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Chapter 1

User Manual

1.1 Introduction
isl is a thread-safe C library for manipulating sets and relations of integer points
bounded by affine constraints. The descriptions of the sets and relations may involve
both parameters and existentially quantified variables. All computations are performed
in exact integer arithmetic using GMP. The isl library offers functionality that is similar
to that offered by the Omega and Omega+ libraries, but the underlying algorithms are in
most cases completely different.

The library is by no means complete and some fairly basic functionality is still
missing. Still, even in its current form, the library has been successfully used as a
backend polyhedral library for the polyhedral scanner CLooG and as part of an equiva-
lence checker of static affine programs. For bug reports, feature requests and questions,
visit the the discussion group at http://groups.google.com/group/isl-development.

1.1.1 Backward Incompatible Changes
Changes since isl-0.02

• The old printing functions have been deprecated and replaced by isl printer
functions, see Input and Output.

• Most functions related to dependence analysis have acquired an extra must ar-
gument. To obtain the old behavior, this argument should be given the value 1.
See Dependence Analysis.

Changes since isl-0.03

• The function isl pw qpolynomial fold add has been renamed to isl pw qpolynomial fold fold.
Similarly, isl union pw qpolynomial fold add has been renamed to isl union pw qpolynomial fold fold.
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Changes since isl-0.04

• All header files have been renamed from isl header.h to isl/header.h.

Changes since isl-0.05

• The functions isl printer print basic set and isl printer print basic map
no longer print a newline.

• The functions isl flow get no source and isl union map compute flow
now return the accesses for which no source could be found instead of the itera-
tions where those accesses occur.

• The functions isl basic map identity and isl map identity now take the
dimension specification of a map as input. An old call isl map identity(dim)
can be rewritten to isl map identity(isl dim map from set(dim)).

• The function isl map power no longer takes a parameter position as input. In-
stead, the exponent is now expressed as the domain of the resulting relation.

1.2 Installation
The source of isl can be obtained either as a tarball or from the git repository. Both
are available from http://freshmeat.net/projects/isl/. The installation process depends
on how you obtained the source.

1.2.1 Installation from the git repository
1. Clone or update the repository

The first time the source is obtained, you need to clone the repository.

git clone git://repo.or.cz/isl.git

To obtain updates, you need to pull in the latest changes

git pull

2. Generate configure

./autogen.sh

After performing the above steps, continue with the Common installation instruc-
tions.
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1.2.2 Common installation instructions
1. Obtain GMP

Building isl requires GMP, including its headers files. Your distribution may not
provide these header files by default and you may need to install a package called
gmp-devel or something similar. Alternatively, GMP can be built from source,
available from http://gmplib.org/.

2. Configure

isl uses the standard autoconf configure script. To run it, just type

./configure

optionally followed by some configure options. A complete list of options can
be obtained by running

./configure --help

Below we discuss some of the more common options.

isl can optionally use piplib, but no piplib functionality is currently used
by default. The --with-piplib option can be used to specify which piplib
library to use, either an installed version (system), an externally built version
(build) or no version (no). The option build is mostly useful in configure
scripts of larger projects that bundle both isl and piplib.

--prefix

Installation prefix for isl
--with-gmp-prefix

Installation prefix for GMP (architecture-independent files).
--with-gmp-exec-prefix

Installation prefix for GMP (architecture-dependent files).
--with-piplib

Which copy of piplib to use, either no (default), system or build.
--with-piplib-prefix

Installation prefix for system piplib (architecture-independent files).
--with-piplib-exec-prefix

Installation prefix for system piplib (architecture-dependent files).
--with-piplib-builddir

Location where build piplib was built.

3. Compile

make

4. Install (optional)

make install
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1.3 Library

1.3.1 Initialization
All manipulations of integer sets and relations occur within the context of an isl ctx.
A given isl ctx can only be used within a single thread. All arguments of a function
are required to have been allocated within the same context. There are currently no
functions available for moving an object from one isl ctx to another isl ctx. This
means that there is currently no way of safely moving an object from one thread to
another, unless the whole isl ctx is moved.

An isl ctx can be allocated using isl ctx alloc and freed using isl ctx free.
All objects allocated within an isl ctx should be freed before the isl ctx itself is
freed.

isl_ctx *isl_ctx_alloc();

void isl_ctx_free(isl_ctx *ctx);

1.3.2 Integers
All operations on integers, mainly the coefficients of the constraints describing the sets
and relations, are performed in exact integer arithmetic using GMP. However, to allow
future versions of isl to optionally support fixed integer arithmetic, all calls to GMP
are wrapped inside isl specific macros. The basic type is isl int and the operations
below are available on this type. The meanings of these operations are essentially the
same as their GMP mpz counterparts. As always with GMP types, isl ints need to be
initialized with isl int init before they can be used and they need to be released
with isl int clear after the last use. The user should not assume that an isl int
is represented as a mpz t, but should instead explicitly convert between mpz ts and
isl ints using isl int set gmp and isl int get gmp whenever a mpz t is re-
quired.

isl int init(i)

isl int clear(i)

isl int set(r,i)

isl int set si(r,i)

isl int set gmp(r,g)

isl int get gmp(i,g)

isl int abs(r,i)

isl int neg(r,i)

isl int swap(i,j)

isl int swap or set(i,j)
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isl int add ui(r,i,j)

isl int sub ui(r,i,j)

isl int add(r,i,j)

isl int sub(r,i,j)

isl int mul(r,i,j)

isl int mul ui(r,i,j)

isl int addmul(r,i,j)

isl int submul(r,i,j)

isl int gcd(r,i,j)

isl int lcm(r,i,j)

isl int divexact(r,i,j)

isl int cdiv q(r,i,j)

isl int fdiv q(r,i,j)

isl int fdiv r(r,i,j)

isl int fdiv q ui(r,i,j)

isl int read(r,s)

isl int print(out,i,width)

isl int sgn(i)

isl int cmp(i,j)

isl int cmp si(i,si)

isl int eq(i,j)

isl int ne(i,j)

isl int lt(i,j)

isl int le(i,j)

isl int gt(i,j)

isl int ge(i,j)

isl int abs eq(i,j)

isl int abs ne(i,j)
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isl int abs lt(i,j)

isl int abs gt(i,j)

isl int abs ge(i,j)

isl int is zero(i)

isl int is one(i)

isl int is negone(i)

isl int is pos(i)

isl int is neg(i)

isl int is nonpos(i)

isl int is nonneg(i)

isl int is divisible by(i,j)

1.3.3 Sets and Relations
isl uses six types of objects for representing sets and relations, isl basic set,
isl basic map, isl set, isl map, isl union set and isl union map. isl basic set
and isl basic map represent sets and relations that can be described as a conjunction
of affine constraints, while isl set and isl map represent unions of isl basic sets
and isl basic maps, respectively. However, all isl basic sets or isl basic maps
in the union need to have the same dimension. isl union sets and isl union maps
represent unions of isl sets or isl maps of different dimensions, where dimensions
with different space names (see Dimension Specifications) are considered different as
well. The difference between sets and relations (maps) is that sets have one set of vari-
ables, while relations have two sets of variables, input variables and output variables.

1.3.4 Memory Management
Since a high-level operation on sets and/or relations usually involves several substeps
and since the user is usually not interested in the intermediate results, most functions
that return a new object will also release all the objects passed as arguments. If the user
still wants to use one or more of these arguments after the function call, she should pass
along a copy of the object rather than the object itself. The user is then responsible for
making sure that the original object gets used somewhere else or is explicitly freed.

The arguments and return values of all documents functions are annotated to make
clear which arguments are released and which arguments are preserved. In particular,
the following annotations are used

8



isl give

isl give means that a new object is returned. The user should make sure that
the returned pointer is used exactly once as a value for an isl take argument.
In between, it can be used as a value for as many isl keep arguments as the
user likes. There is one exception, and that is the case where the pointer returned
is NULL. Is this case, the user is free to use it as an isl take argument or not.

isl take

isl take means that the object the argument points to is taken over by the
function and may no longer be used by the user as an argument to any other
function. The pointer value must be one returned by a function returning an
isl give pointer. If the user passes in a NULL value, then this will be treated

as an error in the sense that the function will not perform its usual operation.
However, it will still make sure that all the the other isl take arguments are
released.

isl keep

isl keep means that the function will only use the object temporarily. After
the function has finished, the user can still use it as an argument to other func-
tions. A NULL value will be treated in the same way as a NULL value for an
isl take argument.

1.3.5 Dimension Specifications
Whenever a new set or relation is created from scratch, its dimension needs to be spec-
ified using an isl dim.

#include <isl/dim.h>

__isl_give isl_dim *isl_dim_alloc(isl_ctx *ctx,

unsigned nparam, unsigned n_in, unsigned n_out);

__isl_give isl_dim *isl_dim_set_alloc(isl_ctx *ctx,

unsigned nparam, unsigned dim);

__isl_give isl_dim *isl_dim_copy(__isl_keep isl_dim *dim);

void isl_dim_free(__isl_take isl_dim *dim);

unsigned isl_dim_size(__isl_keep isl_dim *dim,

enum isl_dim_type type);

The dimension specification used for creating a set needs to be created using isl dim set alloc,
while that for creating a relation needs to be created using isl dim alloc. isl dim size
can be used to find out the number of dimensions of each type in a dimension specifica-
tion, where type may be isl dim param, isl dim in (only for relations), isl dim out
(only for relations), isl dim set (only for sets) or isl dim all.

It is often useful to create objects that live in the same space as some other object.
This can be accomplished by creating the new objects (see Creating New Sets and
Relations or Creating New (Piecewise) Quasipolynomials) based on the dimension
specification of the original object.
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#include <isl/set.h>

__isl_give isl_dim *isl_basic_set_get_dim(

__isl_keep isl_basic_set *bset);

__isl_give isl_dim *isl_set_get_dim(__isl_keep isl_set *set);

#include <isl/union_set.h>

__isl_give isl_dim *isl_union_set_get_dim(

__isl_keep isl_union_set *uset);

#include <isl/map.h>

__isl_give isl_dim *isl_basic_map_get_dim(

__isl_keep isl_basic_map *bmap);

__isl_give isl_dim *isl_map_get_dim(__isl_keep isl_map *map);

#include <isl/union_map.h>

__isl_give isl_dim *isl_union_map_get_dim(

__isl_keep isl_union_map *umap);

#include <isl/polynomial.h>

__isl_give isl_dim *isl_qpolynomial_get_dim(

__isl_keep isl_qpolynomial *qp);

__isl_give isl_dim *isl_pw_qpolynomial_get_dim(

__isl_keep isl_pw_qpolynomial *pwqp);

__isl_give isl_dim *isl_union_pw_qpolynomial_get_dim(

__isl_keep isl_union_pw_qpolynomial *upwqp);

__isl_give isl_dim *isl_union_pw_qpolynomial_fold_get_dim(

__isl_keep isl_union_pw_qpolynomial_fold *upwf);

The names of the individual dimensions may be set or read off using the following
functions.

#include <isl/dim.h>

__isl_give isl_dim *isl_dim_set_name(__isl_take isl_dim *dim,

enum isl_dim_type type, unsigned pos,

__isl_keep const char *name);

__isl_keep const char *isl_dim_get_name(__isl_keep isl_dim *dim,

enum isl_dim_type type, unsigned pos);

Note that isl dim get name returns a pointer to some internal data structure, so
the result can only be used while the corresponding isl dim is alive. Also note that ev-
ery function that operates on two sets or relations requires that both arguments have the
same parameters. This also means that if one of the arguments has named parameters,
then the other needs to have named parameters too and the names need to match. Pairs
of isl union set and/or isl union map arguments may have different parameters
(as long as they are named), in which case the result will have as parameters the union
of the parameters of the arguments.

The names of entire spaces may be set or read off using the following functions.
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#include <isl/dim.h>

__isl_give isl_dim *isl_dim_set_tuple_name(

__isl_take isl_dim *dim,

enum isl_dim_type type, const char *s);

const char *isl_dim_get_tuple_name(__isl_keep isl_dim *dim,

enum isl_dim_type type);

The dim argument needs to be one of isl dim in, isl dim out or isl dim set.
As with isl dim get name, the isl dim get tuple name function returns a pointer
to some internal data structure. Binary operations require the corresponding spaces of
their arguments to have the same name.

Spaces can be nested. In particular, the domain of a set or the domain or range of a
relation can be a nested relation. The following functions can be used to construct and
deconstruct such nested dimension specifications.

#include <isl/dim.h>

int isl_dim_is_wrapping(__isl_keep isl_dim *dim);

__isl_give isl_dim *isl_dim_wrap(__isl_take isl_dim *dim);

__isl_give isl_dim *isl_dim_unwrap(__isl_take isl_dim *dim);

The input to isl dim is wrapping and isl dim unwrap should be the dimen-
sion specification of a set, while that of isl dim wrap should be the dimension spec-
ification of a relation. Conversely, the output of isl dim unwrap is the dimension
specification of a relation, while that of isl dim wrap is the dimension specification
of a set.

Dimension specifications can be created from other dimension specifications using
the following functions.

__isl_give isl_dim *isl_dim_domain(__isl_take isl_dim *dim);

__isl_give isl_dim *isl_dim_from_domain(__isl_take isl_dim *dim);

__isl_give isl_dim *isl_dim_range(__isl_take isl_dim *dim);

__isl_give isl_dim *isl_dim_from_range(__isl_take isl_dim *dim);

__isl_give isl_dim *isl_dim_reverse(__isl_take isl_dim *dim);

__isl_give isl_dim *isl_dim_join(__isl_take isl_dim *left,

__isl_take isl_dim *right);

__isl_give isl_dim *isl_dim_insert(__isl_take isl_dim *dim,

enum isl_dim_type type, unsigned pos, unsigned n);

__isl_give isl_dim *isl_dim_add(__isl_take isl_dim *dim,

enum isl_dim_type type, unsigned n);

__isl_give isl_dim *isl_dim_drop(__isl_take isl_dim *dim,

enum isl_dim_type type, unsigned first, unsigned n);

__isl_give isl_dim *isl_dim_map_from_set(

__isl_take isl_dim *dim);

__isl_give isl_dim *isl_dim_zip(__isl_take isl_dim *dim);

Note that if dimensions are added or removed from a space, then the name and the
internal structure are lost.
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1.3.6 Input and Output
isl supports its own input/output format, which is similar to the Omega format, but
also supports the PolyLib format in some cases.

isl format

The isl format is similar to that of Omega, but has a different syntax for describing the
parameters and allows for the definition of an existentially quantified variable as the
integer division of an affine expression. For example, the set of integers i between 0
and n such that i % 10 <= 6 can be described as

[n] -> { [i] : exists (a = [i/10] : 0 <= i and i <= n and

i - 10 a <= 6) }

A set or relation can have several disjuncts, separated by the keyword or. Each
disjunct is either a conjunction of constraints or a projection (exists) of a conjunction
of constraints. The constraints are separated by the keyword and.

PolyLib format

If the represented set is a union, then the first line contains a single number representing
the number of disjuncts. Otherwise, a line containing the number 1 is optional.

Each disjunct is represented by a matrix of constraints. The first line contains two
numbers representing the number of rows and columns, where the number of rows is
equal to the number of constraints and the number of columns is equal to two plus
the number of variables. The following lines contain the actual rows of the constraint
matrix. In each row, the first column indicates whether the constraint is an equality (0)
or inequality (1). The final column corresponds to the constant term.

If the set is parametric, then the coefficients of the parameters appear in the last
columns before the constant column. The coefficients of any existentially quantified
variables appear between those of the set variables and those of the parameters.

Extended PolyLib format

The extended PolyLib format is nearly identical to the PolyLib format. The only
difference is that the line containing the number of rows and columns of a constraint
matrix also contains four additional numbers: the number of output dimensions, the
number of input dimensions, the number of local dimensions (i.e., the number of ex-
istentially quantified variables) and the number of parameters. For sets, the number
of “output” dimensions is equal to the number of set dimensions, while the number of
“input” dimensions is zero.

Input

#include <isl/set.h>

__isl_give isl_basic_set *isl_basic_set_read_from_file(
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isl_ctx *ctx, FILE *input, int nparam);

__isl_give isl_basic_set *isl_basic_set_read_from_str(

isl_ctx *ctx, const char *str, int nparam);

__isl_give isl_set *isl_set_read_from_file(isl_ctx *ctx,

FILE *input, int nparam);

__isl_give isl_set *isl_set_read_from_str(isl_ctx *ctx,

const char *str, int nparam);

#include <isl/map.h>

__isl_give isl_basic_map *isl_basic_map_read_from_file(

isl_ctx *ctx, FILE *input, int nparam);

__isl_give isl_basic_map *isl_basic_map_read_from_str(

isl_ctx *ctx, const char *str, int nparam);

__isl_give isl_map *isl_map_read_from_file(

struct isl_ctx *ctx, FILE *input, int nparam);

__isl_give isl_map *isl_map_read_from_str(isl_ctx *ctx,

const char *str, int nparam);

#include <isl/union_set.h>

__isl_give isl_union_set *isl_union_set_read_from_file(

isl_ctx *ctx, FILE *input);

__isl_give isl_union_set *isl_union_set_read_from_str(

struct isl_ctx *ctx, const char *str);

#include <isl/union_map.h>

__isl_give isl_union_map *isl_union_map_read_from_file(

isl_ctx *ctx, FILE *input);

__isl_give isl_union_map *isl_union_map_read_from_str(

struct isl_ctx *ctx, const char *str);

The input format is autodetected and may be either the PolyLib format or the
isl format. nparam specifies how many of the final columns in the PolyLib format
correspond to parameters. If input is given in the isl format, then the number of
parameters needs to be equal to nparam. If nparam is negative, then any number
of parameters is accepted in the isl format and zero parameters are assumed in the
PolyLib format.

Output

Before anything can be printed, an isl printer needs to be created.

__isl_give isl_printer *isl_printer_to_file(isl_ctx *ctx,

FILE *file);

__isl_give isl_printer *isl_printer_to_str(isl_ctx *ctx);

void isl_printer_free(__isl_take isl_printer *printer);

__isl_give char *isl_printer_get_str(

__isl_keep isl_printer *printer);
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The behavior of the printer can be modified in various ways

__isl_give isl_printer *isl_printer_set_output_format(

__isl_take isl_printer *p, int output_format);

__isl_give isl_printer *isl_printer_set_indent(

__isl_take isl_printer *p, int indent);

__isl_give isl_printer *isl_printer_set_prefix(

__isl_take isl_printer *p, const char *prefix);

__isl_give isl_printer *isl_printer_set_suffix(

__isl_take isl_printer *p, const char *suffix);

The output formatmay be either ISL FORMAT ISL, ISL FORMAT OMEGA, ISL FORMAT POLYLIB,
ISL FORMAT EXT POLYLIB or ISL FORMAT LATEX and defaults to ISL FORMAT ISL.
Each line in the output is indented by indent spaces (default: 0), prefixed by prefix
and suffixed by suffix. In the PolyLib format output, the coefficients of the exis-
tentially quantified variables appear between those of the set variables and those of the
parameters.

To actually print something, use

#include <isl/set.h>

__isl_give isl_printer *isl_printer_print_basic_set(

__isl_take isl_printer *printer,

__isl_keep isl_basic_set *bset);

__isl_give isl_printer *isl_printer_print_set(

__isl_take isl_printer *printer,

__isl_keep isl_set *set);

#include <isl/map.h>

__isl_give isl_printer *isl_printer_print_basic_map(

__isl_take isl_printer *printer,

__isl_keep isl_basic_map *bmap);

__isl_give isl_printer *isl_printer_print_map(

__isl_take isl_printer *printer,

__isl_keep isl_map *map);

#include <isl/union_set.h>

__isl_give isl_printer *isl_printer_print_union_set(

__isl_take isl_printer *p,

__isl_keep isl_union_set *uset);

#include <isl/union_map.h>

__isl_give isl_printer *isl_printer_print_union_map(

__isl_take isl_printer *p,

__isl_keep isl_union_map *umap);

When called on a file printer, the following function flushes the file. When called
on a string printer, the buffer is cleared.

__isl_give isl_printer *isl_printer_flush(

__isl_take isl_printer *p);
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1.3.7 Creating New Sets and Relations
isl has functions for creating some standard sets and relations.

• Empty sets and relations

__isl_give isl_basic_set *isl_basic_set_empty(

__isl_take isl_dim *dim);

__isl_give isl_basic_map *isl_basic_map_empty(

__isl_take isl_dim *dim);

__isl_give isl_set *isl_set_empty(

__isl_take isl_dim *dim);

__isl_give isl_map *isl_map_empty(

__isl_take isl_dim *dim);

__isl_give isl_union_set *isl_union_set_empty(

__isl_take isl_dim *dim);

__isl_give isl_union_map *isl_union_map_empty(

__isl_take isl_dim *dim);

For isl union sets and isl union maps, the dimensions specification is only
used to specify the parameters.

• Universe sets and relations

__isl_give isl_basic_set *isl_basic_set_universe(

__isl_take isl_dim *dim);

__isl_give isl_basic_map *isl_basic_map_universe(

__isl_take isl_dim *dim);

__isl_give isl_set *isl_set_universe(

__isl_take isl_dim *dim);

__isl_give isl_map *isl_map_universe(

__isl_take isl_dim *dim);

The sets and relations constructed by the functions above contain all integer val-
ues, while those constructed by the functions below only contain non-negative
values.

__isl_give isl_basic_set *isl_basic_set_nat_universe(

__isl_take isl_dim *dim);

__isl_give isl_basic_map *isl_basic_map_nat_universe(

__isl_take isl_dim *dim);

__isl_give isl_set *isl_set_nat_universe(

__isl_take isl_dim *dim);

__isl_give isl_map *isl_map_nat_universe(

__isl_take isl_dim *dim);

• Identity relations
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__isl_give isl_basic_map *isl_basic_map_identity(

__isl_take isl_dim *dim);

__isl_give isl_map *isl_map_identity(

__isl_take isl_dim *dim);

The number of input and output dimensions in dim needs to be the same.

• Lexicographic order

__isl_give isl_map *isl_map_lex_lt(

__isl_take isl_dim *set_dim);

__isl_give isl_map *isl_map_lex_le(

__isl_take isl_dim *set_dim);

__isl_give isl_map *isl_map_lex_gt(

__isl_take isl_dim *set_dim);

__isl_give isl_map *isl_map_lex_ge(

__isl_take isl_dim *set_dim);

__isl_give isl_map *isl_map_lex_lt_first(

__isl_take isl_dim *dim, unsigned n);

__isl_give isl_map *isl_map_lex_le_first(

__isl_take isl_dim *dim, unsigned n);

__isl_give isl_map *isl_map_lex_gt_first(

__isl_take isl_dim *dim, unsigned n);

__isl_give isl_map *isl_map_lex_ge_first(

__isl_take isl_dim *dim, unsigned n);

The first four functions take a dimension specification for a set and return re-
lations that express that the elements in the domain are lexicographically less
(isl map lex lt), less or equal (isl map lex le), greater (isl map lex gt)
or greater or equal (isl map lex ge) than the elements in the range. The last
four functions take a dimension specification for a map and return relations
that express that the first n dimensions in the domain are lexicographically less
(isl map lex lt first), less or equal (isl map lex le first), greater (isl map lex gt first)
or greater or equal (isl map lex ge first) than the first n dimensions in the
range.

A basic set or relation can be converted to a set or relation using the following
functions.

__isl_give isl_set *isl_set_from_basic_set(

__isl_take isl_basic_set *bset);

__isl_give isl_map *isl_map_from_basic_map(

__isl_take isl_basic_map *bmap);

Sets and relations can be converted to union sets and relations using the following
functions.
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__isl_give isl_union_map *isl_union_map_from_map(

__isl_take isl_map *map);

__isl_give isl_union_set *isl_union_set_from_set(

__isl_take isl_set *set);

Sets and relations can be copied and freed again using the following functions.

__isl_give isl_basic_set *isl_basic_set_copy(

__isl_keep isl_basic_set *bset);

__isl_give isl_set *isl_set_copy(__isl_keep isl_set *set);

__isl_give isl_union_set *isl_union_set_copy(

__isl_keep isl_union_set *uset);

__isl_give isl_basic_map *isl_basic_map_copy(

__isl_keep isl_basic_map *bmap);

__isl_give isl_map *isl_map_copy(__isl_keep isl_map *map);

__isl_give isl_union_map *isl_union_map_copy(

__isl_keep isl_union_map *umap);

void isl_basic_set_free(__isl_take isl_basic_set *bset);

void isl_set_free(__isl_take isl_set *set);

void isl_union_set_free(__isl_take isl_union_set *uset);

void isl_basic_map_free(__isl_take isl_basic_map *bmap);

void isl_map_free(__isl_take isl_map *map);

void isl_union_map_free(__isl_take isl_union_map *umap);

Other sets and relations can be constructed by starting from a universe set or re-
lation, adding equality and/or inequality constraints and then projecting out the exis-
tentially quantified variables, if any. Constraints can be constructed, manipulated and
added to basic sets and relations using the following functions.

#include <isl/constraint.h>

__isl_give isl_constraint *isl_equality_alloc(

__isl_take isl_dim *dim);

__isl_give isl_constraint *isl_inequality_alloc(

__isl_take isl_dim *dim);

void isl_constraint_set_constant(

__isl_keep isl_constraint *constraint, isl_int v);

void isl_constraint_set_coefficient(

__isl_keep isl_constraint *constraint,

enum isl_dim_type type, int pos, isl_int v);

__isl_give isl_basic_map *isl_basic_map_add_constraint(

__isl_take isl_basic_map *bmap,

__isl_take isl_constraint *constraint);

__isl_give isl_basic_set *isl_basic_set_add_constraint(

__isl_take isl_basic_set *bset,

__isl_take isl_constraint *constraint);

For example, to create a set containing the even integers between 10 and 42, you
would use the following code.
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isl_int v;

struct isl_dim *dim;

struct isl_constraint *c;

struct isl_basic_set *bset;

isl_int_init(v);

dim = isl_dim_set_alloc(ctx, 0, 2);

bset = isl_basic_set_universe(isl_dim_copy(dim));

c = isl_equality_alloc(isl_dim_copy(dim));

isl_int_set_si(v, -1);

isl_constraint_set_coefficient(c, isl_dim_set, 0, v);

isl_int_set_si(v, 2);

isl_constraint_set_coefficient(c, isl_dim_set, 1, v);

bset = isl_basic_set_add_constraint(bset, c);

c = isl_inequality_alloc(isl_dim_copy(dim));

isl_int_set_si(v, -10);

isl_constraint_set_constant(c, v);

isl_int_set_si(v, 1);

isl_constraint_set_coefficient(c, isl_dim_set, 0, v);

bset = isl_basic_set_add_constraint(bset, c);

c = isl_inequality_alloc(dim);

isl_int_set_si(v, 42);

isl_constraint_set_constant(c, v);

isl_int_set_si(v, -1);

isl_constraint_set_coefficient(c, isl_dim_set, 0, v);

bset = isl_basic_set_add_constraint(bset, c);

bset = isl_basic_set_project_out(bset, isl_dim_set, 1, 1);

isl_int_clear(v);

Or, alternatively,

struct isl_basic_set *bset;

bset = isl_basic_set_read_from_str(ctx,

"{[i] : exists (a : i = 2a and i >= 10 and i <= 42)}", -1);

A basic set or relation can also be constructed from two matrices describing the
equalities and the inequalities.

__isl_give isl_basic_set *isl_basic_set_from_constraint_matrices(

__isl_take isl_dim *dim,

__isl_take isl_mat *eq, __isl_take isl_mat *ineq,

enum isl_dim_type c1,

enum isl_dim_type c2, enum isl_dim_type c3,
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enum isl_dim_type c4);

__isl_give isl_basic_map *isl_basic_map_from_constraint_matrices(

__isl_take isl_dim *dim,

__isl_take isl_mat *eq, __isl_take isl_mat *ineq,

enum isl_dim_type c1,

enum isl_dim_type c2, enum isl_dim_type c3,

enum isl_dim_type c4, enum isl_dim_type c5);

The isl dim type arguments indicate the order in which different kinds of vari-
ables appear in the input matrices and should be a permutation of isl dim cst, isl dim param,
isl dim set and isl dim div for sets and of isl dim cst, isl dim param, isl dim in,
isl dim out and isl dim div for relations.

1.3.8 Inspecting Sets and Relations
Usually, the user should not have to care about the actual constraints of the sets and
maps, but should instead apply the abstract operations explained in the following sec-
tions. Occasionally, however, it may be required to inspect the individual coefficients
of the constraints. This section explains how to do so. In these cases, it may also be
useful to have isl compute an explicit representation of the existentially quantified
variables.

__isl_give isl_set *isl_set_compute_divs(

__isl_take isl_set *set);

__isl_give isl_map *isl_map_compute_divs(

__isl_take isl_map *map);

__isl_give isl_union_set *isl_union_set_compute_divs(

__isl_take isl_union_set *uset);

__isl_give isl_union_map *isl_union_map_compute_divs(

__isl_take isl_union_map *umap);

This explicit representation defines the existentially quantified variables as integer
divisions of the other variables, possibly including earlier existentially quantified vari-
ables. An explicitly represented existentially quantified variable therefore has a unique
value when the values of the other variables are known. If, furthermore, the same ex-
istentials, i.e., existentials with the same explicit representations, should appear in the
same order in each of the disjuncts of a set or map, then the user should call either of
the following functions.

__isl_give isl_set *isl_set_align_divs(

__isl_take isl_set *set);

__isl_give isl_map *isl_map_align_divs(

__isl_take isl_map *map);

Alternatively, the existentially quantified variables can be removed using the fol-
lowing functions, which compute an overapproximation.

19



__isl_give isl_basic_set *isl_basic_set_remove_divs(

__isl_take isl_basic_set *bset);

__isl_give isl_basic_map *isl_basic_map_remove_divs(

__isl_take isl_basic_map *bmap);

__isl_give isl_set *isl_set_remove_divs(

__isl_take isl_set *set);

To iterate over all the sets or maps in a union set or map, use

int isl_union_set_foreach_set(__isl_keep isl_union_set *uset,

int (*fn)(__isl_take isl_set *set, void *user),

void *user);

int isl_union_map_foreach_map(__isl_keep isl_union_map *umap,

int (*fn)(__isl_take isl_map *map, void *user),

void *user);

The number of sets or maps in a union set or map can be obtained from

int isl_union_set_n_set(__isl_keep isl_union_set *uset);

int isl_union_map_n_map(__isl_keep isl_union_map *umap);

To extract the set or map from a union with a given dimension specification, use

__isl_give isl_set *isl_union_set_extract_set(

__isl_keep isl_union_set *uset,

__isl_take isl_dim *dim);

__isl_give isl_map *isl_union_map_extract_map(

__isl_keep isl_union_map *umap,

__isl_take isl_dim *dim);

To iterate over all the basic sets or maps in a set or map, use

int isl_set_foreach_basic_set(__isl_keep isl_set *set,

int (*fn)(__isl_take isl_basic_set *bset, void *user),

void *user);

int isl_map_foreach_basic_map(__isl_keep isl_map *map,

int (*fn)(__isl_take isl_basic_map *bmap, void *user),

void *user);

The callback function fn should return 0 if successful and -1 if an error occurs. In
the latter case, or if any other error occurs, the above functions will return -1.

It should be noted that isl does not guarantee that the basic sets or maps passed
to fn are disjoint. If this is required, then the user should call one of the following
functions first.

__isl_give isl_set *isl_set_make_disjoint(

__isl_take isl_set *set);

__isl_give isl_map *isl_map_make_disjoint(

__isl_take isl_map *map);
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The number of basic sets in a set can be obtained from

int isl_set_n_basic_set(__isl_keep isl_set *set);

To iterate over the constraints of a basic set or map, use

#include <isl/constraint.h>

int isl_basic_map_foreach_constraint(

__isl_keep isl_basic_map *bmap,

int (*fn)(__isl_take isl_constraint *c, void *user),

void *user);

void isl_constraint_free(struct isl_constraint *c);

Again, the callback function fn should return 0 if successful and -1 if an error
occurs. In the latter case, or if any other error occurs, the above functions will return
-1. The constraint c represents either an equality or an inequality. Use the following
function to find out whether a constraint represents an equality. If not, it represents an
inequality.

int isl_constraint_is_equality(

__isl_keep isl_constraint *constraint);

The coefficients of the constraints can be inspected using the following functions.

void isl_constraint_get_constant(

__isl_keep isl_constraint *constraint, isl_int *v);

void isl_constraint_get_coefficient(

__isl_keep isl_constraint *constraint,

enum isl_dim_type type, int pos, isl_int *v);

The explicit representations of the existentially quantified variables can be inspected
using the following functions. Note that the user is only allowed to use these func-
tions if the inspected set or map is the result of a call to isl set compute divs or
isl map compute divs.

__isl_give isl_div *isl_constraint_div(

__isl_keep isl_constraint *constraint, int pos);

void isl_div_get_constant(__isl_keep isl_div *div,

isl_int *v);

void isl_div_get_denominator(__isl_keep isl_div *div,

isl_int *v);

void isl_div_get_coefficient(__isl_keep isl_div *div,

enum isl_dim_type type, int pos, isl_int *v);

To obtain the constraints of a basic set or map in matrix form, use the following
functions.
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__isl_give isl_mat *isl_basic_set_equalities_matrix(

__isl_keep isl_basic_set *bset,

enum isl_dim_type c1, enum isl_dim_type c2,

enum isl_dim_type c3, enum isl_dim_type c4);

__isl_give isl_mat *isl_basic_set_inequalities_matrix(

__isl_keep isl_basic_set *bset,

enum isl_dim_type c1, enum isl_dim_type c2,

enum isl_dim_type c3, enum isl_dim_type c4);

__isl_give isl_mat *isl_basic_map_equalities_matrix(

__isl_keep isl_basic_map *bmap,

enum isl_dim_type c1,

enum isl_dim_type c2, enum isl_dim_type c3,

enum isl_dim_type c4, enum isl_dim_type c5);

__isl_give isl_mat *isl_basic_map_inequalities_matrix(

__isl_keep isl_basic_map *bmap,

enum isl_dim_type c1,

enum isl_dim_type c2, enum isl_dim_type c3,

enum isl_dim_type c4, enum isl_dim_type c5);

The isl dim type arguments dictate the order in which different kinds of vari-
ables appear in the resulting matrix and should be a permutation of isl dim cst,
isl dim param, isl dim in, isl dim out and isl dim div.

The names of the domain and range spaces of a set or relation can be read off using
the following functions.

const char *isl_basic_set_get_tuple_name(

__isl_keep isl_basic_set *bset);

const char *isl_set_get_tuple_name(

__isl_keep isl_set *set);

const char *isl_basic_map_get_tuple_name(

__isl_keep isl_basic_map *bmap,

enum isl_dim_type type);

const char *isl_map_get_tuple_name(

__isl_keep isl_map *map,

enum isl_dim_type type);

As with isl dim get tuple name, the value returned points to an internal data
structure. The names of individual dimensions can be read off using the following
functions.

const char *isl_constraint_get_dim_name(

__isl_keep isl_constraint *constraint,

enum isl_dim_type type, unsigned pos);

const char *isl_basic_set_get_dim_name(

__isl_keep isl_basic_set *bset,

enum isl_dim_type type, unsigned pos);

const char *isl_set_get_dim_name(
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__isl_keep isl_set *set,

enum isl_dim_type type, unsigned pos);

const char *isl_basic_map_get_dim_name(

__isl_keep isl_basic_map *bmap,

enum isl_dim_type type, unsigned pos);

const char *isl_map_get_dim_name(

__isl_keep isl_map *map,

enum isl_dim_type type, unsigned pos);

These functions are mostly useful to obtain the names of the parameters.

1.3.9 Properties
Unary Properties

• Emptiness

The following functions test whether the given set or relation contains any integer
points. The “fast” variants do not perform any computations, but simply check
if the given set or relation is already known to be empty.

int isl_basic_set_fast_is_empty(__isl_keep isl_basic_set *bset);

int isl_basic_set_is_empty(__isl_keep isl_basic_set *bset);

int isl_set_is_empty(__isl_keep isl_set *set);

int isl_union_set_is_empty(__isl_keep isl_union_set *uset);

int isl_basic_map_fast_is_empty(__isl_keep isl_basic_map *bmap);

int isl_basic_map_is_empty(__isl_keep isl_basic_map *bmap);

int isl_map_fast_is_empty(__isl_keep isl_map *map);

int isl_map_is_empty(__isl_keep isl_map *map);

int isl_union_map_is_empty(__isl_keep isl_union_map *umap);

• Universality

int isl_basic_set_is_universe(__isl_keep isl_basic_set *bset);

int isl_basic_map_is_universe(__isl_keep isl_basic_map *bmap);

int isl_set_fast_is_universe(__isl_keep isl_set *set);

• Single-valuedness

int isl_map_is_single_valued(__isl_keep isl_map *map);

• Bijectivity

int isl_map_is_bijective(__isl_keep isl_map *map);

• Wrapping

The followning functions check whether the domain of the given (basic) set is a
wrapped relation.
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int isl_basic_set_is_wrapping(

__isl_keep isl_basic_set *bset);

int isl_set_is_wrapping(__isl_keep isl_set *set);

• Internal Product

int isl_basic_map_can_zip(

__isl_keep isl_basic_map *bmap);

int isl_map_can_zip(__isl_keep isl_map *map);

Check whether the product of domain and range of the given relation can be
computed, i.e., whether both domain and range are nested relations.

Binary Properties

• Equality

int isl_set_fast_is_equal(__isl_keep isl_set *set1,

__isl_keep isl_set *set2);

int isl_set_is_equal(__isl_keep isl_set *set1,

__isl_keep isl_set *set2);

int isl_union_set_is_equal(

__isl_keep isl_union_set *uset1,

__isl_keep isl_union_set *uset2);

int isl_basic_map_is_equal(

__isl_keep isl_basic_map *bmap1,

__isl_keep isl_basic_map *bmap2);

int isl_map_is_equal(__isl_keep isl_map *map1,

__isl_keep isl_map *map2);

int isl_map_fast_is_equal(__isl_keep isl_map *map1,

__isl_keep isl_map *map2);

int isl_union_map_is_equal(

__isl_keep isl_union_map *umap1,

__isl_keep isl_union_map *umap2);

• Disjointness

int isl_set_fast_is_disjoint(__isl_keep isl_set *set1,

__isl_keep isl_set *set2);

• Subset

int isl_set_is_subset(__isl_keep isl_set *set1,

__isl_keep isl_set *set2);

int isl_set_is_strict_subset(

__isl_keep isl_set *set1,
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__isl_keep isl_set *set2);

int isl_union_set_is_subset(

__isl_keep isl_union_set *uset1,

__isl_keep isl_union_set *uset2);

int isl_union_set_is_strict_subset(

__isl_keep isl_union_set *uset1,

__isl_keep isl_union_set *uset2);

int isl_basic_map_is_subset(

__isl_keep isl_basic_map *bmap1,

__isl_keep isl_basic_map *bmap2);

int isl_basic_map_is_strict_subset(

__isl_keep isl_basic_map *bmap1,

__isl_keep isl_basic_map *bmap2);

int isl_map_is_subset(

__isl_keep isl_map *map1,

__isl_keep isl_map *map2);

int isl_map_is_strict_subset(

__isl_keep isl_map *map1,

__isl_keep isl_map *map2);

int isl_union_map_is_subset(

__isl_keep isl_union_map *umap1,

__isl_keep isl_union_map *umap2);

int isl_union_map_is_strict_subset(

__isl_keep isl_union_map *umap1,

__isl_keep isl_union_map *umap2);

1.3.10 Unary Operations
• Complement

__isl_give isl_set *isl_set_complement(

__isl_take isl_set *set);

• Inverse map

__isl_give isl_basic_map *isl_basic_map_reverse(

__isl_take isl_basic_map *bmap);

__isl_give isl_map *isl_map_reverse(

__isl_take isl_map *map);

__isl_give isl_union_map *isl_union_map_reverse(

__isl_take isl_union_map *umap);

• Projection

__isl_give isl_basic_set *isl_basic_set_project_out(

__isl_take isl_basic_set *bset,
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enum isl_dim_type type, unsigned first, unsigned n);

__isl_give isl_basic_map *isl_basic_map_project_out(

__isl_take isl_basic_map *bmap,

enum isl_dim_type type, unsigned first, unsigned n);

__isl_give isl_set *isl_set_project_out(__isl_take isl_set *set,

enum isl_dim_type type, unsigned first, unsigned n);

__isl_give isl_map *isl_map_project_out(__isl_take isl_map *map,

enum isl_dim_type type, unsigned first, unsigned n);

__isl_give isl_basic_set *isl_basic_map_domain(

__isl_take isl_basic_map *bmap);

__isl_give isl_basic_set *isl_basic_map_range(

__isl_take isl_basic_map *bmap);

__isl_give isl_set *isl_map_domain(

__isl_take isl_map *bmap);

__isl_give isl_set *isl_map_range(

__isl_take isl_map *map);

__isl_give isl_union_set *isl_union_map_domain(

__isl_take isl_union_map *umap);

__isl_give isl_union_set *isl_union_map_range(

__isl_take isl_union_map *umap);

__isl_give isl_basic_map *isl_basic_map_domain_map(

__isl_take isl_basic_map *bmap);

__isl_give isl_basic_map *isl_basic_map_range_map(

__isl_take isl_basic_map *bmap);

__isl_give isl_map *isl_map_domain_map(__isl_take isl_map *map);

__isl_give isl_map *isl_map_range_map(__isl_take isl_map *map);

__isl_give isl_union_map *isl_union_map_domain_map(

__isl_take isl_union_map *umap);

__isl_give isl_union_map *isl_union_map_range_map(

__isl_take isl_union_map *umap);

The functions above construct a (basic, regular or union) relation that maps (a
wrapped version of) the input relation to its domain or range.

• Identity

__isl_give isl_map *isl_set_identity(

__isl_take isl_set *set);

__isl_give isl_union_map *isl_union_set_identity(

__isl_take isl_union_set *uset);

Construct an identity relation on the given (union) set.

• Deltas
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__isl_give isl_basic_set *isl_basic_map_deltas(

__isl_take isl_basic_map *bmap);

__isl_give isl_set *isl_map_deltas(__isl_take isl_map *map);

__isl_give isl_union_set *isl_union_map_deltas(

__isl_take isl_union_map *umap);

These functions return a (basic) set containing the differences between image
elements and corresponding domain elements in the input.

__isl_give isl_basic_map *isl_basic_map_deltas_map(

__isl_take isl_basic_map *bmap);

__isl_give isl_map *isl_map_deltas_map(

__isl_take isl_map *map);

__isl_give isl_union_map *isl_union_map_deltas_map(

__isl_take isl_union_map *umap);

The functions above construct a (basic, regular or union) relation that maps (a
wrapped version of) the input relation to its delta set.

• Coalescing

Simplify the representation of a set or relation by trying to combine pairs of basic
sets or relations into a single basic set or relation.

__isl_give isl_set *isl_set_coalesce(__isl_take isl_set *set);

__isl_give isl_map *isl_map_coalesce(__isl_take isl_map *map);

__isl_give isl_union_set *isl_union_set_coalesce(

__isl_take isl_union_set *uset);

__isl_give isl_union_map *isl_union_map_coalesce(

__isl_take isl_union_map *umap);

• Detecting equalities

__isl_give isl_basic_set *isl_basic_set_detect_equalities(

__isl_take isl_basic_set *bset);

__isl_give isl_basic_map *isl_basic_map_detect_equalities(

__isl_take isl_basic_map *bmap);

__isl_give isl_set *isl_set_detect_equalities(

__isl_take isl_set *set);

__isl_give isl_map *isl_map_detect_equalities(

__isl_take isl_map *map);

__isl_give isl_union_set *isl_union_set_detect_equalities(

__isl_take isl_union_set *uset);

__isl_give isl_union_map *isl_union_map_detect_equalities(

__isl_take isl_union_map *umap);

Simplify the representation of a set or relation by detecting implicit equalities.
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• Convex hull

__isl_give isl_basic_set *isl_set_convex_hull(

__isl_take isl_set *set);

__isl_give isl_basic_map *isl_map_convex_hull(

__isl_take isl_map *map);

If the input set or relation has any existentially quantified variables, then the
result of these operations is currently undefined.

• Simple hull

__isl_give isl_basic_set *isl_set_simple_hull(

__isl_take isl_set *set);

__isl_give isl_basic_map *isl_map_simple_hull(

__isl_take isl_map *map);

__isl_give isl_union_map *isl_union_map_simple_hull(

__isl_take isl_union_map *umap);

These functions compute a single basic set or relation that contains the whole
input set or relation. In particular, the output is described by translates of the
constraints describing the basic sets or relations in the input.

(See Section 2.2.)

• Affine hull

__isl_give isl_basic_set *isl_basic_set_affine_hull(

__isl_take isl_basic_set *bset);

__isl_give isl_basic_set *isl_set_affine_hull(

__isl_take isl_set *set);

__isl_give isl_union_set *isl_union_set_affine_hull(

__isl_take isl_union_set *uset);

__isl_give isl_basic_map *isl_basic_map_affine_hull(

__isl_take isl_basic_map *bmap);

__isl_give isl_basic_map *isl_map_affine_hull(

__isl_take isl_map *map);

__isl_give isl_union_map *isl_union_map_affine_hull(

__isl_take isl_union_map *umap);

In case of union sets and relations, the affine hull is computed per space.

• Polyhedral hull

__isl_give isl_basic_set *isl_set_polyhedral_hull(

__isl_take isl_set *set);

__isl_give isl_basic_map *isl_map_polyhedral_hull(

__isl_take isl_map *map);
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__isl_give isl_union_set *isl_union_set_polyhedral_hull(

__isl_take isl_union_set *uset);

__isl_give isl_union_map *isl_union_map_polyhedral_hull(

__isl_take isl_union_map *umap);

These functions compute a single basic set or relation not involving any existen-
tially quantified variables that contains the whole input set or relation. In case of
union sets and relations, the polyhedral hull is computed per space.

• Power

__isl_give isl_map *isl_map_power(__isl_take isl_map *map,

int *exact);

__isl_give isl_union_map *isl_union_map_power(

__isl_take isl_union_map *umap, int *exact);

Compute a parametric representation for all positive powers k of map. The result
maps k to a nested relation corresponding to the kth power of map. The result
may be an overapproximation. If the result is known to be exact, then *exact is
set to 1.

• Transitive closure

__isl_give isl_map *isl_map_transitive_closure(

__isl_take isl_map *map, int *exact);

__isl_give isl_union_map *isl_union_map_transitive_closure(

__isl_take isl_union_map *umap, int *exact);

Compute the transitive closure of map. The result may be an overapproximation.
If the result is known to be exact, then *exact is set to 1.

• Reaching path lengths

__isl_give isl_map *isl_map_reaching_path_lengths(

__isl_take isl_map *map, int *exact);

Compute a relation that maps each element in the range of map to the lengths of
all paths composed of edges in map that end up in the given element. The result
may be an overapproximation. If the result is known to be exact, then *exact
is set to 1. To compute the maximal path length, the resulting relation should
be postprocessed by isl map lexmax. In particular, if the input relation is a
dependence relation (mapping sources to sinks), then the maximal path length
corresponds to the free schedule. Note, however, that isl map lexmax expects
the maximum to be finite, so if the path lengths are unbounded (possibly due to
the overapproximation), then you will get an error message.

• Wrapping
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__isl_give isl_basic_set *isl_basic_map_wrap(

__isl_take isl_basic_map *bmap);

__isl_give isl_set *isl_map_wrap(

__isl_take isl_map *map);

__isl_give isl_union_set *isl_union_map_wrap(

__isl_take isl_union_map *umap);

__isl_give isl_basic_map *isl_basic_set_unwrap(

__isl_take isl_basic_set *bset);

__isl_give isl_map *isl_set_unwrap(

__isl_take isl_set *set);

__isl_give isl_union_map *isl_union_set_unwrap(

__isl_take isl_union_set *uset);

• Flattening

Remove any internal structure of domain (and range) of the given set or relation.
If there is any such internal structure in the input, then the name of the space is
also removed.

__isl_give isl_basic_set *isl_basic_set_flatten(

__isl_take isl_basic_set *bset);

__isl_give isl_set *isl_set_flatten(

__isl_take isl_set *set);

__isl_give isl_basic_map *isl_basic_map_flatten(

__isl_take isl_basic_map *bmap);

__isl_give isl_map *isl_map_flatten(

__isl_take isl_map *map);

__isl_give isl_map *isl_set_flatten_map(

__isl_take isl_set *set);

The function above constructs a relation that maps the input set to a flattened
version of the set.

• Internal Product

__isl_give isl_basic_map *isl_basic_map_zip(

__isl_take isl_basic_map *bmap);

__isl_give isl_map *isl_map_zip(

__isl_take isl_map *map);

__isl_give isl_union_map *isl_union_map_zip(

__isl_take isl_union_map *umap);

Given a relation with nested relations for domain and range, interchange the
range of the domain with the domain of the range.

• Dimension manipulation
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__isl_give isl_set *isl_set_add_dims(

__isl_take isl_set *set,

enum isl_dim_type type, unsigned n);

__isl_give isl_map *isl_map_add_dims(

__isl_take isl_map *map,

enum isl_dim_type type, unsigned n);

It is usually not advisable to directly change the (input or output) space of a set
or a relation as this removes the name and the internal structure of the space.
However, the above functions can be useful to add new parameters.

1.3.11 Binary Operations
The two arguments of a binary operation not only need to live in the same isl ctx,
they currently also need to have the same (number of) parameters.

Basic Operations

• Intersection

__isl_give isl_basic_set *isl_basic_set_intersect(

__isl_take isl_basic_set *bset1,

__isl_take isl_basic_set *bset2);

__isl_give isl_set *isl_set_intersect(

__isl_take isl_set *set1,

__isl_take isl_set *set2);

__isl_give isl_union_set *isl_union_set_intersect(

__isl_take isl_union_set *uset1,

__isl_take isl_union_set *uset2);

__isl_give isl_basic_map *isl_basic_map_intersect_domain(

__isl_take isl_basic_map *bmap,

__isl_take isl_basic_set *bset);

__isl_give isl_basic_map *isl_basic_map_intersect_range(

__isl_take isl_basic_map *bmap,

__isl_take isl_basic_set *bset);

__isl_give isl_basic_map *isl_basic_map_intersect(

__isl_take isl_basic_map *bmap1,

__isl_take isl_basic_map *bmap2);

__isl_give isl_map *isl_map_intersect_domain(

__isl_take isl_map *map,

__isl_take isl_set *set);

__isl_give isl_map *isl_map_intersect_range(

__isl_take isl_map *map,

__isl_take isl_set *set);

__isl_give isl_map *isl_map_intersect(

__isl_take isl_map *map1,
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__isl_take isl_map *map2);

__isl_give isl_union_map *isl_union_map_intersect_domain(

__isl_take isl_union_map *umap,

__isl_take isl_union_set *uset);

__isl_give isl_union_map *isl_union_map_intersect_range(

__isl_take isl_union_map *umap,

__isl_take isl_union_set *uset);

__isl_give isl_union_map *isl_union_map_intersect(

__isl_take isl_union_map *umap1,

__isl_take isl_union_map *umap2);

• Union

__isl_give isl_set *isl_basic_set_union(

__isl_take isl_basic_set *bset1,

__isl_take isl_basic_set *bset2);

__isl_give isl_map *isl_basic_map_union(

__isl_take isl_basic_map *bmap1,

__isl_take isl_basic_map *bmap2);

__isl_give isl_set *isl_set_union(

__isl_take isl_set *set1,

__isl_take isl_set *set2);

__isl_give isl_map *isl_map_union(

__isl_take isl_map *map1,

__isl_take isl_map *map2);

__isl_give isl_union_set *isl_union_set_union(

__isl_take isl_union_set *uset1,

__isl_take isl_union_set *uset2);

__isl_give isl_union_map *isl_union_map_union(

__isl_take isl_union_map *umap1,

__isl_take isl_union_map *umap2);

• Set difference

__isl_give isl_set *isl_set_subtract(

__isl_take isl_set *set1,

__isl_take isl_set *set2);

__isl_give isl_map *isl_map_subtract(

__isl_take isl_map *map1,

__isl_take isl_map *map2);

__isl_give isl_union_set *isl_union_set_subtract(

__isl_take isl_union_set *uset1,

__isl_take isl_union_set *uset2);

__isl_give isl_union_map *isl_union_map_subtract(

__isl_take isl_union_map *umap1,

__isl_take isl_union_map *umap2);
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• Application

__isl_give isl_basic_set *isl_basic_set_apply(

__isl_take isl_basic_set *bset,

__isl_take isl_basic_map *bmap);

__isl_give isl_set *isl_set_apply(

__isl_take isl_set *set,

__isl_take isl_map *map);

__isl_give isl_union_set *isl_union_set_apply(

__isl_take isl_union_set *uset,

__isl_take isl_union_map *umap);

__isl_give isl_basic_map *isl_basic_map_apply_domain(

__isl_take isl_basic_map *bmap1,

__isl_take isl_basic_map *bmap2);

__isl_give isl_basic_map *isl_basic_map_apply_range(

__isl_take isl_basic_map *bmap1,

__isl_take isl_basic_map *bmap2);

__isl_give isl_map *isl_map_apply_domain(

__isl_take isl_map *map1,

__isl_take isl_map *map2);

__isl_give isl_union_map *isl_union_map_apply_domain(

__isl_take isl_union_map *umap1,

__isl_take isl_union_map *umap2);

__isl_give isl_map *isl_map_apply_range(

__isl_take isl_map *map1,

__isl_take isl_map *map2);

__isl_give isl_union_map *isl_union_map_apply_range(

__isl_take isl_union_map *umap1,

__isl_take isl_union_map *umap2);

• Cartesian Product

__isl_give isl_set *isl_set_product(

__isl_take isl_set *set1,

__isl_take isl_set *set2);

__isl_give isl_union_set *isl_union_set_product(

__isl_take isl_union_set *uset1,

__isl_take isl_union_set *uset2);

__isl_give isl_basic_map *isl_basic_map_range_product(

__isl_take isl_basic_map *bmap1,

__isl_take isl_basic_map *bmap2);

__isl_give isl_map *isl_map_range_product(

__isl_take isl_map *map1,

__isl_take isl_map *map2);

__isl_give isl_union_map *isl_union_map_range_product(

__isl_take isl_union_map *umap1,
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__isl_take isl_union_map *umap2);

__isl_give isl_map *isl_map_product(

__isl_take isl_map *map1,

__isl_take isl_map *map2);

__isl_give isl_union_map *isl_union_map_product(

__isl_take isl_union_map *umap1,

__isl_take isl_union_map *umap2);

The above functions compute the cross product of the given sets or relations. The
domains and ranges of the results are wrapped maps between domains and ranges
of the inputs. To obtain a “flat” product, use the following functions instead.

__isl_give isl_basic_set *isl_basic_set_flat_product(

__isl_take isl_basic_set *bset1,

__isl_take isl_basic_set *bset2);

__isl_give isl_set *isl_set_flat_product(

__isl_take isl_set *set1,

__isl_take isl_set *set2);

__isl_give isl_basic_map *isl_basic_map_flat_product(

__isl_take isl_basic_map *bmap1,

__isl_take isl_basic_map *bmap2);

__isl_give isl_map *isl_map_flat_product(

__isl_take isl_map *map1,

__isl_take isl_map *map2);

• Simplification

__isl_give isl_basic_set *isl_basic_set_gist(

__isl_take isl_basic_set *bset,

__isl_take isl_basic_set *context);

__isl_give isl_set *isl_set_gist(__isl_take isl_set *set,

__isl_take isl_set *context);

__isl_give isl_union_set *isl_union_set_gist(

__isl_take isl_union_set *uset,

__isl_take isl_union_set *context);

__isl_give isl_basic_map *isl_basic_map_gist(

__isl_take isl_basic_map *bmap,

__isl_take isl_basic_map *context);

__isl_give isl_map *isl_map_gist(__isl_take isl_map *map,

__isl_take isl_map *context);

__isl_give isl_union_map *isl_union_map_gist(

__isl_take isl_union_map *umap,

__isl_take isl_union_map *context);

The gist operation returns a set or relation that has the same intersection with the
context as the input set or relation. Any implicit equality in the intersection is
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made explicit in the result, while all inequalities that are redundant with respect
to the intersection are removed. In case of union sets and relations, the gist
operation is performed per space.

Lexicographic Optimization

Given a (basic) set set (or bset) and a zero-dimensional domain dom, the following
functions compute a set that contains the lexicographic minimum or maximum of the
elements in set (or bset) for those values of the parameters that satisfy dom. If empty
is not NULL, then *empty is assigned a set that contains the parameter values in dom
for which set (or bset) has no elements. In other words, the union of the parameter
values for which the result is non-empty and of *empty is equal to dom.

__isl_give isl_set *isl_basic_set_partial_lexmin(

__isl_take isl_basic_set *bset,

__isl_take isl_basic_set *dom,

__isl_give isl_set **empty);

__isl_give isl_set *isl_basic_set_partial_lexmax(

__isl_take isl_basic_set *bset,

__isl_take isl_basic_set *dom,

__isl_give isl_set **empty);

__isl_give isl_set *isl_set_partial_lexmin(

__isl_take isl_set *set, __isl_take isl_set *dom,

__isl_give isl_set **empty);

__isl_give isl_set *isl_set_partial_lexmax(

__isl_take isl_set *set, __isl_take isl_set *dom,

__isl_give isl_set **empty);

Given a (basic) set set (or bset), the following functions simply return a set con-
taining the lexicographic minimum or maximum of the elements in set (or bset). In
case of union sets, the optimum is computed per space.

__isl_give isl_set *isl_basic_set_lexmin(

__isl_take isl_basic_set *bset);

__isl_give isl_set *isl_basic_set_lexmax(

__isl_take isl_basic_set *bset);

__isl_give isl_set *isl_set_lexmin(

__isl_take isl_set *set);

__isl_give isl_set *isl_set_lexmax(

__isl_take isl_set *set);

__isl_give isl_union_set *isl_union_set_lexmin(

__isl_take isl_union_set *uset);

__isl_give isl_union_set *isl_union_set_lexmax(

__isl_take isl_union_set *uset);

Given a (basic) relation map (or bmap) and a domain dom, the following functions
compute a relation that maps each element of dom to the single lexicographic minimum
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or maximum of the elements that are associated to that same element in map (or bmap).
If empty is not NULL, then *empty is assigned a set that contains the elements in dom
that do not map to any elements in map (or bmap). In other words, the union of the
domain of the result and of *empty is equal to dom.

__isl_give isl_map *isl_basic_map_partial_lexmax(

__isl_take isl_basic_map *bmap,

__isl_take isl_basic_set *dom,

__isl_give isl_set **empty);

__isl_give isl_map *isl_basic_map_partial_lexmin(

__isl_take isl_basic_map *bmap,

__isl_take isl_basic_set *dom,

__isl_give isl_set **empty);

__isl_give isl_map *isl_map_partial_lexmax(

__isl_take isl_map *map, __isl_take isl_set *dom,

__isl_give isl_set **empty);

__isl_give isl_map *isl_map_partial_lexmin(

__isl_take isl_map *map, __isl_take isl_set *dom,

__isl_give isl_set **empty);

Given a (basic) map map (or bmap), the following functions simply return a map
mapping each element in the domain of map (or bmap) to the lexicographic minimum
or maximum of all elements associated to that element. In case of union relations, the
optimum is computed per space.

__isl_give isl_map *isl_basic_map_lexmin(

__isl_take isl_basic_map *bmap);

__isl_give isl_map *isl_basic_map_lexmax(

__isl_take isl_basic_map *bmap);

__isl_give isl_map *isl_map_lexmin(

__isl_take isl_map *map);

__isl_give isl_map *isl_map_lexmax(

__isl_take isl_map *map);

__isl_give isl_union_map *isl_union_map_lexmin(

__isl_take isl_union_map *umap);

__isl_give isl_union_map *isl_union_map_lexmax(

__isl_take isl_union_map *umap);

1.3.12 Matrices
Matrices can be created, copied and freed using the following functions.

#include <isl/mat.h>

__isl_give isl_mat *isl_mat_alloc(struct isl_ctx *ctx,

unsigned n_row, unsigned n_col);

__isl_give isl_mat *isl_mat_copy(__isl_keep isl_mat *mat);

void isl_mat_free(__isl_take isl_mat *mat);
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Note that the elements of a newly created matrix may have arbitrary values. The
elements can be changed and inspected using the following functions.

int isl_mat_rows(__isl_keep isl_mat *mat);

int isl_mat_cols(__isl_keep isl_mat *mat);

int isl_mat_get_element(__isl_keep isl_mat *mat,

int row, int col, isl_int *v);

__isl_give isl_mat *isl_mat_set_element(__isl_take isl_mat *mat,

int row, int col, isl_int v);

isl mat get element will return a negative value if anything went wrong. In that
case, the value of *v is undefined.

The following function can be used to compute the (right) inverse of a matrix, i.e.,
a matrix such that the product of the original and the inverse (in that order) is a multiple
of the identity matrix. The input matrix is assumed to be of full row-rank.

__isl_give isl_mat *isl_mat_right_inverse(__isl_take isl_mat *mat);

The following function can be used to compute the (right) kernel (or null space) of
a matrix, i.e., a matrix such that the product of the original and the kernel (in that order)
is the zero matrix.

__isl_give isl_mat *isl_mat_right_kernel(__isl_take isl_mat *mat);

1.3.13 Points
Points are elements of a set. They can be used to construct simple sets (boxes) or they
can be used to represent the individual elements of a set. The zero point (the origin)
can be created using

__isl_give isl_point *isl_point_zero(__isl_take isl_dim *dim);

The coordinates of a point can be inspected, set and changed using

void isl_point_get_coordinate(__isl_keep isl_point *pnt,

enum isl_dim_type type, int pos, isl_int *v);

__isl_give isl_point *isl_point_set_coordinate(

__isl_take isl_point *pnt,

enum isl_dim_type type, int pos, isl_int v);

__isl_give isl_point *isl_point_add_ui(

__isl_take isl_point *pnt,

enum isl_dim_type type, int pos, unsigned val);

__isl_give isl_point *isl_point_sub_ui(

__isl_take isl_point *pnt,

enum isl_dim_type type, int pos, unsigned val);

Points can be copied or freed using
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__isl_give isl_point *isl_point_copy(

__isl_keep isl_point *pnt);

void isl_point_free(__isl_take isl_point *pnt);

A singleton set can be created from a point using

__isl_give isl_basic_set *isl_basic_set_from_point(

__isl_take isl_point *pnt);

__isl_give isl_set *isl_set_from_point(

__isl_take isl_point *pnt);

and a box can be created from two opposite extremal points using

__isl_give isl_basic_set *isl_basic_set_box_from_points(

__isl_take isl_point *pnt1,

__isl_take isl_point *pnt2);

__isl_give isl_set *isl_set_box_from_points(

__isl_take isl_point *pnt1,

__isl_take isl_point *pnt2);

All elements of a bounded (union) set can be enumerated using the following func-
tions.

int isl_set_foreach_point(__isl_keep isl_set *set,

int (*fn)(__isl_take isl_point *pnt, void *user),

void *user);

int isl_union_set_foreach_point(__isl_keep isl_union_set *uset,

int (*fn)(__isl_take isl_point *pnt, void *user),

void *user);

The function fn is called for each integer point in set with as second argument
the last argument of the isl set foreach point call. The function fn should return
0 on success and -1 on failure. In the latter case, isl set foreach point will stop
enumerating and return -1 as well. If the enumeration is performed successfully and
to completion, then isl set foreach point returns 0.

To obtain a single point of a (basic) set, use

__isl_give isl_point *isl_basic_set_sample_point(

__isl_take isl_basic_set *bset);

__isl_give isl_point *isl_set_sample_point(

__isl_take isl_set *set);

If set does not contain any (integer) points, then the resulting point will be “void”,
a property that can be tested using

int isl_point_is_void(__isl_keep isl_point *pnt);
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1.3.14 Piecewise Quasipolynomials
A piecewise quasipolynomial is a particular kind of function that maps a parametric
point to a rational value. More specifically, a quasipolynomial is a polynomial expres-
sion in greatest integer parts of affine expressions of parameters and variables. A piece-
wise quasipolynomial is a subdivision of a given parametric domain into disjoint cells
with a quasipolynomial associated to each cell. The value of the piecewise quasipoly-
nomial at a given point is the value of the quasipolynomial associated to the cell that
contains the point. Outside of the union of cells, the value is assumed to be zero. For
example, the piecewise quasipolynomial

[n] -> { [x] -> ((1 + n) - x) : x <= n and x >= 0 }

maps x to 1 + n - x for values of x between 0 and n. A given piecewise quasipoly-
nomial has a fixed domain dimension. Union piecewise quasipolynomials are used to
contain piecewise quasipolynomials defined over different domains. Piecewise quasipoly-
nomials are mainly used by the barvinok library for representing the number of ele-
ments in a parametric set or map. For example, the piecewise quasipolynomial above
represents the number of points in the map

[n] -> { [x] -> [y] : x,y >= 0 and 0 <= x + y <= n }

Printing (Piecewise) Quasipolynomials

Quasipolynomials and piecewise quasipolynomials can be printed using the following
functions.

__isl_give isl_printer *isl_printer_print_qpolynomial(

__isl_take isl_printer *p,

__isl_keep isl_qpolynomial *qp);

__isl_give isl_printer *isl_printer_print_pw_qpolynomial(

__isl_take isl_printer *p,

__isl_keep isl_pw_qpolynomial *pwqp);

__isl_give isl_printer *isl_printer_print_union_pw_qpolynomial(

__isl_take isl_printer *p,

__isl_keep isl_union_pw_qpolynomial *upwqp);

The output format of the printer needs to be set to either ISL FORMAT ISL or
ISL FORMAT C. For isl printer print union pw qpolynomial, only ISL FORMAT ISL
is supported. In case of printing in ISL FORMAT C, the user may want to set the names
of all dimensions

__isl_give isl_qpolynomial *isl_qpolynomial_set_dim_name(

__isl_take isl_qpolynomial *qp,

enum isl_dim_type type, unsigned pos,

const char *s);
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__isl_give isl_pw_qpolynomial *

isl_pw_qpolynomial_set_dim_name(

__isl_take isl_pw_qpolynomial *pwqp,

enum isl_dim_type type, unsigned pos,

const char *s);

Creating New (Piecewise) Quasipolynomials

Some simple quasipolynomials can be created using the following functions. More
complicated quasipolynomials can be created by applying operations such as addition
and multiplication on the resulting quasipolynomials

__isl_give isl_qpolynomial *isl_qpolynomial_zero(

__isl_take isl_dim *dim);

__isl_give isl_qpolynomial *isl_qpolynomial_one(

__isl_take isl_dim *dim);

__isl_give isl_qpolynomial *isl_qpolynomial_infty(

__isl_take isl_dim *dim);

__isl_give isl_qpolynomial *isl_qpolynomial_neginfty(

__isl_take isl_dim *dim);

__isl_give isl_qpolynomial *isl_qpolynomial_nan(

__isl_take isl_dim *dim);

__isl_give isl_qpolynomial *isl_qpolynomial_rat_cst(

__isl_take isl_dim *dim,

const isl_int n, const isl_int d);

__isl_give isl_qpolynomial *isl_qpolynomial_div(

__isl_take isl_div *div);

__isl_give isl_qpolynomial *isl_qpolynomial_var(

__isl_take isl_dim *dim,

enum isl_dim_type type, unsigned pos);

The zero piecewise quasipolynomial or a piecewise quasipolynomial with a sin-
gle cell can be created using the following functions. Multiple of these single cell
piecewise quasipolynomials can be combined to create more complicated piecewise
quasipolynomials.

__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_zero(

__isl_take isl_dim *dim);

__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_alloc(

__isl_take isl_set *set,

__isl_take isl_qpolynomial *qp);

__isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_zero(

__isl_take isl_dim *dim);

__isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_from_pw_qpolynomial(

__isl_take isl_pw_qpolynomial *pwqp);

__isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_add_pw_qpolynomial(
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__isl_take isl_union_pw_qpolynomial *upwqp,

__isl_take isl_pw_qpolynomial *pwqp);

Quasipolynomials can be copied and freed again using the following functions.

__isl_give isl_qpolynomial *isl_qpolynomial_copy(

__isl_keep isl_qpolynomial *qp);

void isl_qpolynomial_free(__isl_take isl_qpolynomial *qp);

__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_copy(

__isl_keep isl_pw_qpolynomial *pwqp);

void isl_pw_qpolynomial_free(

__isl_take isl_pw_qpolynomial *pwqp);

__isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_copy(

__isl_keep isl_union_pw_qpolynomial *upwqp);

void isl_union_pw_qpolynomial_free(

__isl_take isl_union_pw_qpolynomial *upwqp);

Inspecting (Piecewise) Quasipolynomials

To iterate over all piecewise quasipolynomials in a union piecewise quasipolynomial,
use the following function

int isl_union_pw_qpolynomial_foreach_pw_qpolynomial(

__isl_keep isl_union_pw_qpolynomial *upwqp,

int (*fn)(__isl_take isl_pw_qpolynomial *pwqp, void *user),

void *user);

To extract the piecewise quasipolynomial from a union with a given dimension
specification, use

__isl_give isl_pw_qpolynomial *

isl_union_pw_qpolynomial_extract_pw_qpolynomial(

__isl_keep isl_union_pw_qpolynomial *upwqp,

__isl_take isl_dim *dim);

To iterate over the cells in a piecewise quasipolynomial, use either of the following
two functions

int isl_pw_qpolynomial_foreach_piece(

__isl_keep isl_pw_qpolynomial *pwqp,

int (*fn)(__isl_take isl_set *set,

__isl_take isl_qpolynomial *qp,

void *user), void *user);

int isl_pw_qpolynomial_foreach_lifted_piece(

__isl_keep isl_pw_qpolynomial *pwqp,

int (*fn)(__isl_take isl_set *set,

__isl_take isl_qpolynomial *qp,

void *user), void *user);

41



As usual, the function fn should return 0 on success and -1 on failure. The differ-
ence between isl pw qpolynomial foreach piece and isl pw qpolynomial foreach lifted piece
is that isl pw qpolynomial foreach lifted piece will first compute unique rep-
resentations for all existentially quantified variables and then turn these existentially
quantified variables into extra set variables, adapting the associated quasipolynomial
accordingly. This means that the set passed to fn will not have any existentially
quantified variables, but that the dimensions of the sets may be different for different
invocations of fn.

To iterate over all terms in a quasipolynomial, use

int isl_qpolynomial_foreach_term(

__isl_keep isl_qpolynomial *qp,

int (*fn)(__isl_take isl_term *term,

void *user), void *user);

The terms themselves can be inspected and freed using these functions

unsigned isl_term_dim(__isl_keep isl_term *term,

enum isl_dim_type type);

void isl_term_get_num(__isl_keep isl_term *term,

isl_int *n);

void isl_term_get_den(__isl_keep isl_term *term,

isl_int *d);

int isl_term_get_exp(__isl_keep isl_term *term,

enum isl_dim_type type, unsigned pos);

__isl_give isl_div *isl_term_get_div(

__isl_keep isl_term *term, unsigned pos);

void isl_term_free(__isl_take isl_term *term);

Each term is a product of parameters, set variables and integer divisions. The func-
tion isl term get exp returns the exponent of a given dimensions in the given term.
The isl ints in the arguments of isl term get num and isl term get den need
to have been initialized using isl int init before calling these functions.

Properties of (Piecewise) Quasipolynomials

To check whether a quasipolynomial is actually a constant, use the following function.

int isl_qpolynomial_is_cst(__isl_keep isl_qpolynomial *qp,

isl_int *n, isl_int *d);

If qp is a constant and if n and d are not NULL then the numerator and denominator
of the constant are returned in *n and *d, respectively.
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Operations on (Piecewise) Quasipolynomials

__isl_give isl_qpolynomial *isl_qpolynomial_neg(

__isl_take isl_qpolynomial *qp);

__isl_give isl_qpolynomial *isl_qpolynomial_add(

__isl_take isl_qpolynomial *qp1,

__isl_take isl_qpolynomial *qp2);

__isl_give isl_qpolynomial *isl_qpolynomial_sub(

__isl_take isl_qpolynomial *qp1,

__isl_take isl_qpolynomial *qp2);

__isl_give isl_qpolynomial *isl_qpolynomial_mul(

__isl_take isl_qpolynomial *qp1,

__isl_take isl_qpolynomial *qp2);

__isl_give isl_qpolynomial *isl_qpolynomial_pow(

__isl_take isl_qpolynomial *qp, unsigned exponent);

__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add(

__isl_take isl_pw_qpolynomial *pwqp1,

__isl_take isl_pw_qpolynomial *pwqp2);

__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_sub(

__isl_take isl_pw_qpolynomial *pwqp1,

__isl_take isl_pw_qpolynomial *pwqp2);

__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add_disjoint(

__isl_take isl_pw_qpolynomial *pwqp1,

__isl_take isl_pw_qpolynomial *pwqp2);

__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_neg(

__isl_take isl_pw_qpolynomial *pwqp);

__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_mul(

__isl_take isl_pw_qpolynomial *pwqp1,

__isl_take isl_pw_qpolynomial *pwqp2);

__isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_add(

__isl_take isl_union_pw_qpolynomial *upwqp1,

__isl_take isl_union_pw_qpolynomial *upwqp2);

__isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_sub(

__isl_take isl_union_pw_qpolynomial *upwqp1,

__isl_take isl_union_pw_qpolynomial *upwqp2);

__isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_mul(

__isl_take isl_union_pw_qpolynomial *upwqp1,

__isl_take isl_union_pw_qpolynomial *upwqp2);

__isl_give isl_qpolynomial *isl_pw_qpolynomial_eval(

__isl_take isl_pw_qpolynomial *pwqp,

__isl_take isl_point *pnt);

__isl_give isl_qpolynomial *isl_union_pw_qpolynomial_eval(

__isl_take isl_union_pw_qpolynomial *upwqp,

__isl_take isl_point *pnt);
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__isl_give isl_set *isl_pw_qpolynomial_domain(

__isl_take isl_pw_qpolynomial *pwqp);

__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_intersect_domain(

__isl_take isl_pw_qpolynomial *pwpq,

__isl_take isl_set *set);

__isl_give isl_union_set *isl_union_pw_qpolynomial_domain(

__isl_take isl_union_pw_qpolynomial *upwqp);

__isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_intersect_domain(

__isl_take isl_union_pw_qpolynomial *upwpq,

__isl_take isl_union_set *uset);

__isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_coalesce(

__isl_take isl_union_pw_qpolynomial *upwqp);

__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_gist(

__isl_take isl_pw_qpolynomial *pwqp,

__isl_take isl_set *context);

__isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_gist(

__isl_take isl_union_pw_qpolynomial *upwqp,

__isl_take isl_union_set *context);

The gist operation applies the gist operation to each of the cells in the domain of
the input piecewise quasipolynomial. The context is also exploited to simplify the
quasipolynomials associated to each cell.

__isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_to_polynomial(

__isl_take isl_pw_qpolynomial *pwqp, int sign);

__isl_give isl_union_pw_qpolynomial *

isl_union_pw_qpolynomial_to_polynomial(

__isl_take isl_union_pw_qpolynomial *upwqp, int sign);

Approximate each quasipolynomial by a polynomial. If sign is positive, the poly-
nomial will be an overapproximation. If sign is negative, it will be an underapproxi-
mation. If sign is zero, the approximation will lie somewhere in between.

1.3.15 Bounds on Piecewise Quasipolynomials and Piecewise Quasipoly-
nomial Reductions

A piecewise quasipolynomial reduction is a piecewise reduction (or fold) of quasipoly-
nomials. In particular, the reduction can be maximum or a minimum. The objects are
mainly used to represent the result of an upper or lower bound on a quasipolynomial
over its domain, i.e., as the result of the following function.

__isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_bound(

__isl_take isl_pw_qpolynomial *pwqp,

enum isl_fold type, int *tight);
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__isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_bound(

__isl_take isl_union_pw_qpolynomial *upwqp,

enum isl_fold type, int *tight);

The type argument may be either isl fold min or isl fold max. If tight is
not NULL, then *tight is set to 1 is the returned bound is known be tight, i.e., for
each value of the parameters there is at least one element in the domain that reaches
the bound. If the domain of pwqp is not wrapping, then the bound is computed over all
elements in that domain and the result has a purely parametric domain. If the domain of
pwqp is wrapping, then the bound is computed over the range of the wrapped relation.
The domain of the wrapped relation becomes the domain of the result.

A (piecewise) quasipolynomial reduction can be copied or freed using the following
functions.

__isl_give isl_qpolynomial_fold *isl_qpolynomial_fold_copy(

__isl_keep isl_qpolynomial_fold *fold);

__isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_copy(

__isl_keep isl_pw_qpolynomial_fold *pwf);

__isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_copy(

__isl_keep isl_union_pw_qpolynomial_fold *upwf);

void isl_qpolynomial_fold_free(

__isl_take isl_qpolynomial_fold *fold);

void isl_pw_qpolynomial_fold_free(

__isl_take isl_pw_qpolynomial_fold *pwf);

void isl_union_pw_qpolynomial_fold_free(

__isl_take isl_union_pw_qpolynomial_fold *upwf);

Printing Piecewise Quasipolynomial Reductions

Piecewise quasipolynomial reductions can be printed using the following function.

__isl_give isl_printer *isl_printer_print_pw_qpolynomial_fold(

__isl_take isl_printer *p,

__isl_keep isl_pw_qpolynomial_fold *pwf);

__isl_give isl_printer *isl_printer_print_union_pw_qpolynomial_fold(

__isl_take isl_printer *p,

__isl_keep isl_union_pw_qpolynomial_fold *upwf);

For isl printer print pw qpolynomial fold, output format of the printer needs
to be set to either ISL FORMAT ISL or ISL FORMAT C. For isl printer print union pw qpolynomial fold,
output format of the printer needs to be set to ISL FORMAT ISL. In case of printing in
ISL FORMAT C, the user may want to set the names of all dimensions

__isl_give isl_pw_qpolynomial_fold *

isl_pw_qpolynomial_fold_set_dim_name(

__isl_take isl_pw_qpolynomial_fold *pwf,

enum isl_dim_type type, unsigned pos,

const char *s);
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Inspecting (Piecewise) Quasipolynomial Reductions

To iterate over all piecewise quasipolynomial reductions in a union piecewise quasipoly-
nomial reduction, use the following function

int isl_union_pw_qpolynomial_fold_foreach_pw_qpolynomial_fold(

__isl_keep isl_union_pw_qpolynomial_fold *upwf,

int (*fn)(__isl_take isl_pw_qpolynomial_fold *pwf,

void *user), void *user);

To iterate over the cells in a piecewise quasipolynomial reduction, use either of the
following two functions

int isl_pw_qpolynomial_fold_foreach_piece(

__isl_keep isl_pw_qpolynomial_fold *pwf,

int (*fn)(__isl_take isl_set *set,

__isl_take isl_qpolynomial_fold *fold,

void *user), void *user);

int isl_pw_qpolynomial_fold_foreach_lifted_piece(

__isl_keep isl_pw_qpolynomial_fold *pwf,

int (*fn)(__isl_take isl_set *set,

__isl_take isl_qpolynomial_fold *fold,

void *user), void *user);

See Inspecting (Piecewise) Quasipolynomials for an explanation of the difference
between these two functions.

To iterate over all quasipolynomials in a reduction, use

int isl_qpolynomial_fold_foreach_qpolynomial(

__isl_keep isl_qpolynomial_fold *fold,

int (*fn)(__isl_take isl_qpolynomial *qp,

void *user), void *user);

Operations on Piecewise Quasipolynomial Reductions

__isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_add(

__isl_take isl_pw_qpolynomial_fold *pwf1,

__isl_take isl_pw_qpolynomial_fold *pwf2);

__isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_fold(

__isl_take isl_pw_qpolynomial_fold *pwf1,

__isl_take isl_pw_qpolynomial_fold *pwf2);

__isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_fold(

__isl_take isl_union_pw_qpolynomial_fold *upwf1,

__isl_take isl_union_pw_qpolynomial_fold *upwf2);
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__isl_give isl_qpolynomial *isl_pw_qpolynomial_fold_eval(

__isl_take isl_pw_qpolynomial_fold *pwf,

__isl_take isl_point *pnt);

__isl_give isl_qpolynomial *isl_union_pw_qpolynomial_fold_eval(

__isl_take isl_union_pw_qpolynomial_fold *upwf,

__isl_take isl_point *pnt);

__isl_give isl_union_set *isl_union_pw_qpolynomial_fold_domain(

__isl_take isl_union_pw_qpolynomial_fold *upwf);

__isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_intersect_domain(

__isl_take isl_union_pw_qpolynomial_fold *upwf,

__isl_take isl_union_set *uset);

__isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_coalesce(

__isl_take isl_pw_qpolynomial_fold *pwf);

__isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_coalesce(

__isl_take isl_union_pw_qpolynomial_fold *upwf);

__isl_give isl_pw_qpolynomial_fold *isl_pw_qpolynomial_fold_gist(

__isl_take isl_pw_qpolynomial_fold *pwf,

__isl_take isl_set *context);

__isl_give isl_union_pw_qpolynomial_fold *isl_union_pw_qpolynomial_fold_gist(

__isl_take isl_union_pw_qpolynomial_fold *upwf,

__isl_take isl_union_set *context);

The gist operation applies the gist operation to each of the cells in the domain of the
input piecewise quasipolynomial reduction. In future, the operation will also exploit
the context to simplify the quasipolynomial reductions associated to each cell.

__isl_give isl_pw_qpolynomial_fold *

isl_set_apply_pw_qpolynomial_fold(

__isl_take isl_set *set,

__isl_take isl_pw_qpolynomial_fold *pwf,

int *tight);

__isl_give isl_pw_qpolynomial_fold *

isl_map_apply_pw_qpolynomial_fold(

__isl_take isl_map *map,

__isl_take isl_pw_qpolynomial_fold *pwf,

int *tight);

__isl_give isl_union_pw_qpolynomial_fold *

isl_union_set_apply_union_pw_qpolynomial_fold(

__isl_take isl_union_set *uset,

__isl_take isl_union_pw_qpolynomial_fold *upwf,

int *tight);
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__isl_give isl_union_pw_qpolynomial_fold *

isl_union_map_apply_union_pw_qpolynomial_fold(

__isl_take isl_union_map *umap,

__isl_take isl_union_pw_qpolynomial_fold *upwf,

int *tight);

The functions taking a map compose the given map with the given piecewise quasipoly-
nomial reduction. That is, compute a bound (of the same type as pwf or upwf itself)
over all elements in the intersection of the range of the map and the domain of the
piecewise quasipolynomial reduction as a function of an element in the domain of the
map. The functions taking a set compute a bound over all elements in the intersection
of the set and the domain of the piecewise quasipolynomial reduction.

1.3.16 Dependence Analysis
isl contains specialized functionality for performing array dataflow analysis. That is,
given a sink access relation and a collection of possible source access relations, isl can
compute relations that describe for each iteration of the sink access, which iteration of
which of the source access relations was the last to access the same data element before
the given iteration of the sink access. To compute standard flow dependences, the sink
should be a read, while the sources should be writes. If any of the source accesses
are marked as being may accesses, then there will be a dependence to the last must
access and to any may access that follows this last must access. In particular, if all
sources are may accesses, then memory based dependence analysis is performed. If,
on the other hand, all sources are must accesses, then value based dependence analysis
is performed.

#include <isl/flow.h>

typedef int (*isl_access_level_before)(void *first, void *second);

__isl_give isl_access_info *isl_access_info_alloc(

__isl_take isl_map *sink,

void *sink_user, isl_access_level_before fn,

int max_source);

__isl_give isl_access_info *isl_access_info_add_source(

__isl_take isl_access_info *acc,

__isl_take isl_map *source, int must,

void *source_user);

void isl_access_info_free(__isl_take isl_access_info *acc);

__isl_give isl_flow *isl_access_info_compute_flow(

__isl_take isl_access_info *acc);

int isl_flow_foreach(__isl_keep isl_flow *deps,

int (*fn)(__isl_take isl_map *dep, int must,

void *dep_user, void *user),
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void *user);

__isl_give isl_map *isl_flow_get_no_source(

__isl_keep isl_flow *deps, int must);

void isl_flow_free(__isl_take isl_flow *deps);

The function isl access info compute flow performs the actual dependence
analysis. The other functions are used to construct the input for this function or to read
off the output.

The input is collected in an isl access info, which can be created through a
call to isl access info alloc. The arguments to this functions are the sink ac-
cess relation sink, a token sink user used to identify the sink access to the user,
a callback function for specifying the relative order of source and sink accesses, and
the number of source access relations that will be added. The callback function has
type int (*)(void *first, void *second). The function is called with two user
supplied tokens identifying either a source or the sink and it should return the shared
nesting level and the relative order of the two accesses. In particular, let n be the num-
ber of loops shared by the two accesses. If first precedes second textually, then
the function should return 2 * n + 1; otherwise, it should return 2 * n. The sources
can be added to the isl access info by performing (at most) max source calls to
isl access info add source. must indicates whether the source is a must access
or a may access. Note that a multi-valued access relation should only be marked must
if every iteration in the domain of the relation accesses all elements in its image. The
source user token is again used to identify the source access. The range of the source
access relation source should have the same dimension as the range of the sink access
relation. The isl access info free function should usually not be called explicitly,
because it is called implicitly by isl access info compute flow.

The result of the dependence analysis is collected in an isl flow. There may be
elements of the sink access for which no preceding source access could be found or for
which all preceding sources are may accesses. The relations containing these elements
can be obtained through calls to isl flow get no source, the first with must set
and the second with must unset. In the case of standard flow dependence analysis,
with the sink a read and the sources must writes, the first relation corresponds to the
reads from uninitialized array elements and the second relation is empty. The actual
flow dependences can be extracted using isl flow foreach. This function will call
the user-specified callback function fn for each non-empty dependence between a
source and the sink. The callback function is called with four arguments, the actual
flow dependence relation mapping source iterations to sink iterations, a boolean that
indicates whether it is a must or may dependence, a token identifying the source and an
additional void * with value equal to the third argument of the isl flow foreach
call. A dependence is marked must if it originates from a must source and if it is not
followed by any may sources.

After finishing with an isl flow, the user should call isl flow free to free all
associated memory.

A higher-level interface to dependence analysis is provided by the following func-
tion.

#include <isl/flow.h>
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int isl_union_map_compute_flow(__isl_take isl_union_map *sink,

__isl_take isl_union_map *must_source,

__isl_take isl_union_map *may_source,

__isl_take isl_union_map *schedule,

__isl_give isl_union_map **must_dep,

__isl_give isl_union_map **may_dep,

__isl_give isl_union_map **must_no_source,

__isl_give isl_union_map **may_no_source);

The arrays are identified by the tuple names of the ranges of the accesses. The
iteration domains by the tuple names of the domains of the accesses and of the schedule.
The relative order of the iteration domains is given by the schedule. The relations
returned through must no source and may no source are subsets of sink. Any of
must dep, may dep, must no source or may no source may be NULL, but a NULL
value for any of the other arguments is treated as an error.

1.3.17 Parametric Vertex Enumeration
The parametric vertex enumeration described in this section is mainly intended to be
used internally and by the barvinok library.

#include <isl/vertices.h>

__isl_give isl_vertices *isl_basic_set_compute_vertices(

__isl_keep isl_basic_set *bset);

The function isl basic set compute vertices performs the actual computa-
tion of the parametric vertices and the chamber decomposition and store the result in
an isl vertices object. This information can be queried by either iterating over all
the vertices or iterating over all the chambers or cells and then iterating over all vertices
that are active on the chamber.

int isl_vertices_foreach_vertex(

__isl_keep isl_vertices *vertices,

int (*fn)(__isl_take isl_vertex *vertex, void *user),

void *user);

int isl_vertices_foreach_cell(

__isl_keep isl_vertices *vertices,

int (*fn)(__isl_take isl_cell *cell, void *user),

void *user);

int isl_cell_foreach_vertex(__isl_keep isl_cell *cell,

int (*fn)(__isl_take isl_vertex *vertex, void *user),

void *user);

Other operations that can be performed on an isl vertices object are the follow-
ing.
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isl_ctx *isl_vertices_get_ctx(

__isl_keep isl_vertices *vertices);

int isl_vertices_get_n_vertices(

__isl_keep isl_vertices *vertices);

void isl_vertices_free(__isl_take isl_vertices *vertices);

Vertices can be inspected and destroyed using the following functions.

isl_ctx *isl_vertex_get_ctx(__isl_keep isl_vertex *vertex);

int isl_vertex_get_id(__isl_keep isl_vertex *vertex);

__isl_give isl_basic_set *isl_vertex_get_domain(

__isl_keep isl_vertex *vertex);

__isl_give isl_basic_set *isl_vertex_get_expr(

__isl_keep isl_vertex *vertex);

void isl_vertex_free(__isl_take isl_vertex *vertex);

isl vertex get expr returns a singleton parametric set describing the vertex,
while isl vertex get domain returns the activity domain of the vertex. Note that
isl vertex get domain and isl vertex get expr return rational basic sets, so
they should mainly be used for inspection and should not be mixed with integer sets.

Chambers can be inspected and destroyed using the following functions.

isl_ctx *isl_cell_get_ctx(__isl_keep isl_cell *cell);

__isl_give isl_basic_set *isl_cell_get_domain(

__isl_keep isl_cell *cell);

void isl_cell_free(__isl_take isl_cell *cell);

1.4 Applications
Although isl is mainly meant to be used as a library, it also contains some basic
applications that use some of the functionality of isl. The input may be specified in
either the isl format or the PolyLib format.

1.4.1 isl polyhedron sample

isl polyhedron sample takes a polyhedron as input and prints an integer element of
the polyhedron, if there is any. The first column in the output is the denominator and is
always equal to 1. If the polyhedron contains no integer points, then a vector of length
zero is printed.

1.4.2 isl pip

isl pip takes the same input as the example program from the piplib distribution,
i.e., a set of constraints on the parameters, a line containing only -1 and finally a set of
constraints on a parametric polyhedron. The coefficients of the parameters appear in
the last columns (but before the final constant column). The output is the lexicographic
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minimum of the parametric polyhedron. As isl currently does not have its own output
format, the output is just a dump of the internal state.

1.4.3 isl polyhedron minimize

isl polyhedron minimize computes the minimum of some linear or affine objective
function over the integer points in a polyhedron. If an affine objective function is given,
then the constant should appear in the last column.

1.4.4 isl polytope scan

Given a polytope, isl polytope scan prints all integer points in the polytope.

1.5 isl-polylib

The isl-polylib library provides the following functions for converting between
isl objects and PolyLib objects. The library is distributed separately for licensing
reasons.

#include <isl_set_polylib.h>

__isl_give isl_basic_set *isl_basic_set_new_from_polylib(

Polyhedron *P, __isl_take isl_dim *dim);

Polyhedron *isl_basic_set_to_polylib(

__isl_keep isl_basic_set *bset);

__isl_give isl_set *isl_set_new_from_polylib(Polyhedron *D,

__isl_take isl_dim *dim);

Polyhedron *isl_set_to_polylib(__isl_keep isl_set *set);

#include <isl_map_polylib.h>

__isl_give isl_basic_map *isl_basic_map_new_from_polylib(

Polyhedron *P, __isl_take isl_dim *dim);

__isl_give isl_map *isl_map_new_from_polylib(Polyhedron *D,

__isl_take isl_dim *dim);

Polyhedron *isl_basic_map_to_polylib(

__isl_keep isl_basic_map *bmap);

Polyhedron *isl_map_to_polylib(__isl_keep isl_map *map);
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Chapter 2

Implementation Details

2.1 Sets and Relations
Definition 2.1.1 (Polyhedral Set) A polyhedral set S is a finite union of basic sets
S =

⋃
i S i, each of which can be represented using affine constraints

S i : Zn → 2Z
d

: s 7→ S i(s) = { x ∈ Zd | ∃z ∈ Ze : Ax + Bs + Dz + c ≥ 0 },

with A ∈ Zm×d, B ∈ Zm×n, D ∈ Zm×e and c ∈ Zm.

Definition 2.1.2 (Parameter Domain of a Set) Let S ∈ Zn → 2Z
d

be a set. The pa-
rameter domain of S is the set

pdom S B { s ∈ Zn | S (s) , ∅ }.

Definition 2.1.3 (Polyhedral Relation) A polyhedral relation R is a finite union of ba-
sic relations R =

⋃
i Ri of type Zn → 2Z

d1+d2 , each of which can be represented using
affine constraints

Ri = s 7→ Ri(s) = { x1 → x2 ∈ Z
d1 × Zd2 | ∃z ∈ Ze : A1x1 + A2x2 + Bs + Dz + c ≥ 0 },

with Ai ∈ Z
m×di , B ∈ Zm×n, D ∈ Zm×e and c ∈ Zm.

Definition 2.1.4 (Parameter Domain of a Relation) Let R ∈ Zn → 2Z
d+d

be a rela-
tion. The parameter domain of R is the set

pdom R B { s ∈ Zn | R(s) , ∅ }.

Definition 2.1.5 (Domain of a Relation) Let R ∈ Zn → 2Z
d+d

be a relation. The do-
main of R is the polyhedral set

dom R B s 7→ { x1 ∈ Z
d1 | ∃x2 ∈ Z

d2 : (x1, x2) ∈ R(s) }.
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Definition 2.1.6 (Range of a Relation) Let R ∈ Zn → 2Z
d+d

be a relation. The range
of R is the polyhedral set

ran R B s 7→ { x2 ∈ Z
d2 | ∃x1 ∈ Z

d1 : (x1, x2) ∈ R(s) }.

Definition 2.1.7 (Composition of Relations) Let R ∈ Zn → 2Z
d1+d2 and S ∈ Zn →

2Z
d2+d3 be two relations, then the composition of R and S is defined as

S ◦ R B s 7→ { x1 → x3 ∈ Z
d1 × Zd3 | ∃x2 ∈ Z

d2 : x1 → x2 ∈ R(s) ∧ x2 → x3 ∈ S (s) }.

Definition 2.1.8 (Difference Set of a Relation) Let R ∈ Zn → 2Z
d+d

be a relation. The
difference set (∆ R) of R is the set of differences between image elements and the cor-
responding domain elements,

∆ R B s 7→ { δ ∈ Zd | ∃x→ y ∈ R : δ = y − x }

2.2 Simple Hull
It is sometimes useful to have a single basic set or basic relation that contains a given
set or relation. For rational sets, the obvious choice would be to compute the (rational)
convex hull. For integer sets, the obvious choice would be the integer hull. However,
isl currently does not support an integer hull operation and even if it did, it would be
fairly expensive to compute. The convex hull operation is supported, but it is also fairly
expensive to compute given only an implicit representation.

Usually, it is not required to compute the exact integer hull, and an overapproxima-
tion of this hull is sufficient. The “simple hull” of a set is such an overapproximation
and it is defined as the (inclusion-wise) smallest basic set that is described by con-
straints that are translates of the constraints in the input set. This means that the simple
hull is relatively cheap to compute and that the number of constraints in the simple hull
is no larger than the number of constraints in the input.

Definition 2.2.1 (Simple Hull of a Set) The simple hull of a set S =
⋃

1≤i≤v S i, with

S : Zn → 2Z
d

: s 7→ S (s) =

 x ∈ Zd | ∃z ∈ Ze :
∨

1≤i≤v

Aix + Bis + Diz + ci ≥ 0


is the set

H : Zn → 2Z
d

: s 7→ S (s) =

 x ∈ Zd | ∃z ∈ Ze :
∧

1≤i≤v

Aix + Bis + Diz + ci + Ki ≥ 0

 ,
with Ki the (component-wise) smallest non-negative integer vectors such that S ⊆ H.

The Ki can be obtained by solving a number of LP problems, one for each element
of each Ki. If any LP problem is unbounded, then the corresponding constraint is
dropped.
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2.3 Parametric Integer Programming

2.3.1 Introduction
Parametric integer programming (Feautrier 1988) is used to solve many problems within
the context of the polyhedral model. Here, we are mainly interested in dependence
analysis (Feautrier 1991) and in computing a unique representation for existentially
quantified variables. The latter operation has been used for counting elements in sets
involving such variables (Boulet and Redon 1998; Verdoolaege et al. 2005) and lies at
the core of the internal representation of isl.

Parametric integer programming was first implemented in PipLib. An alternative
method for parametric integer programming was later implemented in barvinok (Ver-
doolaege 2006). This method is not based on Feautrier’s algorithm, but on rational
generating functions (Barvinok and Woods 2003) and was inspired by the “digging”
technique of De Loera et al. (2004) for solving non-parametric integer programming
problems.

In the following sections, we briefly recall the dual simplex method combined with
Gomory cuts and describe some extensions and optimizations. The main algorithm
is applied to a matrix data structure known as a tableau. In case of parametric prob-
lems, there are two tableaus, one for the main problem and one for the constraints on
the parameters, known as the context tableau. The handling of the context tableau is
described in Section 2.3.7.

2.3.2 The Dual Simplex Method
Tableaus can be represented in several slightly different ways. In isl, the dual simplex
method uses the same representation as that used by its incremental LP solver based on
the primal simplex method. The implementation of this LP solver is based on that of
Simplify (Detlefs et al. 2005), which, in turn, was derived from the work of Nelson
(1980). In the original (Nelson 1980), the tableau was implemented as a sparse matrix,
but neither Simplify nor the current implementation of isl does so.

Given some affine constraints on the variables, Ax + b ≥ 0, the tableau represents
the relationship between the variables x and non-negative variables y = Ax + b cor-
responding to the constraints. The initial tableau contains

(
b A

)
and expresses the

constraints y in the rows in terms of the variables x in the columns. The main op-
eration defined on a tableau exchanges a column and a row variable and is called a
pivot. During this process, some coefficients may become rational. As in the PipLib
implementation, isl maintains a shared denominator per row. The sample value of a
tableau is one where each column variable is assigned zero and each row variable is
assigned the constant term of the row. This sample value represents a valid solution if
each constraint variable is assigned a non-negative value, i.e., if the constant terms of
rows corresponding to constraints are all non-negative.

The dual simplex method starts from an initial sample value that may be invalid,
but that is known to be (lexicographically) no greater than any solution, and gradually
increments this sample value through pivoting until a valid solution is obtained. In
particular, each pivot exchanges a row variable r = −n +

∑
i ai ci with negative sample
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value −n with a column variable c j such that a j > 0. Since c j = (n + r −
∑

i, j ai ci)/a j,
the new row variable will have a positive sample value n. If no such column can be
found, then the problem is infeasible. By always choosing the column that leads to
the (lexicographically) smallest increment in the variables x, the first solution found is
guaranteed to be the (lexicographically) minimal solution (Feautrier 1988). In order
to be able to determine the smallest increment, the tableau is (implicitly) extended
with extra rows defining the original variables in terms of the column variables. If
we assume that all variables are non-negative, then we know that the zero vector is no
greater than the minimal solution and then the initial extended tableau looks as follows.


1 c

x 0 I
r b A

Each column in this extended tableau is lexicographically positive and will remain so
because of the column choice explained above. It is then clear that the value of x will
increase in each step. Note that there is no need to store the extra rows explicitly. If a
given xi is a column variable, then the corresponding row is the unit vector ei. If, on
the other hand, it is a row variable, then the row already appears somewhere else in the
tableau.

In case of parametric problems, the sign of the constant term may depend on the
parameters. Each time the constant term of a constraint row changes, we therefore
need to check whether the new term can attain negative and/or positive values over
the current set of possible parameter values, i.e., the context. If all these terms can
only attain non-negative values, the current state of the tableau represents a solution.
If one of the terms can only attain non-positive values and is not identically zero, the
corresponding row can be pivoted. Otherwise, we pick one of the terms that can attain
both positive and negative values and split the context into a part where it only attains
non-negative values and a part where it only attains negative values.

2.3.3 Gomory Cuts
The solution found by the dual simplex method may have non-integral coordinates.
If so, some rational solutions (including the current sample value), can be cut off by
applying a (parametric) Gomory cut. Let r = b(p) + 〈a, c〉 be the row corresponding to
the first non-integral coordinate of x, with b(p) the constant term, an affine expression
in the parameters p, i.e., b(p) = 〈f,p〉 + g. Note that only row variables can attain
non-integral values as the sample value of the column variables is zero. Consider the
expression b(p) − db(p)e + 〈{a} , c〉, with d·e the ceiling function and {·} the fractional
part. This expression is negative at the sample value since c = 0 and r = b(p) is
fractional, i.e., db(p)e > b(p). On the other hand, for each integral value of r and c ≥ 0,
the expression is non-negative because b(p) − db(p)e > −1. Imposing this expression
to be non-negative therefore does not invalidate any integral solutions, while it does
cut away the current fractional sample value. To be able to formulate this constraint,
a new variable q = b−b(p)c = − db(p)e is added to the context. This integral variable
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is uniquely defined by the constraints 0 ≤ −d b(p) − d q ≤ d − 1, with d the common
denominator of f and g. In practice, the variable q′ = b〈{− f } ,p〉 + {−g}c is used instead
and the coefficients of the new constraint are adjusted accordingly. The sign of the
constant term of this new constraint need not be determined as it is non-positive by
construction. When several of these extra context variables are added, it is important
to avoid adding duplicates. Recent versions of PipLib also check for such duplicates.

2.3.4 Negative Unknowns and Maximization
There are two places in the above algorithm where the unknowns x are assumed to be
non-negative: the initial tableau starts from sample value x = 0 and c is assumed to be
non-negative during the construction of Gomory cuts. To deal with negative unknowns,
Feautrier (1991, Appendix A.2) proposed to use a “big parameter”, say M, that is taken
to be an arbitrarily large positive number. Instead of looking for the lexicographically
minimal value of x, we search instead for the lexicographically minimal value of x′ =

M + x. The sample value x′ = 0 of the initial tableau then corresponds to x = −M,
which is clearly not greater than any potential solution. The sign of the constant term
of a row is determined lexicographically, with the coefficient of M considered first.
That is, if the coefficient of M is not zero, then its sign is the sign of the entire term.
Otherwise, the sign is determined by the remaining affine expression in the parameters.
If the original problem has a bounded optimum, then the final sample value will be of
the form M + v and the optimal value of the original problem is then v. Maximization
problems can be handled in a similar way by computing the minimum of M − x.

When the optimum is unbounded, the optimal value computed for the original prob-
lem will involve the big parameter. In the original implementation of PipLib, the big
parameter could even appear in some of the extra variables q created during the ap-
plication of a Gomory cut. The final result could then contain implicit conditions on
the big parameter through conditions on such q variables. This problem was resolved
in later versions of PipLib by taking M to be divisible by any positive number. The
big parameter can then never appear in any q because {αM} = 0. It should be noted,
though, that an unbounded problem usually (but not always) indicates an incorrect for-
mulation of the problem.

The original version of PipLib required the user to “manually” add a big param-
eter, perform the reformulation and interpret the result (Feautrier et al. 2002). Recent
versions allow the user to simply specify that the unknowns may be negative or that the
maximum should be computed and then these transformations are performed internally.
Although there are some application, e.g., that of Feautrier (1992), where it is useful
to have explicit control over the big parameter, negative unknowns and maximization
are by far the most common applications of the big parameter and we believe that the
user should not be bothered with such implementation issues. The current version of
isl therefore does not provide any interface for specifying big parameters. Instead,
the user can specify whether a maximum needs to be computed and no assumptions
are made on the sign of the unknowns. Instead, the sign of the unknowns is checked
internally and a big parameter is automatically introduced when needed. For compati-
bility with PipLib, the isl pip tool does explicitly add non-negativity constraints on
the unknowns unless the Urs_unknowns option is specified. Currently, there is also no
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way in isl of expressing a big parameter in the output. Even though isl makes the
same divisibility assumption on the big parameter as recent versions of PipLib, it will
therefore eventually produce an error if the problem turns out to be unbounded.

2.3.5 Preprocessing
In this section, we describe some transformations that are or can be applied in advance
to reduce the running time of the actual dual simplex method with Gomory cuts.

Feasibility Check and Detection of Equalities

Experience with the original PipLib has shown that Gomory cuts do not perform very
well on problems that are (non-obviously) empty, i.e., problems with rational solutions,
but no integer solutions. In isl, we therefore first perform a feasibility check on the
original problem considered as a non-parametric problem over the combined space of
unknowns and parameters. In fact, we do not simply check the feasibility, but we
also check for implicit equalities among the integer points by computing the integer
affine hull. The algorithm used is the same as that described in Section 2.3.7 below.
Computing the affine hull is fairly expensive, but it can bring huge benefits if any
equalities can be found or if the problem turns out to be empty.

Constraint Simplification

If the coefficients of the unknown and parameters in a constraint have a common factor,
then this factor should be removed, possibly rounding down the constant term. For
example, the constraint 2x − 5 ≥ 0 should be simplified to x − 3 ≥ 0. isl performs
such simplifications on all sets and relations. Recent versions of PipLib also perform
this simplification on the input.

Exploiting Equalities

If there are any (explicit) equalities in the input description, PipLib converts each
into a pair of inequalities. It is also possible to write r equalities as r + 1 inequalities
(Feautrier et al. 2002), but it is even better to exploit the equalities to reduce the di-
mensionality of the problem. Given an equality involving at least one unknown, we
pivot the row corresponding to the equality with the column corresponding to the last
unknown with non-zero coefficient. The new column variable can then be removed
completely because it is identically zero, thereby reducing the dimensionality of the
problem by one. The last unknown is chosen to ensure that the columns of the initial
tableau remain lexicographically positive. In particular, if the equality is of the form
b +

∑
i≤ j ai xi = 0 with a j , 0, then the (implicit) top rows of the initial tableau are
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changed as follows 





0 I1

j 0 1

0 I2

j
0 I1

j −b/a j −ai/a j

0 I2

Currently, isl also eliminates equalities involving only parameters in a similar way,
provided at least one of the coefficients is equal to one. The application of parameter
compression (see below) would obviate the need for removing parametric equalities.

Offline Symmetry Detection

Some problems, notably those of Bygde (2010), have a collection of constraints, say
bi(p) + 〈a, x〉 ≥ 0, that only differ in their (parametric) constant terms. These constant
terms will be non-negative on different parts of the context and this context may have
to be split for each of the constraints. In the worst case, the basic algorithm may have
to consider all possible orderings of the constant terms. Instead, isl introduces a new
parameter, say u, and replaces the collection of constraints by the single constraint
u + 〈a, x〉 ≥ 0 along with context constraints u ≤ bi(p). Any solution to the new
system is also a solution to the original system since 〈a, x〉 ≥ −u ≥ −bi(p). Conversely,
m = mini bi(p) satisfies the constraints on u and therefore extends a solution to the new
system. It can also be plugged into a new solution. See Section 2.3.6 for how this
substitution is currently performed in isl. The method described in this section can
only detect symmetries that are explicitly available in the input. See Section 2.3.9 for
the detection and exploitation of symmetries that appear during the course of the dual
simplex method.

Parameter Compression

It may in some cases be apparent from the equalities in the problem description that
there can only be a solution for a sublattice of the parameters. In such cases “parameter
compression” (Meister 2004; Meister and Verdoolaege 2008) can be used to replace
the parameters by alternative “dense” parameters. For example, if there is a constraint
2x = n, then the system will only have solutions for even values of n and n can be
replaced by 2n′. Similarly, the parameters n and m in a system with the constraint
2n = 3m can be replaced by a single parameter n′ with n = 3n′ and m = 2n′. It
is also possible to perform a similar compression on the unknowns, but it would be
more complicated as the compression would have to preserve the lexicographical order.
Moreover, due to our handling of equalities described above there should be no need for
such variable compression. Although parameter compression has been implemented in
isl, it is currently not yet used during parametric integer programming.

2.3.6 Postprocessing
The output of PipLib is a quast (quasi-affine selection tree). Each internal node in this
tree corresponds to a split of the context based on a parametric constant term in the main
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tableau with indeterminate sign. Each of these nodes may introduce extra variables in
the context corresponding to integer divisions. Each leaf of the tree prescribes the
solution in that part of the context that satisfies all the conditions on the path leading
to the leaf. Such a quast is a very economical way of representing the solution, but it
would not be suitable as the (only) internal representation of sets and relations in isl.
Instead, isl represents the constraints of a set or relation in disjunctive normal form.
The result of a parametric integer programming problem is then also converted to this
internal representation. Unfortunately, the conversion to disjunctive normal form can
lead to an explosion of the size of the representation. In some cases, this overhead
would have to be paid anyway in subsequent operations, but in other cases, especially
for outside users that just want to solve parametric integer programming problems, we
would like to avoid this overhead in future. That is, we are planning on introducing
quasts or a related representation as one of several possible internal representations
and on allowing the output of isl pip to optionally be printed as a quast.

Currently, isl also does not have an internal representation for expressions such
as mini bi(p) from the offline symmetry detection of Section 2.3.5. Assume that one of
these expressions has n bounds bi(p). If the expression does not appear in the affine
expression describing the solution, but only in the constraints, and if moreover, the
expression only appears with a positive coefficient, i.e., mini bi(p) ≥ f j(p), then each
of these constraints can simply be reduplicated n times, once for each of the bounds.
Otherwise, a conversion to disjunctive normal form leads to n cases, each described as
u = bi(p) with constraints bi(p) ≤ b j(p) for j > i and bi(p) < b j(p) for j < i. Note that
even though this conversion leads to a size increase by a factor of n, not detecting the
symmetry could lead to an increase by a factor of n! if all possible orderings end up
being considered.

2.3.7 Context Tableau
The main operation that a context tableau needs to provide is a test on the sign of
an affine expression over the elements of the context. This sign can be determined
by solving two integer linear feasibility problems, one with a constraint added to the
context that enforces the expression to be non-negative and one where the expression is
negative. As already mentioned by Feautrier (1988), any integer linear feasibility solver
could be used, but the PipLib implementation uses a recursive call to the dual simplex
with Gomory cuts algorithm to determine the feasibility of a context. In isl, two
ways of handling the context have been implemented, one that performs the recursive
call and one, used by default, that uses generalized basis reduction. We start with
some optimizations that are shared between the two implementations and then discuss
additional details of each of them.

Maintaining Witnesses

A common feature of both integer linear feasibility solvers is that they will not only
say whether a set is empty or not, but if the set is non-empty, they will also provide a
witness for this result, i.e., a point that belongs to the set. By maintaining a list of such
witnesses, we can avoid many feasibility tests during the determination of the signs
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of affine expressions. In particular, if the expression evaluates to a positive number
on some of these points and to a negative number on some others, then no feasibility
test needs to be performed. If all the evaluations are non-negative, we only need to
check for the possibility of a negative value and similarly in case of all non-positive
evaluations. Finally, in the rare case that all points evaluate to zero or at the start, when
no points have been collected yet, one or two feasibility tests need to be performed
depending on the result of the first test.

When a new constraint is added to the context, the points that violate the constraint
are temporarily removed. They are reconsidered when we backtrack over the addition
of the constraint, as they will satisfy the negation of the constraint. It is only when
we backtrack over the addition of the points that they are finally removed completely.
When an extra integer division is added to the context, the new coordinates of the wit-
nesses can easily be computed by evaluating the integer division. The idea of keeping
track of witnesses was first used in barvinok.

Choice of Constant Term on which to Split

Recall that if there are no rows with a non-positive constant term, but there are rows
with an indeterminate sign, then the context needs to be split along the constant term
of one of these rows. If there is more than one such row, then we need to choose
which row to split on first. PipLib uses a heuristic based on the (absolute) sizes of the
coefficients. In particular, it takes the largest coefficient of each row and then selects
the row where this largest coefficient is smaller than those of the other rows.

In isl, we take that row for which non-negativity of its constant term implies non-
negativity of as many of the constant terms of the other rows as possible. The intuition
behind this heuristic is that on the positive side, we will have fewer negative and in-
determinate signs, while on the negative side, we need to perform a pivot, which may
affect any number of rows meaning that the effect on the signs is difficult to predict.
This heuristic is of course much more expensive to evaluate than the heuristic used by
PipLib. More extensive tests are needed to evaluate whether the heuristic is worth-
while.

Dual Simplex + Gomory Cuts

When a new constraint is added to the context, the first steps of the dual simplex method
applied to this new context will be the same or at least very similar to those taken on
the original context, i.e., before the constraint was added. In isl, we therefore apply
the dual simplex method incrementally on the context and backtrack to a previous state
when a constraint is removed again. An initial implementation that was never made
public would also keep the Gomory cuts, but the current implementation backtracks to
before the point where Gomory cuts are added before adding an extra constraint to the
context. Keeping the Gomory cuts has the advantage that the sample value is always
an integer point and that this point may also satisfy the new constraint. However, due
to the technique of maintaining witnesses explained above, we would not perform a
feasibility test in such cases and then the previously added cuts may be redundant,
possibly resulting in an accumulation of a large number of cuts.
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If the parameters may be negative, then the same big parameter trick used in the
main tableau is applied to the context. This big parameter is of course unrelated to
the big parameter from the main tableau. Note that it is not a requirement for this
parameter to be “big”, but it does allow for some code reuse in isl. In PipLib, the
extra parameter is not “big”, but this may be because the big parameter of the main
tableau also appears in the context tableau.

Finally, it was reported by Galea (2009), who worked on a parametric integer pro-
gramming implementation in PPL (Bagnara et al. ), that it is beneficial to add cuts for
all rational coordinates in the context tableau. Based on this report, the initial isl
implementation was adapted accordingly.

Generalized Basis Reduction

The default algorithm used in isl for feasibility checking is generalized basis reduc-
tion (Cook et al. 1991). This algorithm is also used in the barvinok implementation.
The algorithm is fairly robust, but it has some overhead. We therefore try to avoid call-
ing the algorithm in easy cases. In particular, we incrementally keep track of points for
which the entire unit hypercube positioned at that point lies in the context. This set is
described by translates of the constraints of the context and if (rationally) non-empty,
any rational point in the set can be rounded up to yield an integer point in the context.

A restriction of the algorithm is that it only works on bounded sets. The affine hull
of the recession cone therefore needs to be projected out first. As soon as the algorithm
is invoked, we then also incrementally keep track of this recession cone. The reduced
basis found by one call of the algorithm is also reused as initial basis for the next call.

Some problems lead to the introduction of many integer divisions. Within a given
context, some of these integer divisions may be equal to each other, even if the ex-
pressions are not identical, or they may be equal to some affine combination of other
variables. To detect such cases, we compute the affine hull of the context each time
a new integer division is added. The algorithm used for computing this affine hull is
that of Karr (1976), while the points used in this algorithm are obtained by performing
integer feasibility checks on that part of the context outside the current approximation
of the affine hull. The list of witnesses is used to construct an initial approximation of
the hull, while any extra points found during the construction of the hull is added to
this list. Any equality found in this way that expresses an integer division as an integer
affine combination of other variables is propagated to the main tableau, where it is used
to eliminate that integer division.

2.3.8 Experiments
Table 2.1 compares the execution times of isl (with both types of context tableau)
on some more difficult instances to those of other tools, run on an Intel Xeon W3520
@ 2.66GHz. Easier problems such as the test cases distributed with PipLib can be
solved so quickly that we would only be measuring overhead such as input/output and
conversions and not the running time of the actual algorithm. We compare the fol-
lowing versions: piplib-1.4.0-5-g0132fd9, barvinok-0.32.1-73-gc5d7751,
isl-0.05.1-82-g3a37260 and PPL version 0.11.2.
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PipLib barvinok isl cut isl gbr PPL

Phideo TC 793m >999m 2.7s 372m
e1 0.33s 3.5s 0.08s 0.11s 0.18s
e3 0.14s 0.13s 0.10s 0.10s 0.17s
e4 0.24s 9.1s 0.09s 0.11s 0.70s
e5 0.12s 6.0s 0.06s 0.14s 0.17s
e6 0.10s 6.8s 0.17s 0.08s 0.21s
e7 0.03s 0.27s 0.04s 0.04s 0.03s
e8 0.03s 0.18s 0.03s 0.04s 0.01s
e9 OOM 70m 2.6s 0.94s 22s
vd 0.04s 0.10s 0.03s 0.03s 0.03s
bouleti 0.25s line 0.06s 0.06s 0.15s
difficult OOM 1.3s 1.7s 0.33s 1.4s
cnt/sum TC max 2.2s 2.2s OOM
jcomplex TC max 3.7s 3.9s OOM

Table 2.1: Comparison of Execution Times

The first test case is the following dependence analysis problem originating from
the Phideo project (Verhaegh 1995) that was communicated to us by Bart Kienhuis:

lexmax { [j1,j2] -> [i1,i2,i3,i4,i5,i6,i7,i8,i9,i10] : 1 <= i1,j1

<= 8 and 1 <= i2,i3,i4,i5,i6,i7,i8,i9,i10 <= 2 and 1 <= j2

<= 128 and i1-1 = j1-1 and i2-1+2*i3-2+4*i4-4+8*i5-8+16*i6

-16+32*i7-32+64*i8-64+128*i9-128+256*i10-256=3*j2-3+66 };

This problem was the main inspiration for some of the optimizations in Section 2.3.7.
The second group of test cases are projections used during counting. The first nine
of these come from Seghir and Loechner (2006). The remaining two come from Ver-
doolaege et al. (2005) and were used to drive the first, Gomory cuts based, implemen-
tation in isl. The third and final group of test cases are borrowed from Bygde (2010)
and inspired the offline symmetry detection of Section 2.3.5. Without symmetry de-
tection, the running times are 11s and 5.9s. All running times of barvinok and isl
include a conversion to disjunctive normal form. Without this conversion, the final two
cases can be solved in 0.07s and 0.21s. The PipLib implementation has some fixed
limits and will sometimes report the problem to be too complex (TC), while on some
other problems it will run out of memory (OOM). The barvinok implementation does
not support problems with a non-trivial lineality space (line) nor maximization prob-
lems (max). The Gomory cuts based isl implementation was terminated after 1000
minutes on the first problem. The gbr version introduces some overhead on some of
the easier problems, but is overall the clear winner.

2.3.9 Online Symmetry Detection
Manual experiments on small instances of the problems of Bygde (2010) and an anal-
ysis of the results by the approximate MPA method developed by Bygde (2010) have
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revealed that these problems contain many more symmetries than can be detected us-
ing the offline method of Section 2.3.5. In this section, we present an online detection
mechanism that has not been implemented yet, but that has shown promising results in
manual applications.

Let us first consider what happens when we do not perform offline symmetry de-
tection. At some point, one of the bi(p) + 〈a, x〉 ≥ 0 constraints, say the jth constraint,
appears as a column variable, say c1, while the other constraints are represented as rows
of the form bi(p) − b j(p) + c. The context is then split according to the relative order
of b j(p) and one of the remaining bi(p). The offline method avoids this split by re-
placing all bi(p) by a single newly introduced parameter that represents the minimum
of these bi(p). In the online method the split is similarly avoided by the introduc-
tion of a new parameter. In particular, a new parameter is introduced that represents∣∣∣b j(p) − bi(p)

∣∣∣
+

= max(b j(p) − bi(p), 0).
In general, let r = b(p) + 〈a, c〉 be a row of the tableau such that the sign of b(p) is

indeterminate and such that exactly one of the elements of a is a 1, while all remaining
elements are non-positive. That is, r = b(p) + c j − f with f = −

∑
i, j aici ≥ 0. We

introduce a new parameter t with context constraints t ≥ −b(p) and t ≥ 0 and replace
the column variable c j by c′ + t. The row r is now equal to b(p) + t + c′ − f . The
constant term of this row is always non-negative because any negative value of b(p) is
compensated by t ≥ −b(p) while and non-negative value remains non-negative because
t ≥ 0.

We need to show that this transformation does not eliminate any valid solutions
and that it does not introduce any spurious solutions. Given a valid solution for the
original problem, we need to find a non-negative value of c′ satisfying the constraints.
If b(p) ≥ 0, we can take t = 0 so that c′ = c j − t = c j ≥ 0. If b(p) < 0, we can take
t = −b(p). Since r = b(p) + c j − f ≥ 0 and f ≥ 0, we have c′ = c j + b(p) ≥ 0. Note that
these choices amount to plugging in t = |−b(p)|+ = max(−b(p), 0). Conversely, given a
solution to the new problem, we need to find a non-negative value of c j, but this is easy
since c j = c′ + t and both of these are non-negative.

Plugging in t = max(−b(p), 0) can be performed as in Section 2.3.6, but, as in the
case of offline symmetry detection, it may be better to provide a direct representation
for such expressions in the internal representation of sets and relations or at least in a
quast-like output format.

2.4 Coalescing
See Verdoolaege (2009), for now. More details will be added later.
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2.5 Transitive Closure

2.5.1 Introduction
Definition 2.5.1 (Power of a Relation) Let R ∈ Zn → 2Z

d+d
be a relation and k ∈ Z≥1

a positive number, then power k of relation R is defined as

Rk B

R if k = 1
R ◦ Rk−1 if k ≥ 2.

(2.1)

Definition 2.5.2 (Transitive Closure of a Relation) Let R ∈ Zn → 2Z
d+d

be a relation,
then the transitive closure R+ of R is the union of all positive powers of R,

R+ B
⋃
k≥1

Rk.

Alternatively, the transitive closure may be defined inductively as

R+ B R ∪
(
R ◦ R+) . (2.2)

Since the transitive closure of a polyhedral relation may no longer be a polyhedral
relation (Kelly et al. 1996c), we can, in the general case, only compute an approxima-
tion of the transitive closure. Whereas Kelly et al. (1996c) compute underapproxima-
tions, we, like Beletska et al. (2009), compute overapproximations. That is, given a
relation R, we will compute a relation T such that R+ ⊆ T . Of course, we want this
approximation to be as close as possible to the actual transitive closure R+ and we want
to detect the cases where the approximation is exact, i.e., where T = R+.

For computing an approximation of the transitive closure of R, we follow the same
general strategy as Beletska et al. (2009) and first compute an approximation of Rk for
k ≥ 1 and then project out the parameter k from the resulting relation.

Example 2.5.3 As a trivial example, consider the relation R = { x → x + 1 }. The kth
power of this map for arbitrary k is

Rk = k 7→ { x→ x + k | k ≥ 1 }.

The transitive closure is then

R+ = { x→ y | ∃k ∈ Z≥1 : y = x + k }

= { x→ y | y ≥ x + 1 }.

2.5.2 Computing an Approximation of Rk

There are some special cases where the computation of Rk is very easy. One such case
is that where R does not compose with itself, i.e., R ◦ R = ∅ or dom R ∩ ran R = ∅. In
this case, Rk is only non-empty for k = 1 where it is equal to R itself.

In general, it is impossible to construct a closed form of Rk as a polyhedral relation.
We will therefore need to make some approximations. As a first approximations, we
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will consider each of the basic relations in R as simply adding one or more offsets to
a domain element to arrive at an image element and ignore the fact that some of these
offsets may only be applied to some of the domain elements. That is, we will only
consider the difference set ∆ R of the relation. In particular, we will first construct a
collection P of paths that move through a total of k offsets and then intersect domain
and range of this collection with those of R. That is,

K = P ∩ (dom R→ ran R) , (2.3)

with

P = s 7→ { x→ y | ∃ki ∈ Z≥0, δi ∈ ki ∆i(s) : y = x +
∑

i

δi ∧
∑

i

ki = k > 0 } (2.4)

and with ∆i the basic sets that compose the difference set ∆ R. Note that the number of
basic sets ∆i need not be the same as the number of basic relations in R. Also note that
since addition is commutative, it does not matter in which order we add the offsets and
so we are allowed to group them as we did in (2.4).

If all the ∆is are singleton sets ∆i = { δi } with δi ∈ Z
d, then (2.4) simplifies to

P = { x→ y | ∃ki ∈ Z≥0 : y = x +
∑

i

ki δi ∧
∑

i

ki = k > 0 } (2.5)

and then the approximation computed in (2.3) is essentially the same as that of Beletska
et al. (2009). If some of the ∆is are not singleton sets or if some of δis are parametric,
then we need to resort to further approximations.

To ease both the exposition and the implementation, we will for the remainder of
this section work with extended offsets ∆′i = ∆i × { 1 }. That is, each offset is extended
with an extra coordinate that is set equal to one. The paths constructed by summing
such extended offsets have the length encoded as the difference of their final coordi-
nates. The path P′ can then be decomposed into paths P′i , one for each ∆i,

P′ =
(
(P′m ∪ Id) ◦ · · · ◦ (P′2 ∪ Id) ◦ (P′1 ∪ Id)

)
∩ { x′ → y′ | yd+1 − xd+1 = k > 0 }, (2.6)

with
P′i = s 7→ { x′ → y′ | ∃k ∈ Z≥1, δ ∈ k ∆′i(s) : y′ = x′ + δ }.

Note that each P′i contains paths of length at least one. We therefore need to take the
union with the identity relation when composing the P′is to allow for paths that do not
contain any offsets from one or more ∆′i . The path that consists of only identity relations
is removed by imposing the constraint yd+1 − xd+1 > 0. Taking the union with the
identity relation means that that the relations we compose in (2.6) each consist of two
basic relations. If there are m disjuncts in the input relation, then a direct application of
the composition operation may therefore result in a relation with 2m disjuncts, which
is prohibitively expensive. It is therefore crucial to apply coalescing (Section 2.4) after
each composition.

Let us now consider how to compute an overapproximation of P′i . Those that cor-
respond to singleton ∆is are grouped together and handled as in (2.5). Note that this is
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just an optimization. The procedure described below would produce results that are at
least as accurate. For simplicity, we first assume that no constraint in ∆′i involves any
existentially quantified variables. We will return to existentially quantified variables at
the end of this section. Without existentially quantified variables, we can classify the
constraints of ∆′i as follows

1. non-parametric constraints
A1x + c1 ≥ 0 (2.7)

2. purely parametric constraints

B2s + c2 ≥ 0 (2.8)

3. negative mixed constraints

A3x + B3s + c3 ≥ 0 (2.9)

such that for each row j and for all s,

∆′i(s) ∩ { δ′ | B3, js + c3, j > 0 } = ∅

4. positive mixed constraints

A4x + B4s + c4 ≥ 0

such that for each row j, there is at least one s such that

∆′i(s) ∩ { δ′ | B4, js + c4, j > 0 } , ∅

We will use the following approximation Qi for P′i :

Qi = s 7→ { x′ → y′ | ∃k ∈ Z≥1, f ∈ Zd : y′ = x′ + (f, k) ∧
A1f + kc1 ≥ 0 ∧ B2s + c2 ≥ 0 ∧ A3f + B3s + c3 ≥ 0 }.

(2.10)

To prove that Qi is indeed an overapproximation of P′i , we need to show that for every
s ∈ Zn, for every k ∈ Z≥1 and for every f ∈ k ∆i(s) we have that (f, k) satisfies the
constraints in (2.10). If ∆i(s) is non-empty, then s must satisfy the constraints in (2.8).
Each element (f, k) ∈ k ∆′i(s) is a sum of k elements (f j, 1) in ∆′i(s). Each of these
elements satisfies the constraints in (2.7), i.e.,[

A1 c1

] [f j

1

]
≥ 0.

The sum of these elements therefore satisfies the same set of inequalities, i.e., A1f +

kc1 ≥ 0. Finally, the constraints in (2.9) are such that for any s in the parameter
domain of ∆, we have −r(s) B B3s + c3 ≤ 0, i.e., A3f j ≥ r(s) ≥ 0 and therefore also
A3f ≥ r(s). Note that if there are no mixed constraints and if the rational relaxation
of ∆i(s), i.e., { x ∈ Qd | A1x + c1 ≥ 0 }, has integer vertices, then the approximation
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is exact, i.e., Qi = P′i . In this case, the vertices of ∆′i(s) generate the rational cone
{ x′ ∈ Qd+1 |

[
A1 c1

]
x′ } and therefore ∆′i(s) is a Hilbert basis of this cone (Schrijver

1986, Theorem 16.4).
Existentially quantified variables can be handled by classifying them into variables

that are uniquely determined by the parameters, variables that are independent of the
parameters and others. The first set can be treated as parameters and the second as vari-
ables. Constraints involving the other existentially quantified variables are removed.

Example 2.5.4 Consider the relation

R = n→ { x→ y | ∃α0, α1 : 7α0 = −2 + n ∧ 5α1 = −1 − x + y ∧ y ≥ 6 + x }.

The difference set of this relation is

∆ = ∆ R = n→ { x | ∃α0, α1 : 7α0 = −2 + n ∧ 5α1 = −1 + x ∧ x ≥ 6 }.

The existentially quantified variables can be defined in terms of the parameters and
variables as

α0 =

⌊
−2 + n

7

⌋
and α1 =

⌊
−1 + x

5

⌋
.

α0 can therefore be treated as a parameter, while α1 can be treated as a variable. This
in turn means that 7α0 = −2+n can be treated as a purely parametric constraint, while
the other two constraints are non-parametric. The corresponding Q (2.10) is therefore

n→ { (x, z)→ (y,w) | ∃α0, α1, k, f : k ≥ 1 ∧ y = x + f ∧ w = z + k ∧

7α0 = −2 + n ∧ 5α1 = −k + x ∧ x ≥ 6k }.

Projecting out the final coordinates encoding the length of the paths, results in the exact
transitive closure

R+ = n→ { x→ y | ∃α0, α1 : 7α1 = −2 + n ∧ 6α0 ≥ −x + y ∧ 5α0 ≤ −1 − x + y }.

The fact that we ignore some impure constraints clearly leads to a loss of accuracy.
In some cases, some of this loss can be recovered by not considering the parameters in
a special way. That is, instead of considering the set

∆ = ∆ R = s 7→ { δ ∈ Zd | ∃x→ y ∈ R : δ = y − x }

we consider the set

∆′ = ∆ R′ = { δ ∈ Zn+d | ∃(s, x)→ (s, y) ∈ R′ : δ = (s − s, y − x) }.

The first n coordinates of every element in ∆′ are zero. Projecting out these zero co-
ordinates from ∆′ is equivalent to projecting out the parameters in ∆. The result is
obviously a superset of ∆, but all its constraints are of type (2.7) and they can therefore
all be used in the construction of Qi.
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Example 2.5.5 Consider the relation

R = n→ { (x, y)→ (1 + x, 1 − n + y) | n ≥ 2 }.

We have
∆ R = n→ { (1, 1 − n) | n ≥ 2 }

and so, by treating the parameters in a special way, we obtain the following approxi-
mation for R+:

n→ { (x, y)→ (x′, y′) | n ≥ 2 ∧ y′ ≤ 1 − n + y ∧ x′ ≥ 1 + x }.

If we consider instead

R′ = { (n, x, y)→ (n, 1 + x, 1 − n + y) | n ≥ 2 }

then
∆ R′ = { (0, 1, y) | y ≤ −1 }

and we obtain the approximation

n→ { (x, y)→ (x′, y′) | n ≥ 2 ∧ x′ ≥ 1 + x ∧ y′ ≤ x + y − x′ }.

If we consider both ∆ R and ∆ R′, then we obtain

n→ { (x, y)→ (x′, y′) | n ≥ 2 ∧ y′ ≤ 1 − n + y ∧ x′ ≥ 1 + x ∧ y′ ≤ x + y − x′ }.

Note, however, that this is not the most accurate affine approximation that can be ob-
tained. That would be

n→ { (x, y)→ (x′, y′) | y′ ≤ 2 − n + x + y − x′ ∧ n ≥ 2 ∧ x′ ≥ 1 + x }.

2.5.3 Checking Exactness
The approximation T for the transitive closure R+ can be obtained by projecting out
the parameter k from the approximation K (2.3) of the power Rk. Since K is an over-
approximation of Rk, T will also be an overapproximation of R+. To check whether
the results are exact, we need to consider two cases depending on whether R is cyclic,
where R is defined to be cyclic if R+ maps any element to itself, i.e., R+ ∩ Id , ∅. If R
is acyclic, then the inductive definition of (2.2) is equivalent to its completion, i.e.,

R+ = R ∪
(
R ◦ R+)

is a defining property. Since T is known to be an overapproximation, we only need to
check whether

T ⊆ R ∪ (R ◦ T ) .

This is essentially Theorem 5 of Kelly et al. (1996c). The only difference is that they
only consider lexicographically forward relations, a special case of acyclic relations.
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If, on the other hand, R is cyclic, then we have to resort to checking whether the
approximation K of the power is exact. Note that T may be exact even if K is not
exact, so the check is sound, but incomplete. To check exactness of the power, we
simply need to check (2.1). Since again K is known to be an overapproximation, we
only need to check whether

K′|yd+1−xd+1=1 ⊆ R′

K′|yd+1−xd+1≥2 ⊆ R′ ◦ K′|yd+1−xd+1≥1,

where R′ = { x′ → y′ | x→ y ∈ R∧ yd+1 − xd+1 = 1 }, i.e., R extended with path lengths
equal to 1.

All that remains is to explain how to check the cyclicity of R. Note that the ex-
actness on the power is always sound, even in the acyclic case, so we only need to be
careful that we find all cyclic cases. Now, if R is cyclic, i.e., R+ ∩ Id , ∅, then, since T
is an overapproximation of R+, also T ∩ Id , ∅. This in turn means that ∆ K′ contains
a point whose first d coordinates are zero and whose final coordinate is positive. In the
implementation we currently perform this test on P′ instead of K′. Note that if R+ is
acyclic and T is not, then the approximation is clearly not exact and the approximation
of the power K will not be exact either.

2.5.4 Decomposing R into strongly connected components
If the input relation R is a union of several basic relations that can be partially ordered
then the accuracy of the approximation may be improved by computing an approxima-
tion of each strongly connected components separately. For example, if R = R1 ∪ R2
and R1 ◦ R2 = ∅, then we know that any path that passes through R2 cannot later pass
through R1, i.e.,

R+ = R+
1 ∪ R+

2 ∪
(
R+

2 ◦ R+
1
)
. (2.11)

We can therefore compute (approximations of) transitive closures of R1 and R2 sepa-
rately. Note, however, that the condition R1 ◦ R2 = ∅ is actually too strong. If R1 ◦ R2
is a subset of R2 ◦ R1 then we can reorder the segments in any path that moves through
both R1 and R2 to first move through R1 and then through R2.

This idea can be generalized to relations that are unions of more than two basic
relations by constructing the strongly connected components in the graph with as ver-
tices the basic relations and an edge between two basic relations Ri and R j if Ri needs
to follow R j in some paths. That is, there is an edge from Ri to R j iff

Ri ◦ R j * R j ◦ Ri. (2.12)

The components can be obtained from the graph by applying Tarjan’s algorithm (Tarjan
1972).

In practice, we compute the (extended) powers K′i of each component separately
and then compose them as in (2.6). Note, however, that in this case the order in
which we apply them is important and should correspond to a topological ordering of
the strongly connected components. Simply applying Tarjan’s algorithm will produce
topologically sorted strongly connected components. The graph on which Tarjan’s al-
gorithm is applied is constructed on-the-fly. That is, whenever the algorithm checks
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Figure 2.1: The relation from Example 2.5.6

if there is an edge between two vertices, we evaluate (2.12). The exactness check is
performed on each component separately. If the approximation turns out to be inexact
for any of the components, then the entire result is marked inexact and the exactness
check is skipped on the components that still need to be handled.

It should be noted that (2.11) is only valid for exact transitive closures. If over-
approximations are computed in the right hand side, then the result will still be an
overapproximation of the left hand side, but this result may not be transitively closed.
If we only separate components based on the condition Ri ◦ R j = ∅, then there is no
problem, as this condition will still hold on the computed approximations of the tran-
sitive closures. If, however, we have exploited (2.12) during the decomposition and
if the result turns out not to be exact, then we check whether the result is transitively
closed. If not, we recompute the transitive closure, skipping the decomposition. Note
that testing for transitive closedness on the result may be fairly expensive, so we may
want to make this check configurable.

Example 2.5.6 Consider the relation in example closure4 that comes with the Omega
calculator (Kelly et al. 1996a), R = R1 ∪ R2, with

R1 = { (x, y)→ (x, y + 1) | 1 ≤ x, y ≤ 10 }
R2 = { (x, y)→ (x + 1, y) | 1 ≤ x ≤ 20 ∧ 5 ≤ y ≤ 15 }.

This relation is shown graphically in Figure 2.1. We have

R1 ◦ R2 = { (x, y)→ (x + 1, y + 1) | 1 ≤ x ≤ 9 ∧ 5 ≤ y ≤ 10 }
R2 ◦ R1 = { (x, y)→ (x + 1, y + 1) | 1 ≤ x ≤ 10 ∧ 4 ≤ y ≤ 10 }.
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Figure 2.2: The relation from Example 2.5.7

Clearly, R1 ◦ R2 ⊆ R2 ◦ R1 and so

(R1 ∪ R2)+ =
(
R+

2 ◦ R+
1
)
∪ R+

1 ∪ R+
2 .

Example 2.5.7 Consider the relation on the right of Beletska et al. (2009, Figure 2),
reproduced in Figure 2.2. The relation can be described as R = R1 ∪ R2 ∪ R3, with

R1 = n 7→ { (i, j)→ (i + 3, j) | i ≤ 2 j − 4 ∧ i ≤ n − 3 ∧ j ≤ 2i − 1 ∧ j ≤ n }

R2 = n 7→ { (i, j)→ (i, j + 3) | i ≤ 2 j − 1 ∧ i ≤ n ∧ j ≤ 2i − 4 ∧ j ≤ n − 3 }
R3 = n 7→ { (i, j)→ (i + 1, j + 1) | i ≤ 2 j − 1 ∧ i ≤ n − 1 ∧ j ≤ 2i − 1 ∧ j ≤ n − 1 }.

The figure shows this relation for n = 7. Both R3 ◦ R1 ⊆ R1 ◦ R3 and R3 ◦ R2 ⊆ R2 ◦ R3,
which the reader can verify using the iscc calculator:

R1 := [n] -> { [i,j] -> [i+3,j] : i <= 2 j - 4 and i <= n - 3 and

j <= 2 i - 1 and j <= n };

R2 := [n] -> { [i,j] -> [i,j+3] : i <= 2 j - 1 and i <= n and

j <= 2 i - 4 and j <= n - 3 };

R3 := [n] -> { [i,j] -> [i+1,j+1] : i <= 2 j - 1 and i <= n - 1 and

j <= 2 i - 1 and j <= n - 1 };

(R1 . R3) - (R3 . R1);

(R2 . R3) - (R3 . R2);

R3 can therefore be moved forward in any path. For the other two basic relations,
we have both R2 ◦ R1 * R1 ◦ R2 and R1 ◦ R2 * R2 ◦ R1 and so R1 and R2 form a
strongly connected component. By computing the power of R3 and R1 ∪ R2 separately
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and composing the results, the power of R can be computed exactly using (2.5). As
explained by Beletska et al. (2009), applying the same formula to R directly, without a
decomposition, would result in an overapproximation of the power.

2.5.5 Partitioning the domains and ranges of R

The algorithm of Section 2.5.2 assumes that the input relation R can be treated as a
union of translations. This is a reasonable assumption if R maps elements of a given
abstract domain to the same domain. However, if R is a union of relations that map
between different domains, then this assumption no longer holds. In particular, when
an entire dependence graph is encoded in a single relation, as is done by, e.g., Barthou
et al. (2000, Section 6.1), then it does not make sense to look at differences between
iterations of different domains. Now, arguably, a modified Floyd-Warshall algorithm
should be applied to the dependence graph, as advocated by Kelly et al. (1996c), with
the transitive closure operation only being applied to relations from a given domain to
itself. However, it is also possible to detect disjoint domains and ranges and to apply
Floyd-Warshall internally.

Algorithm 1: The modified Floyd-Warshall algorithm of Kelly et al. (1996c)
Input: Relations Rpq, 0 ≤ p, q < n
Output: Updated relations Rpq such that each relation Rpq contains all indirect

paths from p to q in the input graph

for r ∈ [0, n − 1] do1

Rrr B R+
rr2

for p ∈ [0, n − 1] do3

for q ∈ [0, n − 1] do4

if p , r or q , r then5

Rpq B Rpq ∪
(
Rrq ◦ Rpr

)
∪

(
Rrq ◦ Rrr ◦ Rpr

)
6

Let the input relation R be a union of m basic relations Ri. Let D2i be the domains of
Ri and D2i+1 the ranges of Ri. The first step is to group overlapping D j until a partition
is obtained. If the resulting partition consists of a single part, then we continue with the
algorithm of Section 2.5.2. Otherwise, we apply Floyd-Warshall on the graph with as
vertices the parts of the partition and as edges the Ri attached to the appropriate pairs of
vertices. In particular, let there be n parts Pk in the partition. We construct n2 relations

Rpq B
⋃

i s.t. dom Ri⊆Pp∧ran Ri⊆Pq

Ri,

apply Algorithm 1 and return the union of all resulting Rpq as the transitive closure of R.
Each iteration of the r-loop in Algorithm 1 updates all relations Rpq to include paths that
go from p to r, possibly stay there for a while, and then go from r to q. Note that paths
that “stay in r” include all paths that pass through earlier vertices since Rrr itself has
been updated accordingly in previous iterations of the outer loop. In principle, it would
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Figure 2.3: The relation (solid arrows) on the right of Figure 1 of Beletska et al. (2009)
and its transitive closure

be sufficient to use the Rpr and Rrq computed in the previous iteration of the r-loop
in Line 6. However, from an implementation perspective, it is easier to allow either or
both of these to have been updated in the same iteration of the r-loop. This may result in
duplicate paths, but these can usually be removed by coalescing (Section 2.4) the result
of the union in Line 6, which should be done in any case. The transitive closure in
Line 2 is performed using a recursive call. This recursive call includes the partitioning
step, but the resulting partition will usually be a singleton. The result of the recursive
call will either be exact or an overapproximation. The final result of Floyd-Warshall is
therefore also exact or an overapproximation.

Example 2.5.8 Consider the relation on the right of Figure 1 of Beletska et al. (2009),
reproduced in Figure 2.3. This relation can be described as

{ (x, y)→ (x2, y2) | (3y = 2x ∧ x2 = x ∧ 3y2 = 3 + 2x ∧ x ≥ 0 ∧ x ≤ 3) ∨
(x2 = 1 + x ∧ y2 = y ∧ x ≥ 0 ∧ 3y ≥ 2 + 2x ∧ x ≤ 2 ∧ 3y ≤ 3 + 2x) }.

Note that the domain of the upward relation overlaps with the range of the rightward
relation and vice versa, but that the domain of neither relation overlaps with its own
range or the domain of the other relation. The domains and ranges can therefore be
partitioned into two parts, P0 and P1, shown as the white and black dots in Figure 2.3,
respectively. Initially, we have

R00 = ∅

R01 = { (x, y)→ (x + 1, y) | (x ≥ 0 ∧ 3y ≥ 2 + 2x ∧ x ≤ 2 ∧ 3y ≤ 3 + 2x) }
R10 = { (x, y)→ (x2, y2) | (3y = 2x ∧ x2 = x ∧ 3y2 = 3 + 2x ∧ x ≥ 0 ∧ x ≤ 3) }
R11 = ∅.

In the first iteration, R00 remains the same (∅+ = ∅). R01 and R10 are therefore also
unaffected, but R11 is updated to include R01 ◦ R10, i.e., the dashed arrow in the figure.
This new R11 is obviously transitively closed, so it is not changed in the second iteration
and it does not have an effect on R01 and R10. However, R00 is updated to include
R10 ◦ R01, i.e., the dotted arrow in the figure. The transitive closure of the original
relation is then equal to R00 ∪ R01 ∪ R10 ∪ R11.
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2.5.6 Incremental Computation
In some cases it is possible and useful to compute the transitive closure of union of
basic relations incrementally. In particular, if R is a union of m basic maps,

R =
⋃

j

R j,

then we can pick some Ri and compute the transitive closure of R as

R+ = R+
i ∪

⋃
j,i

R∗i ◦ R j ◦ R∗i

+

. (2.13)

For this approach to be successful, it is crucial that each of the disjuncts in the argument
of the second transitive closure in (2.13) be representable as a single basic relation, i.e.,
without a union. If this condition holds, then by using (2.13), the number of disjuncts
in the argument of the transitive closure can be reduced by one. Now, R∗i = R+

i ∪ Id, but
in some cases it is possible to relax the constraints of R+

i to include part of the identity
relation, say on domain D. We will use the notation C(Ri,D) = R+

i ∪ IdD to represent
this relaxed version of R+. Kelly et al. (1996c) use the notation R?

i . C(Ri,D) can be
computed by allowing k to attain the value 0 in (2.10) and by using

P ∩ (D→ D)

instead of (2.3). Typically, D will be a strict superset of both dom Ri and ran Ri. We
therefore need to check that domain and range of the transitive closure are part of
C(Ri,D), i.e., the part that results from the paths of positive length (k ≥ 1), are equal
to the domain and range of Ri. If not, then the incremental approach cannot be applied
for the given choice of Ri and D.

In order to be able to replace R∗ by C(Ri,D) in (2.13), D should be chosen to
include both dom R and ran R, i.e., such that IdD ◦R j ◦ IdD = R j for all j , i. Kelly
et al. (1996c) say that they use D = dom Ri∪ran Ri, but presumably they mean that they
use D = dom R ∪ ran R. Now, this expression of D contains a union, so it not directly
usable. Kelly et al. (1996c) do not explain how they avoid this union. Apparently, in
their implementation, they are using the convex hull of dom R ∪ ran R or at least an
approximation of this convex hull. We use the simple hull (Section 2.2) of dom R ∪
ran R.

It is also possible to use a domain D that does not include dom R ∪ ran R, but then
we have to compose with C(Ri,D) more selectively. In particular, if we have

for each j , i either dom R j ⊆ D or dom R j ∩ ran Ri = ∅ (2.14)

and, similarly,

for each j , i either ran R j ⊆ D or ran R j ∩ dom Ri = ∅ (2.15)

then we can refine (2.13) to

R+
i ∪




⋃
dom R j⊆D
ran R j⊆D

C ◦ R j ◦ C

 ∪


⋃
dom R j∩ran Ri=∅

ran R j⊆D

C ◦ R j

 ∪


⋃
dom R j⊆D

ran R j∩dom Ri=∅

R j ◦ C

 ∪


⋃
dom R j∩ran Ri=∅

ran R j∩dom Ri=∅

R j




+

.
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If only property (2.14) holds, we can use

R+
i ∪

(R+
i ∪ Id

)
◦


 ⋃

dom R j⊆D

R j ◦ C

 ∪
 ⋃

dom R j∩ran Ri=∅

R j




+ ,
while if only property (2.15) holds, we can use

R+
i ∪



 ⋃

ran R j⊆D

C ◦ R j

 ∪
 ⋃

ran R j∩dom Ri=∅

R j




+

◦
(
R+

i ∪ Id
) .

It should be noted that if we want the result of the incremental approach to be
transitively closed, then we can only apply it if all of the transitive closure operations
involved are exact. If, say, the second transitive closure in (2.13) contains extra el-
ements, then the result does not necessarily contain the composition of these extra
elements with powers of Ri.

2.5.7 An Omega-like implementation
While the main algorithm of Kelly et al. (1996c) is designed to compute and underap-
proximation of the transitive closure, the authors mention that they could also compute
overapproximations. In this section, we describe our implementation of an algorithm
that is based on their ideas. Note that the Omega library computes underapproximations
(Kelly et al. 1996b, Section 6.4).

The main tool is Equation (2) of Kelly et al. (1996c). The input relation R is first
overapproximated by a “d-form” relation

{ i→ j | ∃α : L ≤ j − i ≤ U ∧ (∀p : jp − ip = Mpαp) },

where p ranges over the dimensions and L, U and M are constant integer vectors.
The elements of U may be ∞, meaning that there is no upper bound corresponding
to that element, and similarly for L. Such an overapproximation can be obtained by
computing strides, lower and upper bounds on the difference set ∆ R. The transitive
closure of such a “d-form” relation is

{ i→ j | ∃α, k : k ≥ 1 ∧ k L ≤ j − i ≤ k U ∧ (∀p : jp − ip = Mpαp) }. (2.16)

The domain and range of this transitive closure are then intersected with those of the
input relation. This is a special case of the algorithm in Section 2.5.2.

In their algorithm for computing lower bounds, the authors use the above algorithm
as a substep on the disjuncts in the relation. At the end, they say

If an upper bound is required, it can be calculated in a manner similar to
that of a single conjunct [sic] relation.

Presumably, the authors mean that a “d-form” approximation of the whole input rela-
tion should be used. However, the accuracy can be improved by also trying to apply
the incremental technique from the same paper, which is explained in more detail in
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Section 2.5.6. In this case, C(Ri,D) can be obtained by allowing the value zero for k in
(2.16), i.e., by computing

{ i→ j | ∃α, k : k ≥ 0 ∧ k L ≤ j − i ≤ k U ∧ (∀p : jp − ip = Mpαp) }.

In our implementation we take as D the simple hull (Section 2.2) of dom R ∪ ran R.
To determine whether it is safe to use C(Ri,D), we check the following conditions, as
proposed by Kelly et al. (1996c): C(Ri,D) − R+

i is not a union and for each j , i the
condition (

C(Ri,D) − R+
i
)
◦ R j ◦

(
C(Ri,D) − R+

i
)

= R j

holds.
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