_-
long:wNNnn, which places an error as the second argument of __cs_generate_-
variant :wwlN.

The loop can be interrupted early if the requested expansion is unavailable, namely
when the variant and base letters differ and the base is neither n nor N. Again, an
error is placed as the second argument of __cs_generate_variant:wwNN.

Note that if the variant form has the same length as the base form, #2 is as described in
the first point, and #4 as described in the second point above. The __cs_generate_-
variant_loop_end:nwwwNNnn breaking function takes the empty brace group in #4 as
its first argument: this empty brace group produces the correct signature for the full
variant.

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

\cs_new:Npn __cs_generate_variant_loop:nNwN #1#2#3 \q_mark #4
{

\if:w #2 #4
\exp_after:wN __cs_generate_variant_loop_same:w
\else:

\if:w N #4 \else:
\if:w n #4 \else:
__cs_generate_variant_loop_invalid:NNwNNnn #4#2
\fi:
\fi:
\fi:
#1
\prg_do_nothing:
#2
__cs_generate_variant_loop:nNwN { } #3 \g_mark
}
\cs_new:Npn __cs_generate_variant_loop_same:w
#1 \prg_do_nothing: #2#3#4
{
#3 { #1 __cs_generate_variant_same:N #2 }
}
\cs_new:Npn __cs_generate_variant_loop_end:nwwwNNnn
#1#2 \q_mark #3 ~ #4 \q_stop #5#6#T#8
{
\scan_stop: \scan_stop: \fi:
\exp_not:N \q_mark
\exp_not:N \qg_stop
\exp_not:N #6
\exp_not:c { #7 : #8 #1 #3 }

265

1913

1914

1915

1916

1917

1918

1919

1920

1921

1923

1924

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

}

\cs_new:Npn __cs_generate_variant_loop_long:wNNnn #1 \q_stop #2#3#4#5

{

}

\exp_not:n

{

\q_mark

__msg_kernel_error:nnxx { kernel } { variant-too-long }
{#5} { \token_to_str:N #3 }

\use_none:nnnn

\g_stop

#3

#3

\cs_new:Npn __cs_generate_variant_loop_invalid:NNwNNnn
#1#2 \fi: \fi: \fi: #3 \q_stop #4#5#6#7

{

}

\fi: \fi: \fi:
\exp_not:n
{
\q_mark

__msg_kernel_error:nnxxxx { kernel } { invalid-variant }
{#7} { \token_to_str:N #5 } {#1} {#2}

\use_none:nnnn

\q_stop

#5

#5

(End definition for __cs_generate_variant_loop:nNwN and others.)

When the base and variant letters are identical, don’t do any expansion. For most
argument types, we can use the n-type no-expansion, but the N and p types require a
slightly different behaviour with respect to braces.

1942

1943

1944

1945

1946

1947

1948

1949

1950

1953

\cs_new:Npn __cs_generate_variant_same:N #1

{

}

\if:

N

w N #1

\else:
\if:w p #1

p

\else:

n

\fi:

\fi:

(End definition for __cs_generate_variant_same:N.)

If the variant form has already been defined, log its existence. Otherwise, make sure
that the \exp_args:N #3 form is defined, and if it contains x, change __cs_tmp:w

266

__cs_generate_internal variant:n

locally to \cs_new_protected_nopar:Npx. Then define the variant by combining the
\exp_args:N #3 variant and the base function.

1052 \cs_new_protected:Npn __cs_generate_variant:wwNN

1055 #1 \g_mark #2 \q_stop #3#4

1956 {

1957 #2

1958 \cs_if_free:NTF #4

1959 {

1960 \group_begin:

1961 __cs_generate_internal_variant:n {#1}

1962 __cs_tmp:w #4 { \exp_not:c { exp_args:N #1 } \exp_not:N #3 }
1963 \group_end:

1964

1965 {

1966 \iow_log:x

1967 {

1968 Variant~\token_to_str:N #4-~,

1969 already~defined;~ not~ changing~ it~on~line~
1970 \tex_the:D \tex_inputlineno:D

1971 }

1972 }

1973 }

(End definition for __cs_generate_variant:wwhN.)

Test if \exp_args:N #1 is already defined and if not define it via the \: : commands using
the chars in #1. If #1 contains an x (this is the place where having converted the original
comma-list argument to a string is very important), the result should be protected, and
the next variant to be defined using that internal variant should be protected.

174 \group_begin:

175 \tex_catcode:D ‘\X = 12 \scan_stop:

176 \tex_lccode:D ‘\N = ‘\N \scan_stop:

1977 \tex_lowercase:D

1978 {

1079 \group_end:

1980 \cs_new_protected:Npn __cs_generate_internal_variant:n #1

1981 {

1982 __cs_generate_internal_variant:wwnNwnn

1983 #1 \q_mark

1984 { \cs_set_eq:NN __cs_tmp:w \cs_new_protected_nopar:Npx }
1085 \cs_new_protected_nopar:cpx

1986 X \q_mark

1987 { }

1088 \cs_new_nopar:cpx

1989 \q_StOp

1900 { exp_args:N #1 }

1991 { __cs_generate_internal_variant_loop:n #1 { : \use_i:nn } }
1992 }

1993 \cs_new_protected:Npn __cs_generate_internal_variant:wwnNwnn

1994 #1 X #2 \q_mark #3 #4 #5 \q_stop #6 #7

267

1995 {

1996 #3

1997 \cs_if_free:cT {#6} { #4 {#6} {#7} }
1998 }

1999 ¥

This command grabs char by char outputting \: :#1 (not expanded further). We avoid
tests by putting a trailing : \use_i:nn, which leaves \cs_end: and removes the looping

macro. The colon is in fact also turned into \::: so that the required structure for
\exp_args:N... commands is correctly terminated.

2000 \cs_new:Npn __cs_generate_internal_variant_loop:n #1

2001 {

2002 \exp_after:wN \exp_not:N \cs:w :: #1 \cs_end:

2003 __cs_generate_internal_variant_loop:n

2004 ¥

(End definition for __cs_generate_internal_variant:n.)

4.7 Variants which cannot be created earlier

\str_if_eq_p:Vn These cannot come earlier as they need \cs_generate_variant:Nn.

\str_if_eq_p:on 2005 \cs_generate_variant:Nn \str_if_eq p:nn { V , o }
\str_if_eq_p:nV 2006 \cs_generate_variant:Nn \str_if_eq p:nn { nV , no , VV }
\str_if_eq_p:no 2007 \cs_generate_variant:Nn \str_if_eq:nnT { V , o}
\str_if_eq_p:VV 205 \cs_generate_variant:Nn \str_if_eq:nnT { nV , no , VV }
\str_if_eq:VnTF 2000 \cs_generate_variant:Nn \str_if_eq:nnF { V , o}
\str_if_eq:onTF 2010 \cs_generate_variant:Nn \str_if_eq:nnF { nV , no , VV }
nVTF 2011 \cs_generate_variant:Nn \str_if_eq:nnTF { V , o }

\str_if_eq:
2012 \cs_generate_variant:Nn \str_if_eq:nnTF { nV , no , VV }

2013 \cs_generate_variant:Nn \str_case:nn { o }
2014 \cs_generate_variant:Nn \str_case:nnT { o }
2015 \cs_generate_variant:Nn \str_case:nnF { o }
2016 \cs_generate_variant:Nn \str_case:nnTF { o }

\str_if_eq:noTF
\str_if_eq:VVIF
\str_case:on
\str_case:onTF

(End definition for \str_if_eq:Vn and others. These functions are documented on page 77?.)

\str_case:onn Deprecated 2013-07-15.
2017 \cs_new_eq:NN \str_case:onn \str_case:onF

(End definition for \str_case:onn. This function is documented on page 77.)

2018 (/initex | package)

5 I13prg implementation

The following test files are used for this code: m3prg001.Ivt,m3prg002.Ivt,m3prg003.Ivt.

2010 (¥initex | package)

268

\if_bool:N
\if _predicate:w

\prg_set_conditional:Npnn
\prg_new_conditional:Npnn
\prg_set_protected_conditional:Npmn
\prg_new_protected_conditional:Npnn
\prg_set_conditional:Nnn
\prg_new_conditional:Nnn
\prg_set_protected_conditional:Non
\prg_new_protected Re@dtinay:ibh
\prg_set_eq_cond)beehaneNns
\prg_new_eq_conditional:NNn
\prg_return_true:
\prg_return_false:

\bool_set_true:
\bool_set_true:
\bool_gset_true:
\bool_gset_true:
\bool_set_false:
\bool_set_false:
\bool_gset_false:

0O =20 =20 =2 o0 =

\bool_gset_false:

\bool_set_eq:NN
\bool_set_eq:cN
\bool_set_eq:Nc
\bool_set_eq:cc
\bool_gset_eq:NN
\bool_gset_eq:cN
\bool_gset_eq:Nc
\bool_gset_eq:cc

5.1 Primitive conditionals

Those two primitive TEX conditionals are synonyms. They should not be used outside
the kernel code.

2000 \tex_let:D \if_bool:N \tex_ifodd:D

201 \tex_let:D \if_predicate:w \tex_ifodd:D
(End definition for \if_bool:N. This function is documented on page 42.)

5.2 Defining a set of conditional functions

These are all defined in I3basics, as they are needed “early”. This is just a reminder!

(End definition for \prg_set_conditional:Npnn and others. These functions are documented on page
37)

5.3 The boolean data type
2022 <@©:b00|>

Boolean variables have to be initiated when they are created. Other than that there is
not much to say here.

2023 \cs_new_protected:Npn \bool_new:N #1 { \cs_new_eq:NN #1 \c_false_bool }
2024 \cs_generate_variant:Nn \bool_new:N { ¢ }

(End definition for \bool_new:N and \bool_new:c. These functions are documented on page ?7.)

Setting is already pretty easy.

2025 \cs_new_protected:Npn \bool_set_true:N #1
2026 { \cs_set_eq:NN #1 \c_true_bool }

2027 \cs_new_protected:Npn \bool_set_false:N #1
208 { \cs_set_eq:NN #1 \c_false_bool }

2020 \cs_new_protected:Npn \bool_gset_true:N #1
2030 { \cs_gset_eq:NN #1 \c_true_bool }

2031 \cs_new_protected:Npn \bool_gset_false:N #1
2032 { \cs_gset_eq:NN #1 \c_false_bool }

2033 \cs_generate_variant:Nn \bool_set_true:N {
2034 \cs_generate_variant:Nn \bool_set_false:N {
2035 \cs_generate_variant:Nn \bool_gset_true:N {
203 \cs_generate_variant:Nn \bool_gset_false:N { ¢

o o o0

s

(End definition for \bool_set_true:N and others. These functions are documented on page ?7.)

The usual copy code.

2037 \cs_new_eq:NN \bool_set_eq:NN \cs_set_eq:NN
2035 \cs_new_eq:NN \bool_set_eq:Nc \cs_set_eq:Nc
2039 \cs_new_eq:NN \bool_set_eq:cN \cs_set_eq:cN
2000 \cs_new_eq:NN \bool_set_eq:cc \cs_set_eq:cc
2001 \cs_new_eq:NN \bool_gset_eq:NN \cs_gset_eq:NN
202 \cs_new_eq:NN \bool_gset_eq:Nc \cs_gset_eq:Nc
2003 \cs_new_eq:NN \bool_gset_eq:cN \cs_gset_eq:cN
2004 \cs_new_eq:NN \bool_gset_eq:cc \cs_gset_eq:cc

(End definition for \bool_set_eq:NN and others. These functions are documented on page 77.)

269

\bool_set:Nn This function evaluates a boolean expression and assigns the first argument the meaning
\bool_set:cn \c_true_bool or \c_false_bool.
\bool_gset:Nn 2045 \cs_new_protected:Npn \bool_set:Nn #1#2
\bool_gset:cn 26 { \tex_chardef:D #1 = \bool_if_p:n {#2} }
2047 \cs_new_protected:Npn \bool_gset:Nn #1#2
2048 { \tex_global:D \tex_chardef:D #1 = \bool_if_p:n {#2} }
2040 \cs_generate_variant:Nn \bool_set:Nn { c }
2050 \cs_generate_variant:Nn \bool_gset:Nn { c }
(End definition for \bool_set:Nn and \bool_set:cn. These functions are documented on page ?7.)
Booleans are not based on token lists but do need checking: this code complements
similar material in 13tl.
2051 <*package)
2052 \tex_ifodd:D \1l@expl@check@declarations@bool
2053 \cs_set_protected:Npn \bool_set_true:N #1

2054 {

2055 __chk_if_exist_var:N #1

2056 \cs_set_eq:NN #1 \c_true_bool

2057 }

2058 \cs_set_protected:Npn \bool_set_false:N #1
2059 {

2060 __chk_if_exist_var:N #1

2061 \cs_set_eq:NN #1 \c_false_bool

2062 }

2065 \cs_set_protected:Npn \bool_gset_true:N #1
2064 {

2065 __chk_if_exist_var:N #1

2066 \cs_gset_eq:NN #1 \c_true_bool

2067 }

2068 \cs_set_protected:Npn \bool_gset_false:N #1
2069 {

2070 __chk_if_exist_var:N #1

2071 \cs_gset_eq:NN #1 \c_false_bool

2072 }

2073 \cs_set_protected:Npn \bool_set_eq:NN #1
2074 {

2075 __chk_if_exist_var:N #1

2076 \cs_set_eq:NN #1

2077 }

2076 \cs_set_protected:Npn \bool_gset_eq:NN #1
2079 {

2080 __chk_if_exist_var:N #1

2081 \cs_gset_eq:NN #1

2082 }

2083 \cs_set_protected:Npn \bool_set:Nn #1#2
2084 {

2085 __chk_if_exist_var:N #1

2086 \tex_chardef:D #1 = \bool_if_p:n {#2}
2087 }

205 \cs_set_protected:Npn \bool_gset:Nn #1#2

270

2089 {

2090 __chk_if_exist_var:N #1

2001 \tex_global:D \tex_chardef:D #1 = \bool_if_p:n {#2}
2092 }

2003 \tex_f£fi:D

2001 (/package)

\bool_if_p:N Straight forward here. We could optimize here if we wanted to as the boolean can just
\bool_if_p:c be input directly.
\bool if:NTF ., \prg_new_conditional:Npnn \bool_if:N #1 {p , T , F , TF }
\bool_if:cTF 2006 {
2007 \if_meaning:w \c_true_bool #1
2008 \prg_return_true:
2099 \else:
2100 \prg_return_false:
2101 \fi:
2102 ¥
2103 \cs_generate_variant:Nn \bool_if_p:N
2104 \cs_generate_variant:Nn \bool_if:NT
2105 \cs_generate_variant:Nn \bool_if:NF
216 \cs_generate_variant:Nn \bool_if:NTF

S

{
{
{
{

o o0 oo

}

(End definition for \bool_if:N and \bool_if:c. These functions are documented on page ?77.)

\bool_show:N Show the truth value of the boolean, as true or false. We use __msg_show_variable:n
\bool_show:c to get a better output; this function requires its argument to start with >~.
\bool_show:n 2107 \cs_new_protected:Npn \bool_show:N #1

2108 {

2109 \bool_if_exist:NTF #1

2110 { \bool_show:n {#1} }

2111 {

2112 __msg_kernel_error:nnx { kernel } { variable-not-defined }
2113 { \token_to_str:N #1 }

2114 ¥

2115 T

2116 \cs_new_protected:Npn \bool_show:n #1

2117 {

2118 \bool_if:nTF {#1}

2119 { __msg_show_variable:n { > ~ true } }
2120 { __msg_show_variable:n { > ~ false } }
2121 ¥

2

2> \cs_generate_variant:Nn \bool_show:N { ¢ }

=

(End definition for \bool_show:N, \bool_show:c, and \bool_show:n. These functions are documented
on page 38.)

\1_tmpa_bool A few booleans just if you need them.
\1_tmpb_bool 2123 \bool_new:N \1_tmpa_bool
\g_tmpa_bool 2124 \bool_new:N \1_tmpb_bool
\g_tmpb_bool 2125 \bool_new:N \g_tmpa_bool

2126 \bool_new:N \g_tmpb_bool

=

271

(End definition for \1_tmpa_bool and others. These variables are documented on page 38.)

\bool_if_exist_p:N Copies of the cs functions defined in I3basics.
\bool_if_exist_p:c 2127 \prg_new_eq_conditional:NNn \bool_if_exist:N \cs_if_exist:N { TF , T , F, p }
\bool_if_exist:NTF 2128 \prg_new_eq_conditional:NNn \bool_if_exist:c \cs_if_exist:c { TF , T , F , p }

\bool_if_exist:cTF (End definition for \bool_if_exist:N and \bool_if_exist:c. These functions are documented on page
??)

5.4 Boolean expressions

\bool_if_p:n Evaluating the truth value of a list of predicates is done using an input syntax somewhat
\bool_if:nTF similar to the one found in other programming languages with (and) for grouping, !
for logical “Not”, && for logical “And” and || for logical “Or”. We shall use the terms
Not, And, Or, Open and Close for these operations.
Any expression is terminated by a Close operation. Evaluation happens from left to
right in the following manner using a GetNext function:

o If an Open is seen, start evaluating a new expression using the Eval function and
call GetNext again.

o If a Not is seen, remove the ! and call a GetNotNext function, which eventually
reverses the logic compared to GetNext.

o If none of the above, reinsert the token found (this is supposed to be a predicate
function) in front of an Eval function, which evaluates it to the boolean value (true)
or (false).

The Eval function then contains a post-processing operation which grabs the instruction
following the predicate. This is either And, Or or Close. In each case the truth value is
used to determine where to go next. The following situations can arise:

(true)And Current truth value is true, logical And seen, continue with GetNext to
examine truth value of next boolean (sub-)expression.

(false) And Current truth value is false, logical And seen, stop evaluating the predicates
within this sub-expression and break to the nearest Close. Then return (false).

(true)Or Current truth value is true, logical Or seen, stop evaluating the predicates
within this sub-expression and break to the nearest Close. Then return (true).

(false)Or Current truth value is false, logical Or seen, continue with GetNext to examine
truth value of next boolean (sub-)expression.

(true)Close Current truth value is true, Close seen, return (true).
(false)Close Current truth value is false, Close seen, return (false).

We introduce an additional Stop operation with the same semantics as the Close opera-
tion.

(true)Stop Current truth value is true, return (true).

272

\bool_if_p:n

(false)Stop Current truth value is false, return (false).

The reasons for this follow below.

2120 \prg_new_conditional:Npnn \bool_if:n #1 { T , F , TF }

2130 {

2131 \if _predicate:w \bool_if_p:n {#1}
2132 \prg_return_true:

2133 \else:

2134 \prg_return_false:

2135 \fi:

2136 }

(End definition for \bool_if:n. These functions are documented on page 39.)

First issue a \group_align_safe_begin: as we are using && as syntax shorthand for
the And operation and we need to hide it for TEX. This will be closed at the end of the
expression parsing (see S below).

Minimal (“short-circuit”) evaluation of boolean expressions requires skipping to the
end of the current parenthesized group when (true)l| is seen, but to the next || or
closing parenthesis when (false)&& is seen. To avoid having separate functions for the
two cases, we transform the boolean expression by doubling each parenthesis and adding
parenthesis around each | |. This ensures that && will bind tighter than | |.

The replacement is done in three passes, for left and right parentheses and for |]|.
At each pass, the part of the expression that has been transformed is stored before \q_-
nil, the rest lies until the first \q_mark, followed by an empty brace group. A trailing
marker ensures that the auxiliaries’ delimited arguments will not run-away. As long as
the delimiter matches inside the expression, material is moved before \q_nil and we
continue. Afterwards, the trailing marker is taken as a delimiter, #4 is the next auxiliary,
immediately followed by a new \q_nil delimiter, which indicates that nothing has been
treated at this pass. The last step calls __bool_if_parse:NNNww which cleans up and
triggers the evaluation of the expression itself.

2137 \cs_new:Npn \bool_if_p:n #1

2138 {

2139 \group_align_safe_begin:

2140 __bool_if_left_parentheses:wwwn \q_nil

2141 #1 \q_mark {3}

2142 (\g_mark { __bool_if_right_parentheses:wwwn \g_nil }
2143) \g_mark { __bool_if_or:wwwn \gq_nil }

2144 |l \g_mark __bool_if_parse:NNNww

2145 \q_StOp

2146 T

2147 \cs_new:Npn __bool_if_left_parentheses:wwwn #1 \g_nil #2 (#3 \g_mark #4

2148 { #4 __bool_if_left_parentheses:wwwn #1 #2 ((\g_nil #3 \q_mark {#4} }

210 \cs_new:Npn __bool_if_right_parentheses:wwwn #1 \q_nil #2) #3 \q_mark #4
as0 { #4 __bool_if_right_parentheses:wwwn #1 #2)) \g_nil #3 \g_mark {#4} }
2151 \cs_new:Npn __bool_if_or:wwwn #1 \q_nil #2 || #3 \q_mark #4

2152 { #4 __bool_if_or:wwwn #1 #2)||(\g_nil #3 \q_mark {#4} }

(End definition for \bool_if_p:n. This function is documented on page 39.)

273

After removing extra tokens from the transformation phase, start evaluating. At the end,
we will need to finish the special align_safe group before finally returning a \c_true_-
bool or \c_false_bool as there might otherwise be something left in front in the input
stream. For this we call the Stop operation, denoted simply by a S following the last
Close operation.

2153 \cs_new:Npn __bool_if_parse:NNNww #1#2#3#4 \q_mark #5 \q_stop

2154 {

2155 __bool_get_next:NN \use_i:nn ((#4)) S

2156 }
(End definition for __bool_if_parse:NNNww.)

The GetNext operation. This is a switch: if what follows is neither ! nor (, we assume it
is a predicate. The first argument is \use_ii:nn if the logic must eventually be reversed
(after a '), otherwise it is \use_i:nn. This function eventually expand to the truth
value \c_true_bool or \c_false_bool of the expression which follows until the next
unmatched closing parenthesis.

2157 \cs_new:Npn __bool_get_next:NN #1#2

2158 {

2150 \use:c

2160 {

2161 __bool_

2162 \if _meaning:w !#2 ! \else: \if_meaning:w (#2 (\else: p \fi: \fi:
2163 :Nw

2164 }

2165 #1 #2

2166 }

(End definition for __bool_get_next:NN.)

The Not operation reverses the logic: discard the ! token and call the GetNext operation
with its first argument reversed.

2167 \cs_new:cpn { __bool_!:Nw } #1#2

2168 { \exp_after:wN __bool_get_next:NN #1 \use_ii:nn \use_i:nn }
(End definition for __bool_!:Nw.)

The Open operation starts a sub-expression after discarding the token. This is done by
calling GetNext, with a post-processing step which looks for And, Or or Close afterwards.

2160 \cs_new:cpn { __bool_(:Nw } #1#2

2170 {

2171 \exp_after:wN __bool_choose:NNN \exp_after:wN #1
2172 __int_value:w __bool_get_next:NN \use_i:nn

2173 T

(End definition for __bool_(:Nw.)

If what follows GetNext is neither ! nor (, evaluate the predicate using the primitive
__int_value:w. The canonical true and false values have numerical values 1 and 0
respectively. Look for And, Or or Close afterwards.

2172 \cs_new:cpn { __bool_p:Nw } #1

275 { \exp_after:wN __bool_choose:NNN \exp_after:wN #1 __int_value:w }

274

(End definition for __bool_p:Nw.)

Branching the eight-way switch. The arguments are 1: \use_i:nn or \use_ii:nn, 2: 0
or 1 encoding the current truth value, 3: the next operation, And, Or, Close or Stop. If
#1 is \use_ii:nn, the logic of #2 must be reversed.

2176 \cs_new:Npn __bool_choose:NNN #1#2#3

2177 {

2178 \use:c

2179 {

2180 __bool_ #3 _

2181 #1 #2 { \if_meaning:w O #2 1 \else: O \fi: }
2182 W

2183 }

2184 T

(End definition for __bool_choose:NNN.)

Closing a group is just about returning the result. The Stop operation is similar except
it closes the special alignment group before returning the boolean.

215 \cs_new_nopar:cpn { __bool_)_0:w } { \c_false_bool }

2156 \cs_new_nopar:cpn { __bool_)_1:w } { \c_true_bool }

2157 \cs_new_nopar:cpn { __bool_S_0:w } { \group_align_safe_end: \c_false_bool }

2155 \cs_new_nopar:cpn { __bool_S_1:w } { \group_align_safe_end: \c_true_bool }
(End definition for __bool_)_0:w and others.)

Two cases where we simply continue scanning. We must remove the second & or |.
219 \cs_new_nopar:cpn { __bool_&_ 1:w } & { __bool_get_next:NN \use_i:nn }
2100 \cs_new_nopar:cpn { __bool_|_0:w } | { __bool_get_next:NN \use_i:nn }

(End definition for __bool_&_1:w.)

When the truth value has already been decided, we have to throw away the remainder

of the current group as we are doing minimal evaluation. This is slightly tricky as there

are no braces so we have to play match the () manually.
2101 \cs_new_nopar:cpn { __bool_& 0:w } & { __bool_eval_skip_to_end_auxi:Nw \c_false_bool }
2192 \cs_new_nopar:cpn { __bool_|_1:w } | { __bool_eval_skip_to_end_auxi:Nw \c_true_bool }

There is always at least one) waiting, namely the outer one. However, we are facing the

problem that there may be more than one that need to be finished off and we have to

detect the correct number of them. Here is a complicated example showing how this is

done. After evaluating the following, we realize we must skip everything after the first

And. Note the extra Close at the end.

\c_false_bool && ((abc) && xyz) && ((xyz) && (def)))

First read up to the first Close. This gives us the list we first read up until the first right
parenthesis so we are looking at the token list

((abc

275

This contains two Open markers so we must remove two groups. Since no evaluation of
the contents is to be carried out, it doesn’t matter how we remove the groups as long as
we wind up with the correct result. We therefore first remove a () pair and what preceded
the Open — but leave the contents as it may contain Open tokens itself — leaving

(abc && xyz) && ((xyz) && (def)))
Another round of this gives us
(abc && xyz
which still contains an Open so we remove another () pair, giving us
abc && xyz && ((xyz) && (def)))
Again we read up to a Close and again find Open tokens:
abc && xyz && ((xyz
Further reduction gives us
(xyz && (def)))
and then
(xyz &% (def
with reduction to
xyz && (def))

and ultimately we arrive at no Open tokens being skipped and we can finally close the
group nicely.

o103 % (

2194 \cs_new:Npn __bool_eval_skip_to_end_auxi:Nw #1#2)
2195 {

2196 __bool_eval_skip_to_end_auxii:Nw #1#2 (%)
2197 \q_no_value \g_stop

2198 {#2}

2199 }

If no right parenthesis, then #3 is no_ value and we are done, return the boolean #1. If
there is, we need to grab a () pair and then recurse

200 \cs_new:Npn __bool_eval_skip_to_end_auxii:Nw #1#2 (#3#4 \q_stop #5 7)
2201 {

2202 \quark_if_no_value:NTF #3

2203 {#1}

2204 { __bool_eval_skip_to_end_auxiii:Nw #1 #5 }
2205 }

276

\bool_not_p:n

\bool_xor_p:nn

\bool_while_do:
\bool_while_do:
\bool_until_do:
\bool_until_do:

\bool_do_while:
\bool_do_while:
\bool_do_until:
\bool_do_until:

Nn
cn
Nn
cn

Nn
cn
Nn
cn

Keep the boolean, throw away anything up to the (as it is irrelevant, remove a () pair
but remember to reinsert #3 as it may contain (tokens!

206 \cs_new:Npn __bool_eval_skip_to_end_auxiii:Nw #1#2 (#3)

2207 {% (

2208 __bool_eval_skip_to_end_auxi:Nw #1#3)

2209 }

(End definition for __bool_&_0:w.)

The Not variant just reverses the outcome of \bool_if_p:n. Can be optimized but this
is nice and simple and according to the implementation plan. Not even particularly useful
to have it when the infix notation is easier to use.

210 \cs_new:Npn \bool_not_p:n #1 { \bool_if p:n { ! (#1) } }
(End definition for \bool_not_p:n. This function is documented on page 40.)

Exclusive or. If the boolean expressions have same truth value, return false, otherwise
return true.

211 \cs_new:Npn \bool_xor_p:nn #1#2

2212 {

2213 \int_compare:nNnTF { \bool_if_p:n {#1} } = { \bool_if_p:n {#2} }
214 \c_false_bool

2215 \c_true_bool

2216 T

(End definition for \bool_xor_p:nn. This function is documented on page 40.)

5.5 Logical loops

A while loop where the boolean is tested before executing the statement. The “while”
version executes the code as long as the boolean is true; the “until” version executes the
code as long as the boolean is false.

217 \cs_new:Npn \bool_while_do:Nn #1#2

218 { \bool_if:NT #1 { #2 \bool_while_do:Nn #1 {#2} } }

219 \cs_new:Npn \bool_until_do:Nn #1#2

2220 { \bool_if:NF #1 { #2 \bool_until_do:Nn #1 {#2} } }

221 \cs_generate_variant:Nn \bool_while_do:Nn { c }

222 \cs_generate_variant:Nn \bool_until_do:Nn { ¢ }

(End definition for \bool_while_do:Nn and \bool_while_do:cn. These functions are documented on
page ?77.)

A do-while loop where the body is performed at least once and the boolean is tested
after executing the body. Otherwise identical to the above functions.

223 \cs_new:Npn \bool_do_while:Nn #1#2

2224 { #2 \bool_if:NT #1 { \bool_do_while:Nn #1 {#2} } }

225 \cs_new:Npn \bool_do_until:Nn #1#2

206 { #2 \bool_if:NF #1 { \bool_do_until:Nn #1 {#2} } }

227 \cs_generate_variant:Nn \bool_do_while:Nn { ¢ }

225 \cs_generate_variant:Nn \bool_do_until:Nn { c }

(End definition for \bool_do_while:Nn and \bool_do_while:cn. These functions are documented on
page 77.)

277

\bool_while_do:nn
\bool_do_while:nn
\bool_until_do:nn
\bool_do_until:nn

\prg_replicate:nn

Loop functions with the test either before or after the first body expansion.

220 \cs_new:Npn \bool_while_do:nn #1#2

2230 {

2231 \bool_if:nT {#1}

2232 {

2233 #2

2234 \bool_while_do:nn {#1} {#2}
2235 ¥

2236 }

237 \cs_new:Npn \bool_do_while:nn #1#2
2238 {

2239 #2

2210 \bool if:nT {#1} { \bool_do_while:nn {#1} {#2} }
2241 }

2s2 \cs_new:Npn \bool_until_do:nn #1#2
2243 {

2044 \bool_if:nF {#1}

2245 {

2246 #2

2247 \bool_until_do:nn {#1} {#2}
2248 }

2249 }

250 \cs_new:Npn \bool_do_until:nn #1#2
2251 {

2252 #2

2253 \bool_if:nF {#1} { \bool_do_until:nn {#1} {#2} }
2254 }

(End definition for \bool_while_do:nn and others. These functions are documented on page 40.)

5.6 Producing n copies
2255 (@Q@=prg)

This function uses a cascading csname technique by David Kastrup (who else :-)

The idea is to make the input 25 result in first adding five, and then 20 copies
of the code to be replicated. The technique uses cascading csnames which means that
we start building several csnames so we end up with a list of functions to be called in
reverse order. This is important here (and other places) because it means that we can for
instance make the function that inserts five copies of something to also hand down ten
to the next function in line. This is exactly what happens here: in the example with 25
then the next function is the one that inserts two copies but it sees the ten copies handed
down by the previous function. In order to avoid the last function to insert say, 100
copies of the original argument just to gobble them again we define separate functions to
be inserted first. These functions also close the expansion of __int_to_roman:w, which
ensures that \prg_replicate:nn only requires two steps of expansion.

This function has one flaw though: Since it constantly passes down ten copies of its
previous argument it will severely affect the main memory once you start demanding hun-
dreds of thousands of copies. Now I don’t think this is a real limitation for any ordinary

278

use, and if necessary, it is possible to write \prg_replicate:nn{1000}{\prg_replicate:nn{1000}{{code)
An alternative approach is to create a string of m’s with __int_to_roman:w which can
be done with just four macros but that method has its own problems since it can exhaust
the string pool. Also, it is considerably slower than what we use here so the few extra
csnames are well spent I would say.
256 \cs_new:Npn \prg_replicate:nn #1
2257 {
2258 __int_to_roman:w
2259 \exp_after:wN __prg_replicate_first:N

2260 __int_value:w __int_eval:w #1 __int_eval_end:
2261 \cs_end:
2262 T

263 \cs_new:Npn __prg_replicate:N #1

26 { \cs:w __prg_replicate_#1 :n __prg_replicate:N }

265 \cs_new:Npn __prg_replicate_first:N #1

2266 { \cs:w __prg_replicate_first_ #1 :n __prg_replicate:N }

Then comes all the functions that do the hard work of inserting all the copies. The first
function takes :n as a parameter.

267 \cs_new:Npn __prg_replicate_ :n #1 { \cs_end: }

265 \cs_new:cpn { __prg_replicate_0:n } #1 { \cs_end: {#1#1#1#1#1# 141414141} }
260 \cs_new:cpn { __prg_replicate_1:n } #1 { \cs_end: {#1#1#1#1#1# 141414141} #1 }
270 \cs_new:cpn { __prg_replicate_2:n } #1 { \cs_end: {#1#1#1#1#1#1#1#1#1#1} #1#1 }
271 \cs_new:cpn { __prg_replicate_3:n } #1

22 { \cs_end: {#1#1#1#1#1#1#141#1#1} #1#1#1 }

273 \cs_new:cpn { __prg_replicate_4:n } #1

e { \cs_end: {#1#1#1#1#1#1#1#1#1#1} #1#1#141

275 \cs_new:cpn { __prg_replicate_5:n } #1

2276 { \cs_end: {#1#1#1#1#1#141#1#1#1} #1#1#1#1#1 }

277 \cs_new:cpn { __prg_replicate_6:n } #1

2278 { \cs_end: {#1#1#1#1#1#1# 1414141} #1#1# 1814181 }

270 \cs_new:cpn { __prg_replicate_7:n } #1

2280 { \cs_end: {#1#1#1#1#1#1#1#1#1#1) #1#1#1#1#1H1#1 T

281 \cs_new:cpn { __prg_replicate_8:n } #1

2282 { \cs_end: {#1#1#1#1#1# 141414141} #1414 18141814141 T

283 \cs_new:cpn { __prg_replicate_9:n } #1

2084 { \cs_end: {#1#1#1#1#1#1# 1414141} #1#1#1#1#1#1#1#1#1 3

Users shouldn’t ask for something to be replicated once or even not at all but. ..

285 \cs_new:cpn { __prg_replicate_first_-:n } #1

2286 {

2087 \c_zero

2288 __msg_kernel_expandable_error:nn { kernel } { negative-replication }
2289 }

2200 \CS_new:cpn
2201 \cs_new:cpn
292 \csS_new:cpn
203 \CcS_new:cpn
2201 \CS_new:cpn
2205 \CS_new:cpn

#1 { \c_zero }

#1 { \c_zero #1 }

#1 { \c_zero #1#1 }

#1 { \c_zero #1#1#1 }

#1 { \c_zero #1#1#1#1 }
#1 { \c_zero #1#1#1#1#1 }

__prg_replicate_first_O:
__prg_replicate_first_1:
__prg_replicate_first_2:
__prg_replicate_first_3:
__prg_replicate_first_4:

{
{
{
{
{
{ __prg_replicate_first_5:

BB BB BB
[A IS e e

279

\mode_if_vertical_p:
\mode_if_vertical:TF

\mode_if_horizontal_p:
\mode_if_horizontal:TF

\mode_if_inner_p:
\mode_if_inner:TF

\mode_if_math_p:

\mode_if_math:TF

\group_align_safe_begin:
\group_align_safe_end:

#1 { \c_zero #1#i1#1#1#1#1 }

#1 { \c_zero #1#1#1#1#1#1#1 }

#1 { \c_zero #1#1#1#1#1#1#1#1 }
#1 { \c_zero #1#1#1#1#1#1#1#1#1 }

(End definition for \prg_replicate:nn. This function is documented on page 41.)

206 \cs_new:cpn { __prg_replicate_first_6:
207 \cs_new:cpn { __prg_replicate_first_7:
208 \cs_new:cpn { __prg_replicate_first_8:
20 \cs_new:cpn { __prg_replicate_first_9:

n }
n }
n }
n }

5.7 Detecting TEX’s mode

For testing vertical mode. Strikes me here on the bus with David, that as long as
we are just talking about returning true and false states, we can just use the primitive
conditionals for this and gobbling the \c_zero in the input stream. However this requires
knowledge of the implementation so we keep things nice and clean and use the return
statements.

230 \prg_new_conditional:Npnn \mode_if_vertical: { p , T , F , TF }

2300 { \if_mode_vertical: \prg_return_true: \else: \prg_return_false: \fi: }

(End definition for \mode_if_vertical:. These functions are documented on page /1.)

For testing horizontal mode.
2302 \prg_new_conditional:Npnn \mode_if_horizontal: { p , T , F , TF }
2303 { \if_mode_horizontal: \prg_return_true: \else: \prg_return_false: \fi: }

(End definition for \mode_if_horizontal:. These functions are documented on page 41.)

For testing inner mode.
2300 \prg_new_conditional:Npnn \mode_if_inner: {p , T , F, TF }
2305 { \if_mode_inner: \prg_return_true: \else: \prg_return_false: \fi: }

(End definition for \mode_if_inner:. These functions are documented on page 41.)

For testing math mode. At the beginning of an alignment cell, the programmer should
insert \scan_align_safe_stop: before the test.

2306 \prg_new_conditional:Npnn \mode_if math: {p , T , F, TF }

2307 { \if_mode_math: \prg_return_true: \else: \prg_return_false: \fi: }

(End definition for \mode_if_math:. These functions are documented on page 41.)

5.8 Internal programming functions

TEX’s alignment structures present many problems. As Knuth says himself in TgX:
The Program: “It’s sort of a miracle whenever \halign or \valign work, [...]” One
problem relates to commands that internally issues a \cr but also peek ahead for the
next character for use in, say, an optional argument. If the next token happens to
be a & with category code 4 we will get some sort of weird error message because the
underlying \futurelet will store the token at the end of the alignment template. This
could be a &, giving a message like ! Misplaced \cr. or even worse: it could be the
\endtemplate token causing even more trouble! To solve this we have to open a special
group so that TEX still thinks it’s on safe ground but at the same time we don’t want to
introduce any brace group that may find its way to the output. The following functions
help with this by using code documented only in Appendix D of The TgXbook...We

280

\scan_align_safe_stop:

place the \if_false: { \fi: part at that place so that the successive expansions of
\group_align_safe_begin/end: are always brace balanced.

2308 \cs_new_nopar:Npn \group_align_safe_begin:

2300 { \if_int_compare:w \if_false: { \fi: ‘} = \c_zero \fi: }

2310 \cs_new_nopar:Npn \group_align_safe_end:

2311 { \if_int_compare:w ‘{ = \c_zero } \fi: }

(End definition for \group_align_safe_begin: and \group_align_safe_end:.)

When TgX is in the beginning of an align cell (right after the \cr or &) it is in a somewhat
strange mode as it is looking ahead to find an \omit or \noalign and hasn’t looked at
the preamble yet. Thus an \ifmmode test at the start of an array cell (where math mode
is introduced by the preamble, not in the cell itself) will always fail unless we stop TEX
from scanning ahead. With e-TEX’s first version, this required inserting \scan_stop:,
but not in all cases (see below). This is no longer needed with a newer e-TEX, since
protected macros are not expanded anymore at the beginning of an alignment cell. We
can thus use an empty protected macro to stop TEX.
2312 \cs_new_protected_nopar:Npn \scan_align_safe_stop: { }

Let us now explain the earlier version. We don’t want to insert a \scan_stop: every time
as that will destroy kerning between letters® Unfortunately there is no way to detect if
we’re in the beginning of an alignment cell as they have different characteristics depending
on column number, etc. However we can detect if we’re in an alignment cell by checking
the current group type and we can also check if the previous node was a character or
ligature. What is done here is that \scan_stop: is only inserted if an only if a) we’re in
the outer part of an alignment cell and b) the last node wasn’t a char node or a ligature
node. Thus an older definition here was

\cs_new_nopar:Npn \scan_align_safe_stop:

{
\int_compare:nNnT \etex_currentgrouptype:D = \c_six
{
\int_compare:nNnF \etex_lastnodetype:D = \c_zero
{
\int_compare:nNnF \etex_lastnodetype:D = \c_seven
{ \scan_stop: }
}
}
}

However, this is not truly expandable, as there are places where the \scan_stop: ends

up in the result.
(End definition for \scan_align_safe_stop:.)

2313 (@@zprg>

3Unless we enforce an extra pass with an appropriate value of \pretolerance.

281

__prg_variable_get_scope:N FExpandable functions to find the type of a variable, and to return g if the variable is
global. The trick for __prg_variable_get_scope:N is the same as that in __cs_-
__prg_variable_get_type:N split_function:NN, but it can be simplified as the requirements here are less complex.
2314 \group_begin:
235 \tex_lccode:D ‘*x = ‘g \scan_stop:
2316 \tex_catcode:D ‘*x = \c_twelve
2317 \tl_to_lowercase:n

2318 {

2319 \group_end:

2320 \cs_new:Npn __prg_variable_get_scope:N #1

2321 {

2322 \exp_after:wN \exp_after:wN

2323 \exp_after:wN __prg_variable_get_scope:w
2324 \cs_to_str:N #1 \exp_stop_f: \g_stop
2325 }

2326 \cs_new:Npn __prg_variable_get_scope:w #1#2 \q_stop
2327 { \token_if_eq_meaning:NNT * #1 { g } }

2328 T

2320 \group_begin:

2330 \tex_lccode:D ‘* = ‘_ \scan_stop:

2331 \tex_catcode:D ‘*x = \c_twelve
232 \tl_to_lowercase:n

2333 {

2334 \group_end:

2335 \cs_new:Npn __prg_variable_get_type:N #1

2336 {

2337 \exp_after:wN __prg_variable_get_type:w

2338 \token_to_str:N #1 * a \g_stop

2339 }

2340 \cs_new:Npn __prg_variable_get_type:w #1 * #2#3 \q_stop
2341 {

2342 \token_if_eq_meaning:NNTF a #2

2343 {#1}

2344 { __prg_variable_get_type:w #2#3 \g_stop }
2345 ¥

2346 ¥

(End definition for __prg_variable_get_scope:N.)

\g__prg_map_int A nesting counter for mapping.
237 \int_new:N \g__prg_map_int
(End definition for \g__prg_map_int. This variable is documented on page 43.)

__prg_break_point:Nn These are defined in [3basics, as they are needed “early”. This is just a reminder that is

__prg_map_break:Nn the case!
(End definition for __prg_break_point:Nn. This function is documented on page 43.)

__prg_break_point: Also done in [3basics as in format mode these are needed within [3alloc.
__prg_break: (End definition for __prg_break_point:. This function is documented on page ?77.)

__prg_break:n ... (/nitex | package)

282

\quark_new:N

\q_nil
\q_mark
\gq_no_value
\q_stop

\g_recursion_tail
\g_recursion_stop

\quark if recursion tail stop:N
\quark if recursion tail stop do:ln

6 13quark implementation

The following test files are used for this code: m3quark001.Ivt.

2310 (¥initex | package)

6.1 Quarks

Allocate a new quark.
2350 \cs_new_protected:Npn \quark_new:N #1 { \tl_const:Nn #1 {#1} }

(End definition for \quark_new:N. This function is documented on page 45.)

Some “public” quarks. \q_stop is an “end of argument” marker, \q_nil is a empty value
and \g_no_value marks an empty argument.

2351 \quark_new:N \q_nil

2352 \quark_new:N \q_mark

2353 \quark_new:N \g_no_value

2351 \quark_new:N \q_stop

End definition for \q_nil and others. These variables are documented on page 45.
(q pag

Quarks for ending recursions. Only ever used there! \q_recursion_tail is appended to
whatever list structure we are doing recursion on, meaning it is added as a proper list
item with whatever list separator is in use. \q_recursion_stop is placed directly after
the list.

2355 \quark_new:N \g_recursion_tail

2356 \quark_new:N \q_recursion_stop

(End definition for \q_recursion_tail and \q_recursion_stop. These variables are documented on
page 46.)

When doing recursions, it is easy to spend a lot of time testing if the end marker has
been found. To avoid this, a dedicated end marker is used each time a recursion is set up.
Thus if the marker is found everything can be wrapper up and finished off. The simple
case is when the test can guarantee that only a single token is being tested. In this case,
there is just a dedicated copy of the standard quark test. Both a gobbling version and
one inserting end code are provided.

2357 \cs_new:Npn \quark_if_recursion_tail_stop:N #1

2358 {

2359 \if _meaning:w \g_recursion_tail #1

2360 \exp_after:wN \use_none_delimit_by_q_recursion_stop:w
2361 \fi:

2362 }

2363 \cs_new:Npn \quark_if_recursion_tail_stop_do:Nn #1

2364 {

2365 \if _meaning:w \g_recursion_tail #1

2366 \exp_after:wN \use_i_delimit_by_q_recursion_stop:nw
2367 \else:

2368 \exp_after:wN \use_none:n

2369 \fi:

2370 }

283

(End definition for \quark_if_recursion_tail_stop:N. This function is documented on page 46.)

\quark if recursion tail stop:n The same idea applies when testing multiple tokens, but here we just compare the token
\quark_if recursion_tail stop:o list to \q_recursion_tail as a string.

\quark_if recursion_tail stop_do:nn 2371 \cs_new:Npn \quark_if_recursion_tail_stop:n #1
\quark_if_recursion_tail_stop_do:on 2372 {

2373 \if_int_compare:w \pdftex_strcmp:D

2374 { \exp_not:N \gq_recursion_tail } { \exp_not:n {#1} } = \c_zero

2375 \exp_after:wN \use_none_delimit_by_q_recursion_stop:w

2376 \fi:

2377 T

2373 \cs_new:Npn \quark_if_recursion_tail_stop_do:nn #1

2379 {

2380 \if_int_compare:w \pdftex_strcmp:D

2381 { \exp_not:N \q_recursion_tail } { \exp_not:n {#1} } = \c_zero

2382 \exp_after:wN \use_i_delimit_by_q_recursion_stop:nw

2383 \else:

2384 \exp_after:wN \use_none:n

2385 \fi:

2386 ¥

2357 \cs_generate_variant:Nn \quark_if_recursion_tail_stop:n { o }
2333 \cs_generate_variant:Nn \quark_if_recursion_tail_stop_do:nn { o }

(End definition for \quark_if_recursion_tail_stop:n and \quark_if_recursion_tail_stop:o. These
functions are documented on page 77.)

__quark_if recursion tail break:NN Analogs of the \quark_if_recursion_tail_stop... functions. Break the mapping
__quark if recursion_tail break:nN using #2.

2330 \cs_new:Npn __quark_if_recursion_tail_break:NN #1#2

2390 {

2301 \if _meaning:w \g_recursion_tail #1

2392 \exp_after:wN #2

2303 \fi:

2394 T

2305 \cs_new:Npn __quark_if_recursion_tail_break:nN #1#2
2396 {

2397 \if_int_compare:w \pdftex_strcmp:D

2308 { \exp_not:N \q_recursion_tail } { \exp_not:n {#1} } = \c_zero
2399 \exp_after:wN #2

2400 \fi:

2401 }

(End definition for __quark_if_recursion_tail_break:NN. This function is documented on page 77.)

\quark_if_nil_p:N Here we test if we found a special quark as the first argument. We better start with
\quark_if_nil:NTF \q_no_value as the first argument since the whole thing may otherwise loop if #1 is
\quark_if_no_value_p:N wrongly given a string like aabc instead of a single token.*

\quark_if_no_value_p:c 202 \prg_new_conditional:Nnn \quark_if nil:N { p, T , F , TF }
\quark_if_no_value:NTF 2403 {

uark_if_no_value:cTF
\q - - - - 41t may still loop in special circumstances however!

284

2404 \if _meaning:w \q_nil #1
2405 \prg_return_true:

210 \prg_new_conditional:Nnn \quark_if_no_value:N { p, T , F , TF }

2406 \else:

2407 \prg_return_false:
2408 \fi:

2409 }

2411 {

2412 \if _meaning:w \g_no_value #1
2413 \prg_return_true:
2414 \else:

2415 \prg_return_false:
2416 \fi:

2417 }

215 \cs_generate_variant:Nn \quark_if_no_value_p:N {
210 \cs_generate_variant:Nn \quark_if_no_value:NT {
220 \cs_generate_variant:Nn \quark_if_no_value:NF {
221 \cs_generate_variant:Nn \quark_if_no_value:NTF {

O o0 o o0

o

(End definition for \quark_if_nil:N. These functions are documented on page 77.)

\quark_if_nil_p:n These are essentially \str_if_eq:nn tests but done directly.

\quark_if_nil_p:V
\quark_if_nil_p:o
\quark_if_nil:nTF
\quark_if _nil:VTF
\quark_if_nil:oTF
\quark_if_no_value_p:n
\quark_if_no_value:nTF

\q__tl_act_mark
\q__tl_act_stop

222 \prg_new_conditional:Nnn \quark_if nil:n { p, T , F , TF }

2423 {

2424 \if_int_compare:w \pdftex_strcmp:D

2425 { \exp_not:N \q_nil } { \exp_not:n {#1} } = \c_zero

2426 \prg_return_true:

2427 \else:

2428 \prg_return_false:

2429 \fi:

2430 }

231 \prg_new_conditional:Nnn \quark_if_no_value:n { p, T , F , TF }
2432 {

2433 \if_int_compare:w \pdftex_strcmp:D

2434 { \exp_not:N \q_no_value } { \exp_not:n {#1} } = \c_zero
2435 \prg_return_true:

2436 \else:

2437 \prg_return_false:

2438 \fi:

2439 }

210 \cs_generate_variant:Nn \quark_if_nil p:n { V ,
2241 \cs_generate_variant:Nn \quark_if _nil:nTF { V ,
2142 \cs_generate_variant:Nn \quark_if _nil:nT { V ,
213 \cs_generate_variant:Nn \quark_if_nil:nF { V ,
(End definition for \quark_if_nil:n, \quark_if_nil:V, and \quark_if_nil:o.

documented on page 45.)

o O O

I

(0]

These functions are

These private quarks are needed by I3tl, but that is loaded before the quark module,

hence their definition is deferred.

2244 \quark_new:N \g__tl_act_mark
2145 \quark_new:N \g__tl_act_stop

285

(End definition for \q__tl_act_mark and \q__tl_act_stop. These variables are documented on page
??.)

6.2 Scan marks
2446 (@@zscan)

\g__scan_marks_t1l The list of all scan marks currently declared.
2207 \tl_new:N \g__scan_marks_tl

(End definition for \g__scan_marks_t1. This variable is documented on page 77.)

__scan_new:N Check whether the variable is already a scan mark, then declare it to be equal to \scan_-
stop: globally.

213 \cs_new_protected:Npn __scan_new:N #1

2449 {

2450 \tl_if_in:NnTF \g__scan_marks_tl { #1 }

2451 {

2452 __msg_kernel_error:nnx { kernel } { scanmark-already-defined }
2453 { \token_to_str:N #1 }

2454 }

2455 {

2456 \tl_gput_right:Nn \g__scan_marks_tl {#1}
2457 \cs_new_eq:NN #1 \scan_stop:

2458 }

2459 ¥

(End definition for __scan_new:N.)

\s__stop We only declare one scan mark here, more can be defined by specific modules.
260 __scan_new:N \s__stop

(End definition for \s__stop. This variable is documented on page 48.)

__use none delinit by s stop:w Similar to \use_none_delimit_by_q_stop:w.
261 \cs_new:Npn __use_none_delimit_by_s__stop:w #1 \s__stop { }
(End definition for __use_none_delimit_by_s__stop:w.)

\s__seq This private scan mark is needed by [3seq, but that is loaded before the quark module,
hence its definition is deferred.

262 __scan_new:N \s__seq
(End definition for \s__seq. This variable is documented on page 112.)

286

6.3 Deprecated quark functions

\quark if recursion tail break:N It’s not clear what breaking function we should be using here, so I'm picking one some-
\quark_if recursion _tail break:n what arbitrarily.

2163 \cs_new:Npn \quark_if_recursion_tail_break:N #1

264 { __quark_if_recursion_tail_break:NN #1 \prg_break: }

265 \cs_new:Npn \quark_if_recursion_tail_break:n #1

266 { __quark_if_recursion_tail_break:nN {#1} \prg_break: }
(End definition for \quark_if_recursion_tail_break:N and \quark_if_recursion_tail_break:n. These
functions are documented on page 77.)

2a67 {/initex | package)

7 13token implementation

2a68 (¥initex | package)
2469 <@@:token>
7.1 Character tokens

\char_set_catcode:nn Category code changes.

\char_value_catcode:n 2170 \cs_new_protected:Npn \char_set_catcode:nn #1#2
\char_show_value_catcode:n 271 { \tex_catcode:D #1 = __int_eval:w #2 __int_eval_end: }
272 \cs_new:Npn \char_value_catcode:n #1
273 { \tex_the:D \tex_catcode:D __int_eval:w #1__int_eval_end: }
2474 \cs_new_protected:Npn \char_show_value_catcode:n #1
2075 { \tex_showthe:D \tex_catcode:D __int_eval:w #1 __int_eval_end: }

End definition for \char_set_catcode:nn. This function is documented on page 51.
pag

\char_set_catcode_escape:N

\char set_catcode_group_begin:N 276 \cs_new_protected:Npn \char_set_catcode_escape:N #1
\char_set_catcode_group_end:N 2.7 { \char_set_catcode:nn { ‘#1 } \c_zero }
\char set catcode math toggle:N 247z \cs_new_protected:Npn \char_set_catcode_group_begin:N #1
\char set catcode aligment:N 220 { \char_set_catcode:nn { ‘#1 } \c_one }
\char set catcode end line:N 250 \cs_new_protected:Npn \char_set_catcode_group_end:N #1
N N N - 2481 { \char_set_catcode:nn { ‘#1 } \c_two }
232 \cs_new_protected:Npn \char_set_catcode_math_toggle:N #1
253 { \char_set_catcode:nn { ‘#1 } \c_three }
2134 \cs_new_protected:Npn \char_set_catcode_alignment:N #1
285 { \char_set_catcode:nn { ‘#1 } \c_four }
2156 \cs_new_protected:Npn \char_set_catcode_end_line:N #1
2487 { \char_set_catcode:nn { ‘#1 } \c_five }
23 \cs_new_protected:Npn \char_set_catcode_parameter:N #1
{ \char_set_catcode:nn { ‘#1 } \c_six }
2200 \cs_new_protected:Npn \char_set_catcode_math_superscript:N #1
2200 { \char_set_catcode:nn { ‘#1 } \c_seven }
2192 \cs_new_protected:Npn \char_set_catcode_math_subscript:N #1
2493 { \char_set_catcode:nn { ‘#1 } \c_eight }
2200 \cs_new_protected:Npn \char_set_catcode_ignore:N #1

\char_set_catcode_parameter:N

\char set catcode math superscript:l
\char set _catcode math subscript:N
\char_set_catcode_ignore:N
\char_set_catcode_space:
\char_set_catcode_letter:
\char_set_catcode_other:
\char_set_catcode_active:
\char_set_catcode_comment:

=22 2 2 =2 =2
)
&

\char_set_catcode_invalid:

287

\char_set_catcode_escape:n

\char set catcode_group begin:n
\char set_catcode group end:n
\char set_catcode math toggle:n
\char_set_catcode_alignment:n

\char_set_catcode_end_line:n

\char set catcode parameter:n

2496

2497

2498

2499

{ \char_set_catcode:

\cs_new_protected:Npn

{ \char_set_catcode:

\cs_new_protected:Npn

{ \char_set_catcode:

\cs_new_protected:Npn

{ \char_set_catcode:

\cs_new_protected:Npn

{ \char_set_catcode:

\cs_new_protected:Npn

{ \char_set_catcode:

\cs_new_protected:Npn

{ \char_set_catcode:

\cs_new_protected:Npn

{ \char_set_catcode:
» \cs_new_protected:Npn
{ \char_set_catcode:

\cs_new_protected:Npn

{ \char_set_catcode:

nn { ‘#1 } \c_nine }
\char_set_catcode_space:N #1
nn { ‘#1 } \c_ten }
\char_set_catcode_letter:N #1
nn { ‘#1 } \c_eleven }
\char_set_catcode_other:N #1
nn { ‘#1 } \c_twelve }
\char_set_catcode_active:N #1
nn { ‘#1 } \c_thirteen }
\char_set_catcode_comment:N #1
nn { ‘#1 } \c_fourteen }
\char_set_catcode_invalid:N #1
nn { ‘#1 } \c_fifteen }

(End definition for \char_set_catcode_escape:N and others. These functions are documented on page
)

\char_set_catcode_escape:n #1
nn {#1} \c_zero }

\char_set_catcode_group_begin:n #1

nn {#1} \c_one }
\char_set_catcode_group_end:n #1
nn {#1} \c_two }

\char_set_catcode_math_toggle:n #1

nn {#1} \c_three }
\char_set_catcode_alignment:n #1

nn {#1} \c_four }
\char_set_catcode_end_line:n #1

nn {#1} \c_five }
\char_set_catcode_parameter:n #1

nn {#1} \c_six }
\char_set_catcode_math_superscript:n #1
nn {#1} \c_seven }
\char_set_catcode_math_subscript:n #1

\cs_new_protected:Npn
{ \char_set_catcode:
\cs_new_protected:Npn
{ \char_set_catcode:
\cs_new_protected:Npn
{ \char_set_catcode:
\cs_new_protected:Npn
{ \char_set_catcode:
> \cs_new_protected:Npn
{ \char_set_catcode:
\cs_new_protected:Npn

\char set catcode math superscript:n

\char set_catcode math_subscript:n
\char_set_catcode_ignore:
\char_set_catcode_space:
\char_set_catcode_letter:

\char_set_catcode_active:

n
n
n
\char_set_catcode_other:n
n
\char_set_catcode_comment:n

n

\char_set_catcode_invalid:

{ \char_set_catcode
\cs_new_protected:Npn

{ \char_set_catcode:
; \cs_new_protected:Npn
{ \char_set_catcode:

\cs_new_protected:Npn

{ \char_set_catcode:

\cs_new_protected:Npn

{ \char_set_catcode:

\cs_new_protected:Npn

{ \char_set_catcode:

\cs_new_protected:Npn

{ \char_set_catcode:

\cs_new_protected:Npn

{ \char_set_catcode:

:nn {#1} \c_eight }

\char_set_catcode_ignore:n #1
nn {#1} \c_nine }
\char_set_catcode_space:n #1
nn {#1} \c_ten }
\char_set_catcode_letter:n #1
nn {#1} \c_eleven }
\char_set_catcode_other:n #1
nn {#1} \c_twelve }
\char_set_catcode_active:n #1
nn {#1} \c_thirteen }
\char_set_catcode_comment:n #1
nn {#1} \c_fourteen }
\char_set_catcode_invalid:n #1
nn {#1} \c_fifteen }

288

\char_set_mathcode:nn
\char_value_mathcode:n
\char_show_value_mathcode:n
\char_set_lccode:nn
\char_value_lccode:n
\char_show_value_lccode:n
\char_set_uccode:nn
\char_value_uccode:n
\char_show_value_uccode:n
\char_set_sfcode:nn
\char_value_sfcode:n
\char_show_value_sfcode:n

\token_to_meaning:N
\token_to_meaning:c
\token_to_str:N

\eRkSReEOonSE RS

\c_group_begin_token
\c_group_end_token
\c_math_toggle_token
\c_alignment_token
\c_parameter_token
\c_math_superscript_token
\c_math_subscript_token
\c_space_token
\c_catcode_letter_token
\c_catcode_other_token

(End definition for \char_set_catcode_escape:n and others. These functions are documented on page
50.)

Pretty repetitive, but necessary!

250 \cs_new_protected:Npn \char_set_mathcode:nn #1#2

241 { \tex_mathcode:D #1 = __int_eval:w #2 __int_eval_end: }

2522 \cs_new:Npn \char_value_mathcode:n #1

243 { \tex_the:D \tex_mathcode:D __int_eval:w #1__int_eval_end: }
2544 \cs_new_protected:Npn \char_show_value_mathcode:n #1

2545 { \tex_showthe:D \tex_mathcode:D __int_eval:w #1 __int_eval_end: }
256 \cs_new_protected:Npn \char_set_lccode:nn #1#2

247 { \tex_lccode:D #1 = __int_eval:w #2 __int_eval_end: }

2545 \cs_new:Npn \char_value_lccode:n #1

20 { \tex_the:D \tex_lccode:D __int_eval:w #1__int_eval_end: }

250 \cs_new_protected:Npn \char_show_value_lccode:n #1

2551 { \tex_showthe:D \tex_lccode:D __int_eval:w #1 __int_eval_end: }
2552 \cs_new_protected:Npn \char_set_uccode:nn #1#2

253 { \tex_uccode:D #1 = __int_eval:w #2 __int_eval_end: }

2554 \cs_new:Npn \char_value_uccode:n #1

255 { \tex_the:D \tex_uccode:D __int_eval:w #1__int_eval_end: }

256 \cs_new_protected:Npn \char_show_value_uccode:n #1

2557 { \tex_showthe:D \tex_uccode:D __int_eval:w #1 __int_eval_end: }
2555 \cs_new_protected:Npn \char_set_sfcode:nn #1#2

2559 { \tex_sfcode:D #1 = __int_eval:w #2 __int_eval_end: }

260 \cs_new:Npn \char_value_sfcode:n #1

261 { \tex_the:D \tex_sfcode:D __int_eval:w #1__int_eval_end: }

262 \cs_new_protected:Npn \char_show_value_sfcode:n #1

2563 { \tex_showthe:D \tex_sfcode:D __int_eval:w #1 __int_eval_end: }

(End definition for \char_set_mathcode:nn. This function is documented on page 53.)

7.2 Generic tokens

These are all defined in I3basics, as they are needed “early”. This is just a reminder!
(End definition for \token_to_meaning:N and \token_to_meaning:c. These functions are documented
on page 77.)

Creates a new token.
2564 \cs_new_protected:Npn \token_new:Nn #1#2 { \cs_new_eq:NN #1 #2 }

End definition for \token_new:Nn. This function is documented on page 53.
g

We define these useful tokens. We have to do it by hand with the brace tokens for obvious
reasons.

2565 \cs_new_eq:NN \c_group_begin_token {

2566 \cs_new_eq:NN \c_group_end_token }

2567 \group_begin:

265 \char_set_catcode_math_toggle:N *

2569 \token_new:Nn \c_math_toggle_token { * }

2570 \char_set_catcode_alignment:N *

2571 \token_new:Nn \c_alignment_token { * }

289

2572 \token_new:Nn \c_parameter_token { # }
2573 \token_new:Nn \c_math_superscript_token { ~ }
2574 \char_set_catcode_math_subscript:N *

2575 \token_new:Nn \c_math_subscript_token { * }
2576 \token_new:Nn \c_space_token { ~ }

2577 \token_new:Nn \c_catcode_letter_token { a }
2578 \token_new:Nn \c_catcode_other_token { 1 }
2579 \group_end:

(End definition for \c_group_begin_token and others. These functions are documented on page 53.)

\c_catcode_active_tl Not an implicit token!
2550 \group_begin:
281 \char_set_catcode_active:N *
2582 \tl_const:Nn \c_catcode_active_tl { \exp_not:N * }
2583 \group_end :

(End definition for \c_catcode_active_tl. This variable is documented on page 53.)

\1_char_active_seq Two sequences for dealing with special characters. The first is characters which may
\1_char_special_seq be active, and contains the active characters themselves to allow easy redefinition. The
second longer list is for “special” characters more generally, and these are escaped so
that for example bulk code assignments can be carried out. In both cases, the order is by
ASCII character code (as is done in for example \ExplSyntax0On). The only complication

is dealing with _, which requires the use of \use:n and \use:nn.

234 \seq_new:N \1_char_active_seq

285 \use:n

2586 {

2587 \group_begin:

2588 \char_set_catcode_active:N \"
2589 \char_set_catcode_active:N \$
2590 \char_set_catcode_active:N \&
2501 \char_set_catcode_active:N \~
2502 \char_set_catcode_active:N _
2503 \char_set_catcode_active:N \~
2504 \use:nn

2595 {

2596 \group_end:

2507 \seq_set_split:Nnn \1_char_active_seq { }
2598 }

2599 3

2600 {{"$&"~_~3}1}Us$

201 \seq_new:N \1_char_special_seq
2602 \seq_set_split:Nnn \1_char_special_seq { }
2003 LN N" NS \Z \& \\ N7 _ N \} \~}

(End definition for \1_char_active_seq and \1_char_special_seq. These variables are documented on
page 53.)

290

\token_if_group_begin_p:N
\token_if_group_begin:NTF

\token_if_group_end_p:N
\token_if_group_end:NTF

\token_if_math_toggle_p:N
\token_if_math_toggle:NTF

\token_if_alignment_p:N
\token_if_alignment:NTF

\token_if_parameter_p:N
\token_if_parameter:NTF

7.3 Token conditionals

Check if token is a begin group token. We use the constant \c_group_begin_token for
this.

2604 \prg_new_conditional:Npnn \token_if_group_begin:N #1 { p , T, F , TF }

2605 {

2606 \if_catcode:w \exp_not:N #1 \c_group_begin_token

2607 \prg_return_true: \else: \prg_return_false: \fi:

2608 }
(End definition for \token_if_group_begin:N. These functions are documented on page 5/.)

Check if token is a end group token. We use the constant \c_group_end_token for this.

2600 \prg_new_conditional:Npnn \token_if_group_end:N #1 { p , T, F , TF }
2610 {

2611 \if_catcode:w \exp_not:N #1 \c_group_end_token

2612 \prg_return_true: \else: \prg_return_false: \fi:

2613 }

(End definition for \token_if_group_end:N. These functions are documented on page 54.)

Check if token is a math shift token. We use the constant \c_math_toggle_token for
this.

2614 \prg_new_conditional:Npnn \token_if_math_toggle:N #1 { p , T, F , TF }

2615 {

2616 \if_catcode:w \exp_not:N #1 \c_math_toggle_token

2617 \prg_return_true: \else: \prg_return_false: \fi:

2618 }
(End definition for \token_if_math_toggle:N. These functions are documented on page 5/.)

Check if token is an alignment tab token. We use the constant \c_alignment_token for
this.

2619 \prg_new_conditional:Npnn \token_if_alignment:N #1 { p , T, F , TF }

2620 {

2621 \if _catcode:w \exp_not:N #1 \c_alignment_token

2622 \prg_return_true: \else: \prg_return_false: \fi:

2623 }

(End definition for \token_if_alignment:N. These functions are documented on page 54.)

Check if token is a parameter token. We use the constant \c_parameter_token for this.
We have to trick TEX a bit to avoid an error message: within a group we prevent \c_-
parameter_token from behaving like a macro parameter character. The definitions of
\prg_new_conditional:Npnn are global, so they will remain after the group.

2624 \group_begin:

2625 \cs_set_eq:NN \c_parameter_token \scan_stop:

2626 \prg_new_conditional:Npnn \token_if_parameter:N #1 { p , T, F , TF }

2627 {

2628 \if _catcode:w \exp_not:N #1 \c_parameter_token

2629 \prg_return_true: \else: \prg_return_false: \fi:

2630 }

2631 \group_end:

291

\token if math superscript p:N
\token_if_math_superscript:NTF

\token_if_math_subscript_p:N
\token_if_math_subscript:NTF

\token_if_space_p:N
\token_if_space:NTF

\token_if_letter_p:N
\token_if_letter:NTF

\token_if_other_p:N
\token_if_other:NTF

(End definition for \token_if_parameter:N. These functions are documented on page 55.)

Check if token is a math superscript token. We use the constant \c_math_superscript_-
token for this.
2632 \prg_new_conditional:Npnn \token_if_math_superscript:N #1 { p , T, F , TF }
2633 {
2634 \if _catcode:w \exp_not:N #1 \c_math_superscript_token
2635 \prg_return_true: \else: \prg_return_false: \fi:
2636 }

End definition for \token_if_math_superscript:N. These functions are documented on page 55.
p p

Check if token is a math subscript token. We use the constant \c_math_subscript_-
token for this.
2637 \prg_new_conditional:Npnn \token_if_math_subscript:N #1 { p , T, F , TF }
2638 {
2639 \if_catcode:w \exp_not:N #1 \c_math_subscript_token
2640 \prg_return_true: \else: \prg_return_false: \fi:
2641 }

(End definition for \token_if_math_subscript:N. These functions are documented on page 55.)

Check if token is a space token. We use the constant \c_space_token for this.

2642 \prg_new_conditional:Npnn \token_if_space:N #1 {p , T, F , TF }

2643 {

2644 \if_catcode:w \exp_not:N #1 \c_space_token

2645 \prg_return_true: \else: \prg_return_false: \fi:
2646 }

(End definition for \token_if_space:N. These functions are documented on page 55.)

Check if token is a letter token. We use the constant \c_catcode_letter_token for this.
2647 \prg_new_conditional:Npnn \token_if_letter:N #1 { p , T, F , TF }
2648 {
2649 \if_catcode:w \exp_not:N #1 \c_catcode_letter_token
2650 \prg_return_true: \else: \prg_return_false: \fi:
2651 ¥

(End definition for \token_if_letter:N. These functions are documented on page 55.)

Check if token is an other char token. We use the constant \c_catcode_other_token
for this.

2652 \prg_new_conditional:Npnn \token_if_other:N #1 { p , T, F , TF }

2653 {

2654 \if _catcode:w \exp_not:N #1 \c_catcode_other_token

2655 \prg_return_true: \else: \prg_return_false: \fi:

2656 }

(End definition for \token_if_other:N. These functions are documented on page 55.)

292

\token_if_active_p:N
\token_if_active:NTF

\token_if_eq_meaning_p:NN
\token_if_eq_meaning:NNTF

\token_if_eq_catcode_p:NN
\token_if_eq_catcode:NNTF

\token_if_eq_charcode_p:NN
\token_if_eq_charcode:NNTF

\token_if_macro_p:N
\token_if_macro:NTF

Check if token is an active char token. We use the constant \c_catcode_active_t1 for
this. A technical point is that \c_catcode_active_tl is in fact a macro expanding to
\exp_not:N * where * is active.

2657 \prg_new_conditional:Npnn \token_if_active:N #1 {p , T, F , TF }

2658 {

2659 \if_catcode:w \exp_not:N #1 \c_catcode_active_tl

2660 \prg_return_true: \else: \prg_return_false: \fi:

2661 }

n efinition for \to. en_i _active: . ese junctions are aocumentea on page oo.
(End definition for \token_if N. These functs d ted on page 55.)

Check if the tokens #1 and #2 have same meaning.
2662 \prg_new_conditional:Npnn \token_if_eq_meaning:NN #1#2 { p , T, F , TF }

2663 {

2664 \if _meaning:w #1 #2

2665 \prg_return_true: \else: \prg_return_false: \fi:
2666 }

(End definition for \token_if_eq_meaning:NN. These functions are documented on page 56.)

Check if the tokens #1 and #2 have same category code.

2667 \prg_new_conditional:Npnn \token_if_eq_catcode:NN #1#2 { p , T, F , TF }
2668 {

2669 \if_catcode:w \exp_not:N #1 \exp_not:N #2

2670 \prg_return_true: \else: \prg_return_false: \fi:

2671 }

(End definition for \token_if_eq_catcode:NN. These functions are documented on page 55.)

Check if the tokens #1 and #2 have same character code.

2672 \prg_new_conditional:Npnn \token_if_eq_charcode:NN #1#2 { p , T, F , TF }
2673 {

2674 \if _charcode:w \exp_not:N #1 \exp_not:N #2
2675 \prg_return_true: \else: \prg_return_false: \fi:
2676 T

(End definition for \token_if_eq_charcode:NN. These functions are documented on page 55.)

When a token is a macro, \token_to_meaning:N will always output something like
\long macro:#1->#1 so we could naively check to see if the meaning contains ->.
However, this can fail the five \...mark primitives, whose meaning has the form
.. .mark: (user material). The problem is that the (user material) can contain ->.

However, only characters, macros, and marks can contain the colon character. The
idea is thus to grab until the first :, and analyse what is left. However, macros can have
any combination of \long, \protected or \outer (not used in XTEX3) before the string
macro:. We thus only select the part of the meaning between the first ma and the first
following :. If this string is cro, then we have a macro. If the string is rk, then we have
a mark. The string can also be cro parameter character for a colon with a weird
category code (namely the usual category code of #). Otherwise, it is empty.

This relies on the fact that \long, \protected, \outer cannot contain ma, regardless
of the escape character, even if the escape character is m. ..

293

\token_if_cs_p:N
\token_if_cs:NTF

\token_if_expandable_p:N
\token_if_expandable:NTF

Both ma and : must be of category code 12 (other), and we achieve using the standard
lowercasing technique.

2677 \group_begin:

2678 \char_set_catcode_other:N \M

270 \char_set_catcode_other:N \A

2650 \char_set_lccode:nn { ‘\; } { ‘\: }
281 \char_set_lccode:nn { ‘\T } { ‘\T }
282 \char_set_lccode:nn { ‘\F } { ‘\F }
2683 \tl_to_lowercase:n

2684 {

2685 \group_end:

2686 \prg_new_conditional:Npnn \token_if macro:N #1 { p , T, F , TF }
2687 {

2688 \exp_after:wN __token_if_macro_p:w

2689 \token_to_meaning:N #1 MA; \g_stop

2690 }

2601 \cs_new:Npn __token_if_macro_p:w #1 MA #2 ; #3 \q_stop

2692 {

2603 \if_int_compare:w \pdftex_strcmp:D { #2 } { cro } = \c_zero
2604 \prg_return_true:

2695 \else:

2696 \prg_return_false:

2697 \fi:

2698 ¥

2699 }

(End definition for \token_if_macro:N. These functions are documented on page 56.)

Check if token has same catcode as a control sequence. This follows the same pattern as
for \token_if_letter:N etc. We use \scan_stop: for this.

270 \prg_new_conditional:Npnn \token_if cs:N #1 {p , T, F , TF }

2701 {

2702 \if _catcode:w \exp_not:N #1 \scan_stop:

2703 \prg_return_true: \else: \prg_return_false: \fi:

2704 }

(End definition for \token_if_cs:N. These functions are documented on page 56.)

Check if token is expandable. We use the fact that TEX will temporarily convert \exp_-
not:N (token) into \scan_stop: if (token) is expandable. An undefined token is not
considered as expandable. No problem nesting the conditionals, since the third #1 is only
skipped if it is non-expandable (hence not part of TEX’s conditional apparatus).

o705 \prg_new_conditional:Npnn \token_if_expandable:N #1 { p , T, F , TF }

2706 {

2707 \exp_after:wN \if _meaning:w \exp_not:N #1 #1

2708 \prg_return_false:
2709 \else:

2710 \if_cs_exist:N #1
2711 \prg_return_true:
2712 \else:

294

\token_if_chardef_
\token_if_mathchardef_
\token_if_dim_register_
\token_if_int_register_

p:N
p:N
p:N
p:N

\token if muskip register p:N

\token_if_skip_register_
\token_if_toks_register_
\token_if_long_macro_

p:N
p:N
p:N

\token if protected macro p:N

\token_if protected long macro p:N

\token_if_chardef
\token_if_mathchardef

\token_if_dim_register:
\token_if_int_register:
\token_if muskip_register:
\token_if_skip_register:
\token_if_toks_register:
\token_if_long_macro:
\token_if_protected_macro:
\token_if protected long macro:NIF

:NTF
:NTF

NTF
NTF
NTF
NTF
NTF
NTF
NTF

2713 \prg_return_false:
2714 \fi:

2715 \fi:

2716 ¥

(End definition for \token_if_expandable:N. These functions are documented on page 56.)

Most of these functions have to check the meaning of the token in question so we need to
do some checkups on which characters are output by \token_to_meaning:N. As usual,
these characters have catcode 12 so we must do some serious substitutions in the code
below. ..

o7 \group_begin:

2718 \char_set_lccode:nn { ‘T } { ‘T }

2719 \char_set_lccode:nn { ‘F } { ‘F }

2720 \char_set_lccode:nn { ‘X } { ‘n }

2721 \char_set_lccode:nn { ‘Y } { ‘t }

2722 \char_set_lccode:nn { ‘Z } { ‘4 }

2723 \tl_map_inline:nn { ACEGHIKLMOPRSUXYZR"}
2724 { \char_set_catcode:nn { ‘#1 } \c_twelve }

We convert the token list to lower case and restore the catcode and lowercase code
changes.

2725 \t1l_to_lowercase:n

2726 {

2727 \group_end:
First up is checking if something has been defined with \chardef or \mathchardef.
This is easy since TEX thinks of such tokens as hexadecimal so it stores them as
\char"(hex number) or \mathchar"(hex number). Grab until the first occurrence of
char", and compare what precedes with \ or \math. In fact, the escape character may
not be a backslash, so we compare with the result of converting some other control
sequence to a string, namely \char or \mathchar (the auxiliary adds the char back).

2728 \prg_new_conditional:Npnn \token_if_chardef:N #1 { p , T, F , TF }
2729 {

2730 __str_if_eq_x_return:nn

2731 {

2732 \exp_after:wN __token_if_chardef:w

2733 \token_to_meaning:N #1 CHAR" \g_stop

2734 }

2735 { \token_to_str:N \char }

27