pyspark.pandas.Series.cov¶
-
Series.
cov
(other: pyspark.pandas.series.Series, min_periods: Optional[int] = None, ddof: int = 1) → float[source]¶ Compute covariance with Series, excluding missing values.
New in version 3.3.0.
- Parameters
- otherSeries
Series with which to compute the covariance.
- min_periodsint, optional
Minimum number of observations needed to have a valid result.
- ddofint, default 1
Delta degrees of freedom. The divisor used in calculations is
N - ddof
, whereN
represents the number of elements.New in version 3.4.0.
- Returns
- float
Covariance between Series and other
Examples
>>> from pyspark.pandas.config import set_option, reset_option >>> s1 = ps.Series([0.90010907, 0.13484424, 0.62036035]) >>> s2 = ps.Series([0.12528585, 0.26962463, 0.51111198]) >>> with ps.option_context("compute.ops_on_diff_frames", True): ... s1.cov(s2) -0.016857... >>> with ps.option_context("compute.ops_on_diff_frames", True): ... s1.cov(s2, ddof=2) -0.033715...