
The Reliable Multicast Library (RML) and Tangram II
Whiteboard Developer Documentation
Jorge Allyson Azevedo, Milena Scanferla, Daniel Sadoc

{allyson,milena,sadoc}@land.ufrj.br

December 19, 2005

1 Introduction
The main goal of this article is to explain some topics about what a programmer needs to know in
order to make source code changes in the Reliable Multicast Library (RML) and in the Tangram II
Whiteboard. We will also give comments about problems found and the solutions adopted while
developing the RML and the Tangram II [1] Whiteboard tool - including references to books,
newsgroups or articles that may be useful for the interested readers. In the following section we
will take a look at general characteristics of IP multicast. Then, the reliable multicast approach
used in the implemented RML will be describe. We will introduce the library, and show a sample
program that makes use of it - a chat. After that, a more complex example - the Tangram
II Whiteboard (TGWB). In the Appendix, we will describe the operating system interprocess
communication (IPC) resources that which have been used.

2 IP Multicast
2.1 Introduction
Quoting from the Multicast HOWTO [2]: �... multicast is a need ... Well, at least in some
scenarios. If you have information (a lot of information, usually) that should be transmitted to
various (but usually not all) hosts over an internet, then Multicast is the answer. One common
situation in which it is used is when distributing real time audio and video to the set of hosts
which have joined a distributed conference.

Multicast is much like radio or TV in the sense that only those who have tuned their receivers
(by selecting a particular frequency they are interested on) receive the information. That is: you
hear the channel you are interested in, but not the others.�

2.1.1 Multicast Addressing
The range of IP addresses is divided into "classes" based on the high order bits of a 32 bits IP
address:

0 31 Address Range:
+-+----------------------------+
|0| Class A Address | 0.0.0.0 - 127.255.255.255
+-+----------------------------+
+-+-+--------------------------+
|1 0| Class B Address | 128.0.0.0 - 191.255.255.255
+-+-+--------------------------+
+-+-+-+------------------------+

1

Figure 1: TGWB Screenshot

2

|1 1 0| Class C Address | 192.0.0.0 - 223.255.255.255
+-+-+-+------------------------+
+-+-+-+-+----------------------+
|1 1 1 0| MULTICAST Address | 224.0.0.0 - 239.255.255.255
+-+-+-+-+----------------------+
+-+-+-+-+-+--------------------+
|1 1 1 1 0| Reserved | 240.0.0.0 - 247.255.255.255
+-+-+-+-+-+--------------------+

The multicast addresses start with �1110�. Among the multicast addresses, the remaining 28
bits identify the multicast group. There are some special addresses that should not be used by
common applications:

Address Function
224.0.0.1 All hosts in the LAN
224.0.0.2 All routers in the LAN
224.0.0.4 All routers DVMRP in the LAN
224.0.0.5 All routers OSPF in the LAN
224.0.0.6 All routers OSPF designated in the LAN
224.0.0.13 All the PIM routers in the LAN

Table 1: Multicast special addresses

The interval from 224.0.0.0 to 224.0.0.255 is reserved to local purposes (local administrative
tasks) - to see some of these address purposes, refer to table 1. Similarly, the interval from 239.0.0.0
to 239.255.255.255 is also reserved for administrative tasks - but not necessarily local tasks. So, the
interval that may be used by general multicast applications is from 225.0.0.0 to 238.255.255.255.

2.1.2 Multicast Group
A multicast group is composed by the set of hosts in a network which share data via multicast.
This group is identi�ed by a multicast address. When a host sends a packet to the multicast
address, this packet is received by all the multicast group members. The transmission of a packet
from one sender to multiple receivers is accomplished by a single send operation. A single packet
is sent from the sender host - there is no need to send multiple copies of this packet, as would be
needed if unicast were used.

The receivers may join and leave the multicast group in a dynamic way. The network de-
vices, specially the routers, have to determine which of their interfaces have a multicast member
connected to them.

2.1.3 Levels of conformance
Hosts can be in three di�erent levels of conformance with the Multicast speci�cation, according
to the requirements they meet:

· Level 0 is the "no support for IP Multicasting" level. Lots of hosts and routers in the
Internet are in this state, as multicast support is not mandatory in IPv4 (it is, however, in
IPv6). Not too much explanation is needed here: hosts in this level can neither send nor
receive multicast packets. They must ignore the ones sent by other multicast hosts.

· Level 1 is the "support for sending but not receiving multicast IP datagrams" level. Thus,
note that it is not necessary to join a multicast group to be able to send datagrams to it. Very
few additions are needed in the IP module to make a "Level 0" host "Level 1-compliant".

3

· Level 2 is the "full support for IP multicasting" level. Level 2 hosts must be able to both
send and receive multicast tra�c. They must know the way to join and leave multicast
groups and to propagate this information to multicast routers. Thus, they must include an
Internet Group Management Protocol (IGMP) implementation in their TCP/IP stack.

The Multicast Reliable Library was developed considering that the hosts are in level 2 of confor-
mance.

2.1.4 Some bene�ts of Multicast
Some bene�ts of multicast over unicast are presented below[18]:

1. Optimized use of the network - the intelligent use of the network resources avoids unnecessary
replication of data. So, the links are better used, through a better architecture of data
distribution.

2. Distributed application support - the multicast technology is directly focused on distributed
applications. Multimedia applications like distance learning and video conferencing may be
used in the network in an e�cient way.

3. Scalability - services that use multicast can be accessed by many hosts, and may accept new
members at any time.

4. Availability of the network resources - congestion is reduced, because no replicated data is
sent through a single link in the network, so the availability of the network resources is
increased.

2.2 Con�guration under Linux
This section will not explain multicast con�guration in details. We just want to give some tips
needed to set up a basic system in a local network area. If you want further information see the
Multicast HOWTO [2]. Multicast transmission through di�erent networks is more complex and
you must have routers with multicast support between those networks.

2.2.1 Does your system have support for IP Multicast?
Some con�gurations are needed to use IP Multicast. First of all, the network cards have to be
enabled to receive multicast data. Most network cards modules automatically set the MULTICAST
�ag. In GNU/Linux systems, you can check whether your network interface has multicast support
by typing the following command:

ifconfig -a

An ifcon�g output example follows:

eth0

Link encap:Ethernet HWaddr 00:50:BF:06:89:47
inet addr:192.168.1.2 Bcast:192.168.1.255 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:12438583 errors:0 dropped:0 overruns:0 frame:0
TX packets:6498370 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:100
RX bytes:1100375580 (1049.3 Mb)
TX bytes:2158372342 (2058.3 Mb)
Interrupt:10 Base address:0x7000
lo

4

Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
UP LOOPBACK RUNNING MTU:16436 Metric:1
RX packets:8361666 errors:0 dropped:0 overruns:0 frame:0
TX packets:8361666 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:1830657956 (1745.8 Mb)
TX bytes:1830657956 (1745.8 Mb)

Note the MULTICAST �ag at eth0. That �ag is missed at lo (the loopback interface). You must
have root privileges to enable the MULTICAST �ag. To enable that �ag you have to issue the
following command:

ifconfig <interface_name> multicast

Where interface_name must be replaced by the name of the interface you want to set the
MULTICAST �ag. This may be useful if you want to enable multicast on a lo interface because
that allows you to do some tests using multicast transmission even if you don't have any real
network interface. The next step is to set up the route that the multicast packets will follow. To
add this route, as root user, issue the following command:

route add -net 224.0.0.0 netmask 240.0.0.0 dev <interface_name>

Where interface_name must be replaced by the name of the interface to which you want to
send the multicast packets. Again, if you are testing on a single machine this interface will be the
lo. To test your con�guration try:

ping 224.0.0.1

Every machine in your local network that has multicast enabled should answer this ping.

3 Reliable Multicast
3.1 Introduction
Multicast is supported by the transport layer through the UDP protocol. As each packet may get
a di�erent path from source to destiny, packets may come out of order at the receiver host. To
solve this problem, it is necessary to have a packet ordering algorithm. Besides the problem of
ordering, there is also the possibility of packet loss. This loss makes the protocol unreliable. To
solve these problems, which are directly related to the UDP protocol, it is necessary to create an
application-level mechanism to guarantee the reliable transmission of data.

There are some ways to implement the reliable multicast mechanism. For instance, the respon-
sibility of recovering loss packets can be directed to the receiver or the sender of the data.

Here, we will describe three classes of reliable multicast protocols, according to [FIXME]:

1. Sender Initiated Approach - based on con�rmations (acknowledgments or ACKs) sent by
receivers and processed by the senders;

2. Receiver Initiated Approach - the receiver detects the loss of packets. The receiver sends
negative acknowledgments (NACKs) to the sender via a unicast connection. The sender
replies with retransmissions.

3. Enhanced Receiver Initiated Approach - the receiver detects the loss of packets. The receiver
sends negative acknowledgments (NACKs) to the group via a multicast connection.

5

3.1.1 Sender Initiated Approach
Every time a member receives a packet he sends a con�rmation (ACK) to the sender. The sender
maintains a list of all the group members. When the sender sends a packet, he starts a timer for
that packet, and waits for ACKs from the group members. As soon as the timer expires, if the
sender haven't received an ACK from some member, this packet is retransmitted. The timer is
then restarted.

Advantages and disadvantages
The main advantage of this approach is that when the sender receives a con�rmation (ACK), he
is sure that the packet was in fact received. The main disadvantage of this approach is that for
each data packet sent, the sender will receive an ACK from each receiver of the multicast session,
which may cause congestion.

Summary
1. every time the sender transmits or retransmits a data packet he starts a timer for this packet

and wait for the ACKs from the receivers;

2. every time the receiver receives a data packet he sends a con�rmation (ACK) to the sender
in a unicast connection.

3.1.2 Receiver Initiated Approach
In this approach, the receiver has the responsibility of detecting the packet losses. When the
receiver doesn't receive a data packet, he sends a negative acknowledgment (NACK) to the sender,
via a unicast connection. The sender will retransmit the data packet when he receives a NACK.

The packet loss is detected when a receiver receives a packet with sequence number (sn) i +
1 without having received the packet with sn i. For instance, if the receiver receives packets with
sn 0, 1 and 3, he will know that packet with sn 2 was lost.

Advantages and disadvantages
In general, the loss probability of a packet is smaller than the success probability. So, few NACK
packets will be sent through the network. The disadvantage of this approach is that just the
sender of the message will be noti�ed that a packet was lost, and only he may retransmit the data
packet.

Summary
1. every time the receiver detects a packet loss he sends a negative acknowledgment (NACK)

to the sender, via a unicast connection, and starts a timer to wait for a retransmission.

2. every time the sender receives a NACK packet he sends a retransmission to the group via
multicast connection.

3.1.3 Enhanced Receiver Initiated Approach
That's a variation of the receiver initiated approach. When a loss is detected, a timer is scheduled.
If the timer expires and a NACK for that packet has not been received, the receiver multicasts the
request message to the group. If a NACK was received before the timer has expired, the receiver
will not send the request message, because he knows that a retransmission request has already
been sent by some other member.

6

Advantages and disadvantages
The advantage of this approach is that it limits the number of NACKs which will be sent through
the network. The disadvantage is that when the loss probability is high, there will be many NACK
packets in the network. Each member of the group will receive all the NACKs sent. This may
consume a lot of processing time.

Summary
1. every time the receiver detects a packet loss, he starts a timer to send a NACK packet.

(a) If he receives a NACK for the same packet which was lost, the transmission of the
NACK is canceled (NACK suppression).

(b) Else, when the timer expires, he sends a NACK via multicast to the group.

In both cases, another timer is started, in order to wait for retransmissions. If a
retransmission is received, this timer is canceled, and there is nothing else to be done.
The data was �nally successfully received with success. Else, the timer to send a NACK
packet is restarted. We go back to item 1.

2. every time a member receives a NACK packet, he schedules the retransmission of the re-
quested packet.

4 The Reliable Multicast Library (RML)
In this section we will describe how the Reliable Multicast Library works. In section 4.1, de�nitions
will be given. In section 4.2 the mechanisms of how new members join and leave the group will
be explained. Then, we will describe how lost packets are recovered in section 4.3. In section 4.4
we show the implementation of the Event List. Finally, we summarize the RML messages and
actions in section 4.5.

4.1 De�nitions
Before starting the description of the RML protocol, it is important to de�ne some terms that will
be used:

· Multicast Session: a multicast session is the period of time when a multicast group is
active. A multicast group is active if we have at least one member on it.

· ACK: a special packet, the acknowledgment (ACK) packet, is used to con�rm the receiving
of data. For instance, in the TCP protocol, the sender always waits for con�rmations sent
by the receivers via ACKs.

· NACK: a special packet, the negative acknowledgment (NACK) packet, is used to inform
that data was lost. If a receiver �nds out that data was lost, he may send NACKs to the
sender in order to advertise this problem, and request retransmissions.

· Timers: the time that a member waits in order to execute a speci�c action (event). This
time may be random, with an uniform or exponential distribution.

· Event List: list containing all the events that will be executed. When the timer for a
speci�c event expires, this event is removed from the event list and then executed.

· Cache: structure maintained by the multicast members which stores the last messages
received from every member of the multicast session.

7

4.2 Multicast Session Members Management
May anyone join a multicast session at any time? What does a new member need to get in order
to become a member of a multicast session? What about the exit procedure? If a member wants
to leave the group, may he go away immediately? Or should he wait a bit before exiting? This
section will answer this questions.

Let's start with the join procedure. If every member of the multicast group entered the session
always at the same time, the join procedure would be very simple. The problem is that, in
practice, a new member may want to join the session a long time after the session has started.
If that happens, this member may not be able to get into a consistent state just requesting
retransmissions to the older members of the group. That's because the size of the cache of the
other members of the group is �nite. The data requested by the new member may not be any
more in the cache of the older members.

During a session, each member maintains a certain quantity of data in his own cache. When
this cache gets full, new data replaces the oldest. If a new member enters the group a long time
after the session has started, it may happen that he won't be able to receive the older data, since
it has been replaced in all the current members caches.

For some applications, that may not be a problem. But for drawing applications, such as the
TGWB, in which there is a dependency between the data, this problem must be regarded with
attention. For instance, the �rst message received by a member, in a drawing tool, may instruct
the application that a rectangle must be drawn. In the future, another message may instruct that
the color of this same rectangle must be changed. Thus, the later command only may be executed
after the �rst one has already been executed. In other words, it makes no sense try to change a
color of an inexistent rectangle.

In order to solve this problem the following mechanism was implemented: when a new member
wants to enter the group, he gets, via TCP, the current state of the multicast session from an
older member. The current state is composed by all the elements that this member must have in
order to join the group, including the cache of the older member.

In more details, when a new member wants to join the group, he sends a �join request� message
to the multicast group, starts a timer and waits for an �accept� message. This �accept� message
will contain information (address and port) of a member of the group. The new member will
connect, via TCP, to this member and get his current state. Then, this new member may be
considered a member of the group, as the others. If this timer expires before the new member
receives an "accept" message, he considers himself the �rst member of the group.

When an old member of the group receives a �join request� message, he starts another timer,
waiting to send an �accept� message. If an �accept� message is received before the timer expires,
this member suppresses his transmission, and stops his timer. Otherwise, if the timer expires, he
sends the �accept� message. This mechanism minimizes the number of �accept� messages sent by
the old members of the group, since when one member detects that another one has already sent
an �accept�, he cancels his own transmission.

To see more details about how this mechanism of joining the group is implemented, please
consult the subsection titled �Thread 5 - Current State Server Thread�, in section 7.1.

Now, let's see what happens when a member wants to leave the group. Suppose a member
wants to leave the group. First, he sends a �leave group� message to all the members of the group
to advertise his intention. Then, he starts a timer and when this timer expires, the member in
fact leaves the group. During this latency period, he is still able to send eventual retransmissions.
When the other members of the group receive the �leave group� message, they turn o� the �active�
bit in their cache related to the member who sent the �leave group� message.

4.3 Loss Detection and Data Recovery
Every data message transmitted by the protocol is identi�ed by its sequence number. When a
data message is received from the application to be transmitted for the multicast group, a header

8

is added to indicate the proper sequence number (sn). Afterward the data message is transmitted
for the group.

4.3.1 The Cache Structure
Every member has a cache structure where he stores some information about the members, this
cache has an entry for each member of the multicast session. In the �gure 2 we can see the cache
structure. Each cache entry has some �elds that we will describe below:

· number_of_nodes: number of data packets received from the member

· active: indicates whether a member is currently active in the multicast session

· �rst: a pointer to the �rst packet of the packet list - the packet list stores the last data
packets received from the member

· sm_info: is a structure composed by member_id and member_status

The structure sm_info, as described, is composed by:

· member_id: member identi�cation structure composed by the member IP address and the
process ID (PID)

· member_status: is a structure that stores the current member status, e.g., the �rst and
the last sn received

Finally, member_status is composed by:

· �rst_rcv: the sequence number (sn) of the �rst packet received from the member

· last_rcv: the sn of the last packet received from the member

· last_seq_rcv: the sn of of the last in-order packet received from the member

· last_identi�ed: the greatest sn of the member packet list

· window_size: the maximum size of the NACK window, i.e, the maximum number of
NACKs that we can send in a speci�c time

· window_mask: it is an array to identify the sn of the lost packets. Where 1 means that
we are going to send a NACK for that packet and 2 means that we are waiting for the
retransmission for that packet

· window_ini: the position of the smallest sn represented in the window_mask.

· nak_list: the list of NACKs that have been sent. This list controls the number of NACKs
sent by each sn.

4.3.2 Loss Detection
When a member of the multicast group receives a data packet, he checks the packet sequence
number and the sender identi�cation. Then, the member tries to match the sender identi�cation
with some member_id in his cache. If he is successful in that matching, the sender is already in
the cache. Otherwise a node for the new member must be inserted in the cache. After that, the
member has to check whether or not the received packet is in sequence.

If the sequence number (sn) is in order, i.e., sn=last_seq_rcv+1, the packet is inserted in the
cache and passed to the application. If the sequence number is not in sequence, the member has
found out that packets were lost - a gap was detected. Detected the loss, it is necessary to execute

9

number_of_nodes: 3

active: 1

first

 member_id
(ip: 192.168.0.2, pid: 123)

 member_status

sm_info

nak_list

number_of_nodes: 1

active: 1

first

 member_status

sm_info

nak_list

0 1 4

2 3

0

1

 member_id
(ip: 192.168.0.3, pid: 125)

2x 1x

1x

number_of_nodes: 1

active: 1

first

 member_status

sm_info

nak_list

0

 member_id
(ip: 192.168.0.1, pid: 225)

Legend:

Packet received in sequence.

Packet received out of order
(gap detected).

n NACKs for this packet
have just been sent.

nx

member_status

first_rcv: 0

last_rcv: 4

last_seq_rcv: 1

last_identified: 4

window_size: 5

window_mask: 00110

window_ini: 2

Figure 2: RML Cache structure

10

the procedures for recovering the lost packets. The data packet received out of order is inserted
and kept in the cache. It will be released to the application after all lost data have been recovered.

The recovery procedure consists of requesting retransmissions for the lost data packets, in
other words, to send NACK messages for the multicast group. For instance, as it can be seen
in �gure 2, if the losses of data packets 2 and 3 were detected, then the member is supposed to
send requests for retransmission of those data packets. Any member of the multicast session that
has the requested data is able to retransmit it. In that way, the retransmission responsibility is
distributed.

The loss detection discussed before can fail when the lost packet is the last packet transmitted
by the sender. Suppose that a member A has sent his last data packet with sn=10 and that
member B has lost that packet. Member B is unable to detect the loss until he receives a new
data packet from member A. But we have supposed that A will not send new packets. In that
situation, there must be another way of detecting the loss. To solve that problem, members send a
� refresh message� periodically indicating the sn of the last packet sent. When a member receives
the �refresh message�, he is able to identify the lost packets and to start the recovering procedures.
In our example, member B would receive a �refresh message� from member A and then would be
able to detect and recover the lost packet.

4.3.3 Sending NACKs
Suppose a scenario where a member of the multicast group sends a data packet to the other
members, and all the other members lose that packet. Now, suppose that a NACK packet is sent
by every member immediately after the loss is detected. That action may cause an unnecessary
tra�c in the network. That problem is called NACK implosion[19]. One solution is to wait
for a random time Tnack before sending a NACK message. As other members of the multicast
group might have lost the same data message, and considering that Tnack is random, there will
be a member who will choose a smaller timer and send the NACK message before the others. If
before Tnack expires the member receives a NACK message or a retransmission of the lost data,
the transmission of the NACK message will be canceled. So, if we choose an e�cient way to
determine Tnack we will have a great probability of suppressing the sending of duplicated NACK
messages through the network.

Besides the implosion of NACKs, another problem that may happen related to the sending of
NACK messages is that the member may request more data than he is able to handle. In fact,
this two problems are similar to the ones faced in the unicast case. The congestion control, used
in the TCP, is implemented in order to avoid network congestion. The �ow control, also used in
the TCP, tries to get rid of the bu�er over�ow in the client application. More information about
TCP mechanisms can be found in chapter 3 of [4]. As described in the last paragraph, the NACK
suppression algorithm tries to solve a problem analog to the one solved by the congestion control
in the unicast case. In that way, the congestion control and NACK suppression algorithm attempt
to avoid a network core congestion while the unicast and multicast �ow control attempt to prevent
the over�ow that may happen at the network hosts (end systems) bu�ers. RML implements a
simple �ow control: the amount of NACKs sent should not exceed the amount of data that the
member expecting this packets may process at once.

Two possible scenarios for �ow control are illustrated in �gure 3. Suppose that packets with sn
from 0 to 8 were transmitted by the sender. Those packets were lost by the receiver. The receiver
detects the loss when he receives a refresh message from the sender. Then there are two ways of
dealing with that loss. The �rst approach, which we call Naive Approach, is, in fact, an approach
with no �ow control. The problem with this approach is that the receiver will send a large amount
of NACK messages and it may happen that the amount of retransmission received in response to
those NACKs may be greater than the cache space available. Thus, old data packets, that have
not already been sent to the application, will be replaced by new ones. In �gure 3 the packet with
sn 0 was lost. The receiver has a cache with �ve slots. It may be seen that data packets from 1 to
5 were �rst stored in the cache. Note that those packets were not sent to the application because
the packet with sn 0 is missed. Then, packets from 6 to 8 were received and replaced packets 1, 2

11

N
a
i
v
e

A
p
p
r
o
a
c
h

A
p
p
r
o
a
c
h

w
i
t
h

F
l
o
w

C
o
n
t
r
o
l

1 2 3 4 5

6 2 3 4 5

6 7 3 4 5

6 7 8 4 5

1

sender receiver sender receiver

...
...

nack (
0)

nack (
1)

nack (
2)

retr (0)

retr (1)

retr (5)
retr (6)retr (7)
retr (8)

data (0)

data (1)

data (8)

refresh (8)

...

nack (
0)

nack (
7)

nack (
8)

1 2 3 4

1

sender receiver sender receiver

... ...

nack (
0)

nack (
0,1,2,

3,4)

retr (0)

retr (1)

retr (4)

data (0)

data (1)

data (8)

refresh (8)

nack (
3)

Figure 3: RML Flow Control

12

and 3. After that, the receiver must send NACKs to recover packets from 0 to 3. We can see that
it is not useful to replace packets that have not already been sent to the application.

In the second approach, which we call Flow Control Approach, when a loss is detected the
receiver only send NACKs for a certain amount of packets, i.e., the amount he is able to handle.
In addition, the receiver requests those retransmissions in only one NACK message. Note in �gure
3 that the �rst NACK sent requests retransmissions for packets with sn 0 to 4 because there
were �ve free slots in the cache. The second NACK requests only the retransmission of packet 0
because there was only one free slot in the cache at that time. Using the Flow Control Approach
two NACKs were sent, while in the Naive Approach they were thirteen.

char type MEMBER_ID sender_id int packet_size union PACKET_DATA packet_data

PACKET

MEMBER_ID original_sender_id DATA_PACKET data_packet

RETRANSM_PACKET

MEMBER_ID request_member_id int sn

NAK_PACKET

int sn_of_last_msg_sent

REFRESH_PACKET

JOIN_ACCEPT_PACKET

int port

int sn int data_size

DATA_PACKET

BYTE *data

int base_sn int windows_size int hmask int lmask

Figure 4: RML Packet Types

The RML uses the window_mask, window_size and window_ini parameters to bound the
NACK transmission. The window_size has a value of 64, i.e., we can request at most 64 re-
transmissions per NACK message. The window_size value was chosen just for implementation
purposes. With that value we can represent the window_mask using only two integers in the
NACK packets, as shown in �gure 5. The window_ini points to the �rst position in the win-
dow_mask array. The NACK packet is mounted using those parameters. In �gure 4, there is
a description of the packet structures used in RML. The NACK packet is composed by a set of
�elds, among them we have :

· base_sn: the value of the sn of the �rst NACK in the window_mask

· window_size: the value of window_size of the cache, default is 64

· hmask: an integer that represents the higher part of the NACK mask

· lmask: an integer that represents the lower part of the NACK mask

Suppose a NACK message from member M has arrived with base_sn=5, window_size=64,
hmask=1 and lmask=3. To �nd out which retransmission has been requested by member M we
have to translate hmask and lmask to their binary representation. This translation is shown in

13

1

3

Decimal Form Binary Form

hmask

lmask

...0 0 0 0

32 positions

32336263 position number

1

34

...0 0 0 1

32 positions

013031 position number

1

2

Figure 5: RML NACK mask

�gure 5. The requests can be identi�ed using the position of the bits with value of 1 plus the
base_sn. In our scenario, the requests are for the packets with sn 5 (0+5), 6 (1+5) and 37 (32+5).

After sending a NACK message, the member waits for a retransmission during a random period
of time, called Twait. If the requested retransmission is not received after Twait units of time, a
new NACK message is sent. The maximum number of NACKs is limited by the MAX_NAK
parameter, which the user may set in the rmcast.con�g �le (see section 5.3 to learn about RML
con�guration). If MAX_NAK is reached, i.e., a data packet couldn't be recovered - the application
is then suspended.

4.3.4 Data Retransmission
In the RML each member maintains in his cache the last N data packets he has received from
other members. Thus, any member of the multicast group is able to answer to a request for
retransmission of the last N messages he has received from each other member. This mechanism
distributes the responsibility of retransmission among all the members of the multicast session,
but it may create a lot of tra�c if every member answers to a NACK message. As was explained
in section 4.3.3, we use random timers to avoid this tra�c problem.

Suppose a member A receives a NACK message from member B regarding a speci�c lost packet
P from member C. If the packet P is stored in A's cache, then member A schedules a random timer
Tret to wait before sending a retransmission. There are two situations that may occur before Tret
timed out:

1. a retransmission of the packet P is received: the A's retransmission is aborted because
another member has already answered the request.

2. a NACK message regarding the same packet P is received: the NACK message is ignored
because the retransmission is already scheduled.

If Tret expires and neither (1) nor (2) has occurred, then the retransmission is sent.

4.4 The Event List
A common activity of the reliable multicast library (RML) is to schedule an event to happen some
time in the future. Almost every action that is taken by the RML is not executed immediately
when it is requested. Instead, events are scheduled in order to perform the tasks. When a loss of
packets is detected, for example, an event is scheduled to send a negative acknowledgment (NACK)
after a certain period of time. If, before the timeout, the member receives a retransmission of the
lost packet or if the member receives a NACK for the considered packet, then the sending of the
NACK is canceled. In the last case, the sending of the NACK is suppressed because another
member has just sent the NACK. In order to reduce the network tra�c, a member just sends a

14

message after waiting to see if this message was just sent by another member. The key point here
is to keep the work distributed but avoiding redundancy.

The event list of the Reliable Multicast Protocol is an implementation of a conventional delta
list [20]. The list is a chain of event nodes. The event nodes are stored in increasing order of when
the event occurs. Each event node contains the information needed to execute the event - the
event type, described below, and some other information, depending on the event type - as well as
the time in the future that the event should take place. The time stored in each event is relative
to the preceding event. For example, suppose there are �ve events scheduled for 4, 6, 6, 13 and
17 time units in the future. This would result in the event list illustrated in �gure 6. Notice that
the third event record contains a 0 because it occurs 0 time units after the second event.

4 2 0 7 4

Figure 6: RML Event List - a simple example

The �rst event node is the next one that will be executed. When an event is inserted at the
head of the list, an operating system alarm signal is scheduled to �re after the time indicated
at the header node of the list. When the alarm �res, the event node is processed and removed.
All the subsequent events that have time of 0 are also executed and removed. Then the alarm is
restarted.

To schedule a new event, the event manager walks down the list and inserts a record for the new
event in the appropriate location, being careful to adjust the relative time of both the new and the
event immediately following the new event. Deleting an event from the event list is implemented
in an analogous way.

The event nodes are divided into �ve types:

· NAK_SND_WAIT- used to schedule a sending of a negative acknowledgment;

· RET_RCV_WAIT- used to wait for retransmissions;

· RET_SND_WAIT- created to schedule a sending of a retransmission;

· REF_SND_WAIT- used to schedule a refresh;

· LEV_GRP_WAIT- speci�es the time between a user requests to go away from the group
and the actual moment when the user leaves the group.

Suppose there is one NAK_SND_WAIT event scheduled for 4 time units in the future, in or-
der to send a NACK to a packet initially sent by member M1. Suppose also that there is one
REF_SND_WAIT scheduled for 6 time units in the future, and a RET_SND_WAIT for 17 time
units in the future. This retransmission refers to packet 4 of member M2. This would result in the
event list illustrated in �gure 7. Note that the NAK_SND_WAIT event node contains a pointer
to the cache entry of member M1. The cache entry of M1 will contain the information about what
packets from member M1 were lost. When the event NAK_SND_WAIT �res, searching the cache
we will �nd out which packets of member M1 were lost, and then send a NACK message to request
these packets. On the other hand, the REF_SND_WAIT does not require any other informa-
tion. Finally, the RET_SND_WAIT schedules a retransmission, and to identify the message to
be retransmitted we need both the member id of the message and its sequence number.

Figure 8 depicts how the di�erent events are handled.

15

member_id

action NAK_SND_WAIT

timer_value 4

sn (not used)

member_id not used

action REF_SND_WAIT

timer_value 6

sn (not used)

member_id

action RET_SND_WAIT

timer_value 7

sn 2

member M1

member M2

event list

cache

Event List Organization

Figure 7: RML Event List - a more detailed example

4.5 RML log generation
The RML o�ers the option of log generation. The log �le name is con�gured through the
LOG_FILE option (see section 5.3 for further information about RML parameters con�gura-
tion). The �le will be created at the current directory and the host name and process ID will be
appended to the �le name provided in the LOG_FILE option. Suppose LOG_FILE=log and the
application that uses the RML is called from the /tmp directory at the machine01. Then, the log
�le name will be /tmp/log.machine01.137, where 137 is the process ID of the application.

A log �le sample is showed below:
host: receiverhost
ip: 192.168.1.2
pid: 18348

time snd/rcv/loss type sender_ip sender_pid requested_ip requested_pid sn [{base_sn} {win_size} {hmask} {lmask}]

51800783466 L RF 192.168.1.1 13893 -1
51808642569 L DT 192.168.1.1 13893 0
51810314729 S RF 192.168.1.2 18348 -1
51829942926 R DT 192.168.1.1 13893 48
51829947209 S NK 192.168.1.2 18348 192.168.1.1 13893 -1 64 29280 235372671

The header of the log �le is composed by the host name, ip address and process ID. Then a
short description of the log structure is presented. After that, each line describe a packet that was
received or sent by the member. The �elds are:

· time: indicates the time when the packet was received or sent

· snd/rcv/loss: indicates if the packet was sent (S), received (R) or received but lost because
of loss simulation (L).

· type: indicates the packet type, i.e., NACK(NK), data(DT), retransmission(RT), refresh(RF),
join accept(JA), join request(JR), leave group(LG) and unknown(UN).

· sender_ip: indicates the IP address of the sender

· sender_pid: indicates the process ID of the sender

16

NAK_SND_WAIT search in the cache the
record of the member M1
whose messages were lost

send a NACK requesting
a retransmission of the
packets lost, and add
a RET_RCV_WAIT to the
event list

parameters:
member M1

RET_RCV_WAIT

parameters:
member M1
sequence number sn

the number
of NACKs just sent

is equal to the
maximum

allowed?

no
re-schedule a NAK_SND_WAIT

do nothing

RET_SND_WAIT

parameters:
member M1
sequence number sn

send a retransmission of
the requested packet, if
possible

REF_SND_WAIT

parameters:
none

identify the sn of the
last message sent to the
multicaast group by
the local member

send a refresh message to
the group containing the sn
of the last message sent,
or -1 if the member haven´t
sent any message

LEV_GRP_WAIT

parameters:
none

shut down and exit

Figure 8: RML Event Handlers

17

· requested_ip: this �eld appears when a NACK or a retransmission packet is received.
If the NACK is requesting the retransmission from packets sent by member C, this �eld
indicates C's IP address.

· requested_pid: this �eld only appears when a NACK or a retransmission packet is re-
ceived. If the NACK is requesting the retransmission from packets sent by member C, this
�eld indicates C's process ID.

· sn: this �eld has di�erent meanings depending on the packet type. When the packet is data
or retransmission, this �eld indicates the sequence number of the packet. When the packet
is a refresh message, this �eld indicates the sequence number of the last data packet sent
by the member identi�ed by sender_ip and sender_pid. This �eld does not appear for the
remaining packet types.

· base sn: indicates the value of the sequence number of the �rst retransmission requested in
the NACK packet.

· win size: indicates the window size of the NACK packet

· hmask: an integer that represents the higher part of the NACK mask

· lmask: an integer that represents the lower part of the NACK mask

There is a simple shell script, called rmcastplot.bash, that can be used to generate statistics and
plots from the RML log �les. If you run rmcastplot.bash with no arguments it will show a short
help:

Usage:
rmcastplot.bash <max_num_pack_sent> <xyrange> <member1.log> <member2.log> [awk_script_dir] [tgif|png]

max_num_pack_sent: maximum number of sent packets
xyrange: [XMIN:XMAX][YMIN:YMAX] gnuplot style
member1.log: full path to member log
member2_log: full path to member log
awk_script_dir: optional parameter. Full path to directory where rmlog.awk script is found
tgif or png: optional parameter. Changes gnuplot output to generate Tgif files or PNG files

Suppose there are two members using an RML based application. They generate two log
�les: log.senderhost.13893 and log.receiverhost.18348. For instance, rmcastplot.bash script can be
executed with the following line command:

rmcastplot.bash 100 [0:15][0:5] log.senderhost.13893 log.receiverhost.18348

The script outputs some statistics at the standard input:

--
Member 1 Name: senderhost
Member 1 IP: 192.168.1.1
Member 1 PID: 13893
Member 2 Name: receiverhost
Member 2 IP: 192.168.1.2
Member 2 PID: 18348
--

Data related to

18

log.senderhost.13893 -> 192.168.1.2:18348
--
Data sent: 101
Data received from 192.168.1.2:18348 1
NACKs sent: 0
NACKs received from 192.168.1.2:18348 5
Refresh sent: 9
Refresh received from 192.168.1.2:18348 16
Retrans sent: 51
Retrans received from 192.168.1.2:18348 0
Total simulated loss: 0
Data loss with simulation from 192.168.1.2:18348 0
NACKs lost by simulation from 192.168.1.2:18348 0
Refresh lost by simulation from 192.168.1.2:18348 0
Retrans lost by simulation from 192.168.1.2:18348 0
Packets identified: 517
--

--
Data related to
log.receiverhost.18348 -> 192.168.1.1:13893

--
Data sent: 1
Data received from 192.168.1.1:13893 65
NACKs sent: 5
NACKs received from 192.168.1.1:13893 0
Refresh sent: 7
Refresh received from 192.168.1.1:13893 11
Retrans sent: 0
Retrans received from 192.168.1.1:13893 36
Total simulated loss: 54
Data loss with simulation from 192.168.1.1:13893 36
NACKs lost by simulation from 192.168.1.1:13893 0
Refresh lost by simulation from 192.168.1.1:13893 3
Retrans lost by simulation from 192.168.1.1:13893 15
Packets identified: 453
--

Besides those statistics, if you have gnuplot[21] installed in your system, some plots will be
generated. One of those plots is showed in �gure 9.

4.6 Summary
Figure 10 summarizes the RML behavior on receiving each packet type.

5 A simple example: the chat program
In this section we will describe a simple chat application that uses the RML. We hope that this
simple example may be used to show how to develop an application based on our RML.

5.1 Minimal requirements to create an Reliable Multicast based appli-
cation

The development of a Reliable Multicast application has some requirements as follow:

· A multicast enabled environment (see section 2 to learn about that);

· The Reliable Multicast Library - the librmcast.a �le;

· The Reliable Multicast Header - the rmcast.h �le;

· C language develop environment - gcc, make, c libraries etc.

19

Figure 9: Log plotted with the rmcastplot.bash script

5.2 Getting and installing the Reliable Multicast Library
To get the Reliable Multicast Library do the following:

1. Download the RML source code from our project page at
http://www.land.ufrj.br/tools/rmcast

2. Gunzip and untar the package. After that the RelMulticast directory will be created.

3. Change to RelMulticast directory.

4. Type make and see if the librmcast.a is compiled without errors. This may be �awless for
most users.

To compile an application with librmcast.a you should use the following options with gcc:

-I<rmcast.h_directory> -L<librmcast.a_directory> -lrmcast

For instance, we have an application called rmchat in the examples/rmchat directory, to compile
that application we should issue the command:

gcc rmchat.c -I../.. -L../.. -lpthread -lm -lrmcast -o rmchat

Inside the RelMulticast directory you will �nd some useful �les such as README, INSTALL etc.
Those �les contain the most updated instructions to compile the RML, please take a look at them.

5.3 The Reliable Multicast Library con�guration
There are two ways for an application to customize the Reliable Multicast Library options:

20

NACK

Are we
waiting
to send a

NACK for these
 pckts?

Cancel the sending
of the NACK and wait
to receive a
retransmission.

Is there a
scheduled

retransmission
?

Do we
have the
requested
packets?

Schedule the
retransmission
of the requested
packets.

retransmission Cancel a scheduled
retransmission for
that packet, if any.

data Insert the data in
the cache, and
cancel any event
related to this packet

Send data to
application.

Y

N

Cancel a scheduled
event of sending of
NACK or waiting for
retransmission,
related to this packet,
if any.

Do we
have this
packet?

Y

N

N

Is the
packet

in order?

A gap was detected.
Schedule the sending
of NACKs for the
lost packets

N

Y

leave group Deactivate the
member.

join request Send a join
accept message.

refresh
Do we

have the
advertised
packet?

N

A gap was detected.
Schedule the sending
of NACKs for the
lost packets.

Figure 10: Actions taken on receiving each packet type

21

1. Calling the RM_setOption(int OPTION_ID, void *OPTION_VALUE) function,
where:

OPTION_ID: indicates what option you want to set. You can found the option list in
the rmcast.h header �le.
OPTION_VALUE: the value you want to set the option to

Example:
...
/* Setting REFRESH_TIMER */
int refresh_timer=10;

RM_setOption(REFRESH_TIMER,(void *) refresh_timer);
...

2. Calling RM_readCon�gFile(char *�lename). This function will tell the Reliable Mul-
ticast Library to read the user's options from �lename.

Example:

...
/* Read the config file from /etc/rmcast.config */
char config_file[50];

strcpy(config_file,"/etc/rmcast.config");

RM_readConfigFile(config_file);
...

NOTE: There is a constant, RM_USE_CURRENT_CONFIG, that can replace functions param-
eters. In those situations, the RM_USE_CURRENT_CONFIG will indicate that the current
values (which may have been set either by calling RM_setOption or RM_readCon�gFile) must
be used. For instance, when we call the RM_joinGroup() function we are supposed to pass as
parameters the IP Multicast address and port number. If we have already read those options
from rmcast.con�g �le, just replace the parameters with the RM_USE_CURRENT_CONFIG
constant.

The rmcast.con�g �le contain some options that can be customized by the users. A rm-
cast.con�g �le example follows (lines beginning with a �#� are comments):

#Reliable Multicast Library configuration file
#Reliable Multicast Library version
RM_VERSION=1.0
#Transmission mode: 0 multicast (default), 1 unicast
TRANSMISSION_MODE=0
#Multicast or Unicast IP address to send data (destination IP)
DEST_IP=225.1.2.3
#Multicast or Unicast port to send data (destination port)
DEST_PORT=5000
#Time to live for the packets setting (1 indicates local network)
TTL=1
#Inter-packet sleep timer - timer between transmissions of packets
#(in microseconds)
MICROSLEEP=10

22

#Log file path - NULL disable logging (default)
LOG_FILE=NULL
#Random Timers Distribution: 0 uniform 1 exponential
TIMER_DISTRIBUTION=0
#Lower bound for timer generation (in milliseconds)
TIMER_LOWER=200
#Upper bound for timer generation (in milliseconds)
TIMER_UPPER=1000
#Max number of naks that can be sent for each packet. 100 (default)
MAX_NAK=100
We will be able to retransmit the last MAX_MEMBER_CACHE_SIZE
packets from each member of the multicast group, i.e., we will store the
last MAX_MEMBER_CACHE_SIZE PACKETS from each member
of the multicast group in the cache. 4000 (default)
#
WARNING: if you set MAX_MEMBER_CACHE_SIZE to low values
the protocol may fail!!
#
MAX_MEMBER_CACHE_SIZE=4000
#Enable support for new users 1 enabled (default), 0 disabled
NEW_USER_SUPPORT=0
#Show transmission statistics: 0 disabled (default) 1 enabled
STATISTICS=0
#Time between sending of refresh messages (seconds)
REFRESH_TIMER=10
#Loss simulation: 0 disabled (default) any float number > 0 enabled
A note about loss simulation:
When loss simulation is enabled (LOSS_PROB > 0) we always loose
the first 10 received packets, and the first received data packet -
that is, the first burst of received packets.
After that, packets are lost according to LOSS_PROB.
Example: LOSS_PROB=30
The first 10 received packets will be lost.
Then, 30% of the packets will be lost
LOSS_PROB=0
Time to wait, in microseconds, before leaving the multicast group.
LEAVE_GROUP_WAIT_TIME = 5000000
Size of the buffer of the receiver host
(maximum size of a message that may be processed by
the receiver host).
RCV_BUFFER_SIZE = 10000

To retrieve the current value of an option from the RML you must call the RM_getOption(int
OPTION,void *OPTION_VALUE) function.

5.4 The Reliable Multicast Chat (rmchat) application
This is a simple chat application and was written just for testing the RML. The fully commented
source code can be found in the examples/rmchat directory. You can compile the program by
typing make in that directory.

5.4.1 The program
Every user that initiates the program is prompted for a username - this username will be the
users identity in the group. After that they will receive all the messages from every user already
connected to the chat group (if any). You can also type messages in the prompt and send them
to the group by pressing the return key. Note that there is no need for a chat server because we
are using multicast. Users must know the IP address and port to join the chat group. You can
set this address and port through the rmcast.con�g �le as we have seen in the previous section.

We have implemented only two simple commands in the rmchat:

23

1. send - by typing send on the prompt you will be asked for the number of packets to send
to the group. This command was implemented to perform simple tests with the application.

2. exit - this command is used to terminate the application.

5.4.2 Source code comments
This section is supposed to be read along with the source code of rmchat, available at exam-
ples/rmchat/rmchat.c.

The very �rst thing we have to do when we are writing an application is to include the rmcast.h
header �le. Next we de�ne BUFFSIZE - the maximum message size. We also declare an integer
global variable to identify the socket we will use to send and receive data.

The following step is to read the con�guration �le, calling the RM_readCon�gFile func-
tion. Then, we have to initialize the RML calling the RM_initialize function. After that we
join the multicast group calling the RM_joinGroup function. At this point we are using the
RM_USE_CURRENT_CONFIG as discussed in section 4.3. The RM_joinGroup function
returns the socket identi�er that we will need to send and receive data from the network.

Interactive network applications are supposed to simultaneously receive and send data through
the network. To implement that feature we usually create separated threads to deal with those
tasks. In the rmchat we have created, calling the pthread_create function, the Receive thread
to receive packets from the network, while the main thread will get the user messages and will
send them to the multicast group.

You can easily see in the Receive thread code that there is a loop where we just call RM_recv
function to retrieve data from the network. The data received is then showed on the screen.

In the main program we are reading the messages typed by the user and checking whether
they are a command or a simple message. If it is a simple message, we just call the RM_sendto
function to send the data to the multicast group. Otherwise, if the exit command is issued, we
break the loop and prepare to terminate the application. We use the RM_getOption to retrieve
the current IP address and port from the RML just to report it to the user. In addition we cancel
the Receive thread using the pthread_cancel() function.

Finally we call the RM_leaveGroup function to �nish the RML and our program. This
function is very important because it cleans up the system resources that we were using such
as the message queue. See section 7.3 for further information on message queues. Again, we
recommend that you take a look at the source code to better understand the application.

5.5 RML functions quick reference
In this section will go through the user functions available in the Reliable Multicast Library.

· RM_readCon�gFile(char *�lename) - read the con�guration �le identi�ed by �lename.
See section 4.3 for the con�g �le format and options.

· RM_setOption(int opt, void *optvalue) - set the option identi�ed by opt with the
value in optvalue. You can use setOption to set the RML instead of reading the con�g �le.

· RM_getOption(int opt, void *optvalue) - returns the current value optvalue of the
option identi�ed by opt.

· RM_initialize(void) - initializes the RML structures

· RM_getCurStatus(char *group, int port, CurStatus *c) - get the current status
from a member of the multicast group.

· RM_sendCurStatus(int connfd, char *bu�, int bu�size) - send the current status
to a new member of the multicast group.

24

· RM_joinGroup(char *group, int port) - join the multicast group identi�ed by the IP
address in group and the port in port. Returns the socket identi�er that will be used in the
RM_sendto and RM_recv functions.

· RM_sendto(int socket, void *bu�er, int bu�size) - sends up to bu�size bytes of data
from bu�er using the socket identi�er socket. Returns 1 on success and 0 if an error occurs.

· RM_recv(int socket, void *bu�er, int bu�size) - receives up to bu�size bytes of data,
and stores them into bu�er using the socket identi�er socket. Returns the number of bytes
received on success and -1 when an error occurs.

· RM_leaveGroup(int sock,char * group) - sends a message indicating that we are
leaving the multicast group identi�ed by group, cleans all the system resources being used
and closes the socket identi�ed by socket. You must call this function before terminating the
application. Returns 1 on success and 0 on failure.

6 A more advanced application: the Tangram II Whiteboard
6.1 About Tangram II Whiteboard (TGWB)
Quoting from the tgif manual, �tgif (Tangram2 Graphic Interface Facility) is a Xlib based interac-
tive 2-D drawing facility under X11�. The tgif tool is a powerful vector based drawing tool. The
user draws objects, i.e., rectangles, lines, circles and splines, over a drawing area. Objects may be
transformed - for instance, rotated, translated and �ipped. New objects may be constructed by
grouping other objects.

In the next section, we will describe a whiteboard tool which was developed over tgif - TGWB
(Tangram II Whiteboard). The tgwb allows simultaneous modi�cations in drawings by users in a
group. It is a versatile multicast distributed tool.

6.2 Getting and installing TGWB
To get the TGWB, follow the steps below:

1. get tgif at http://bourbon.usc.edu:8001/tgif/

2. read the README.tgwb �le and follow the instructions described there.

6.3 What features make TGWB di�erent
There are two main points that make the TGWB application di�erent from the previously de-
scribed chat.

At a given time, a user may want to send to the group huge amounts of data (for example, a
screenshot). This message must be segmented into smaller packets before being sent to the group
(note that, for simplicity, in the chat application we were assuming that the user would not send
very large amounts of data in the messages). One of the reasons segmentation is needed is the
fact that there is a maximum segment size which network routers support. To see other reason
for doing segmentation, the interested read should consult chapter 1 of [4]. Figure 11 presents the
TGWB layers.

A second feature that makes the TWGB tool di�erent from the chat is the fact that we need
to assure global consistency among the users of the TGWB tool. Imagine that two users change
the color of a rectangle at the same time: user A changes the color of the rectangle to red, and
B to blue. What must user C see? A blue or a red rectangle? What about A and B? This
problem, and others, are solved using a �total ordering mechanism�, which is based in the use of
the undo/redo commands (rollback-recovery strategy). Consult [11] for a complete explanation
about this subject.

25

6.4 The life cycle of a packet in the TGWB
The packets life cycle begins when a user draws an object over the tgif drawing area. As mentioned
above, an object may be a circle, a rectangle, a text box or any other drawing primitive described
on the tgif manual. Please, see tgif man pages, tgif FAQ [3] and tgif tutorial for more information
about tgif.

Now, the object must be delivered to the members of the multicast group. This is done via
the RML functions. However, before being delivered the object is �rst divided into segments - see
the Segment() call in wb.c. The segment size is chosen in a way that the more common objects
(rectangles, circles and text boxes) �t in one segment and, at the same time, the maximum transfer
unit (MTU) is greater then the segment size.

All the RML functions available for the applications have the RM_ pre�x. So, in order to send a
tgif object to the network, RM_sendto() is called, passing as parameters the multicast destination
group and the object data. You may see the de�nition of the function SendWBData() in wb.c. The
RM_sendto() function (and all the other functions that may be called by an application) is de�ned
in the rmcast.c �le. RM_sendto() calls rmcastSendPackets(), which is de�ned in rminternals.c,
and that in turns makes a sendto(2) system call (the number two between parenthesis refers to
the section two of man of sendto - to see the man info, type man 2 sendto at the Linux prompt.
Please, note that this number may vary according to the operating system).

In general, the functions de�ned in rmcast.c call functions de�ned in rminternals.c. Then,
functions in rminternals.c make system calls. Concerning the syntax, note that the functions in
rmcast.c have the pre�x �RM_� and the functions in rminternals.c have the pre�x �rmcast�.

At this point we have segmented the object data into packets, appended all needed headers
and the packet was sent. That's what happens at the sender side. Now, let's see the receiver side.

All the members of the multicast group, communicating among themselves using the TGWB,
receive messages from all the other members. At the application level, the RM_recv() function is
used to get messages in order, without gaps, from the other members of the group. The RM_recv()
function makes a msgrcv(2) system call to get messages from a message queue. Note that this is
an exception to the general explanation given two paragraphs above. Read the following section
in order to get more information about how the message queue works, and why it is used here.

When a packet arrives from the network, the recvfrom(2) system call is responsible for re-
ceiving it. We make a recvfrom(2) system call in the rmcastReceivePackets() function, de�ned in
rminternals.c. The received message is then processed, inserted in the cache and, if it is in fact the
expected message, we put it in the message queue. The message queue was the interprocess com-
munication mechanism that we have chosen in order to store the in-order without-gaps messages
that will be read by the application.

Figure 12 show the Tangram II Whiteboard architecture.

whiteboard

segmentation

reliable multicast

IP multicast

global consistency

Figure 11: TGWB Layers

26

ma
in

th
re

ad

re
li

ab
le

me
ss

ag
e

re
ce

iv
er

th
re

ad

ra
w

me
ss

ag
e

re
ce

iv
er

th
re

ad

si
gn

al
ha

nd
le

r
th

re
ad

cu
rr

en
t

st
at

e
se

rv
er

th
re

ad

ev
en

t
li

st
 a

nd
 c

ac
he

X
ev

en
t

ge
ne

ra
te

d

ne
w

us
er

en
te

re
d

th
e

gr
ou

p

X
ev

en
t

qu
eu

e

ne
w

da
ta

 a
va

il
ab

le
se

le
ct

sy
st

em
ca

lltg
wb

 t
hr

ea
ds

rm
ca

st
 i

nt
er

na
l

th
re

ad
s

se
nd

 s
ig

na
ls

 t
o

Ta
ng
ra
m
II
 W
hi
te
bo
ar
d
Ar
ch
it
ec
ht
ur
e

me
ss

ag
e

qu
eu

e

wh
it

eb
oa

rd
me

ss
ag

e
bu

ff
er

pi
pe

ud
p

so
ck

et
tc

p
so

ck
et

ex
te

rn
al

da

ta
ne

w
me

mb
er

co
nt

ro
l

 p
ck

ts

ud
p

so
ck

et

Figure 12: TGWB Architecture

27

7 More about the Tangram II Whiteboard
7.1 The TGWB threads
UNIX/Linux o�ers a lot of interprocess communication mechanisms. If you run tgwb under Linux,
and type ps -aux | grep tgwb, you will probably see something like:

[anonymous@salinas anonymous]$ ps -axu | grep tgwb
anonymous 2820 1.7 0.8 12780 1992 pts/4 S 16:25 tgwb
anonymous 2821 0.1 0.8 12780 1992 pts/4 S 16:25 tgwb
anonymous 2822 0.0 0.8 12780 1992 pts/4 S 16:25 tgwb
anonymous 2823 0.0 0.8 12780 1992 pts/4 S 16:25 tgwb
anonymous 2824 0.0 0.8 12780 1992 pts/4 S 16:25 tgwb
anonymous 2825 0.0 0.8 12780 1992 pts/4 S 16:25 tgwb
anonymous 2827 1.0 0.2 1700 592 pts/4 S 16:25 grep tgwb

We see here that tgwb generates six processes. That's because under Linux the pthreads library
generates one process per thread (please, see Appendix), plus one extra thread, which corresponds
to the �thread manager�. We will brie�y describe the �rst �ve threads generated by TGWB - the
last one, the �thread manager� is created internally by Linux Threads to handle thread creation
and termination [5].

thread 1. responsible for receiving ordered, without gaps messages - that is, reliable messages;
thread 2. responsible for receiving possible out of order, with gaps messages - that is, messages

from the network;
thread 3. responsible for (a) processing the local user actions, such as drawing objects and

writing texts, (b) processing remote user commands which arrive from the message queue and (c)
sending local commands to the other users. That is the �main� thread;

thread 4. responsible for signal handling. We will call this thread the �signal handler� thread;
thread 5. responsible for sending the current state, via TCP, to the new users who eventually

would like to join the group. We will call this thread as the �current state server� thread.
These threads, and the relations between them, are represented in �gure 12.

Thread 1 - Reliable messages receiver thread
This thread, implemented in the tgwb, stays in a loop waiting for reliable messages. When a
reliable message is received, it is inserted in a bu�er, and also an 'a' is written into a pipe. This
'a' will signal the main thread that there is data available from the network.

Thread 2 - Raw messages receiver thread
Implemented under the RML, this thread is responsible for receiving raw data from the network.
Depending on the type of the message (for instance, data, negative acknowledgment and refresh
messages) we take the appropriate actions. Please, see section 4.3 for more details about this.

Thread 3 - Main thread
This thread is implemented in the TGWB mainloop.c �le. This thread remains sleeping until it
is wakened up by one of the following events:

(1) an X event is generated by the local user;
(2) a �reliable message� arrives from the network.
Lets start by (1). When an user drags the mouse in order to draw an object this event is

inserted in the X event-list. This list is managed by the X-server using a FIFO policy. As soon
as the mentioned user command gets on the top of this list, the command is executed and sent to
the other members of the group.

28

Now, let's analyze (2). A pipe is used to perform the communication between the main thread
and the �reliable messages receiver thread�. When a �reliable message� arrives from the network
an 'a' character is written in the pipe by the �reliable messages receiver thread�. The main thread
then reads this 'a' from the pipe, and the command received from the network is locally processed.

At this point it's interesting to talk a little about the history of tgwb. In former versions of
TGWB, we made a busy wait loop in order to wait for events from both the local user and the
network, that is, a busy wait for (1) and (2). That is not e�cient, and when someone call the
command top, from the shell prompt, TGWB usually appears as the �rst element of the list,
consuming near 100% of the CPU cycles. To solve this problem, we introduced the use of pipes
[9] in the mainloop of TGWB.

Please, refer to �gure 13 for a scheme of the TGWB mainloop. The mainloop of TGWB waits
for (1) or (2) calling:

status = select(nfds, &fdset, NULL, NULL, &timeout);

When we get (1), XNextEvent(mainDisplay, pXEvent) is called, and the X event generated by the
local user is processed. When we get (2), SendCommandToSelf(CMDID_DATA_IN_MBUFF, 0)
is called, and the �reliable message� which arrived from the network is processed. Besides (1) and
(2), the main thread may also get a request for packing the tgwb current state. When we receive
'c' via the pipe, which signals this request, we call HandleNewUserRequest() and the request is
attended. Our approach to solve this problem is discussed at session 7.2.

select() system call

received a request to pack

 the current state

(2) received ¨reliable

message¨ from the net

(1) X event received

Process the command received and

send to self an X event which

instructs how this command must

be executed.

XNextEvent(mainDisplay, pXEvent);

HandleNewUserRequest();

Note that after (2) we will always get (1) in the future.

Main loop of the whiteboard

Figure 13: TGWB mainloop routine

Thread 4 - Signal handler thread
We will give a brief explanation about the di�erence between synchronous and asynchronous
signals. As signal handling is a very broad topic, please refer to [8][10] for more details. Signals
may be generated synchronously or asynchronously. A synchronous (sync) signal pertains to a
speci�c action in the program, and is delivered (unless blocked) during that action. Errors generate
signals synchronously, and so do explicit requests by a process to generate a signal for that same
process.

Asynchronous (async) signals are generated by events outside the control of the process that
receives them. These signals arrive at unpredictable times during execution. External events
generate signals asynchronously, and so do explicit requests that apply to some other process.

29

A given type of signal is either typically synchronous or typically asynchronous. For example,
signals for errors are typically synchronous because errors generate signals synchronously. But any
type of signal can be generated synchronously or asynchronously with an explicit request.

In the Reliable Multicast Library, a dedicated thread was created to wait for all the generated
signals. Such a thread just loops on a sigwait subroutine call and handles the signals. That
is a typical schema for programs that handle signals with threads [6] and an example can be
found at [7]. That kind of procedure handles the signals synchronously because this is the safest
programming style.

Thread 5 - Current State Server Thread
This thread is responsible for the so called �support for new members� in the RML. In other words,
this thread is responsible for provisioning to new members the capacity for joining a TGWB session
at any time.

Suppose that a new member A wants to join the multicast group. This member will try to get
the �current state� of the group, and just after that he will enter. In more details, we follow the
steps below:

(1) First, member A send a packet of type JOIN_REQUEST to the group.
(2) Then, member A waits for an JOIN_ACCEPT packet from any member of the group.
If member A doesn't receive any message, and gets a timeout, he will start to send/receive

packets to/from the multicast group as he was the �rst member in that TGWB session.
(3) When a JOIN_ACCEPT packet is received from a member B, member A will try to

connect to B via TCP, and retrieve his �current state�. After receiving the current state, A will
make a call to RM_joinGroup() and at this moment member A becomes an actual member of the
group. It implies that besides being able to talk with the other members of the group, member A
is promoted to a �current state server�.

A �current state server� is a server that waits for connections in a speci�c port, and when a new
client connects to this port, the �current state server� provides the �current state� to this client.

7.2 Solving the busy wait problem
Processes (and threads), during its execution time, may be in several operating states. Among
the states, we will focus on the two extreme ones: busy wait, when the process occupies almost
100% of the CPU, or sleeping, when it practically does not use system resources. See chapter 3 of
[10] for more details about process (and threads) states.

In former versions of tgwb, the mainloop of the program worked using busy wait. In tgwb
version 4.1.40, if we ran tgwb and typed �top� at the Linux shell prompt, we would get:

PID %CPU %MEM TIME COMMAND
27490 81.3 2.5 0:26 tgwb

Note that tgwb was occupying 81.3% of the CPU time. And this occurred even when we were not
drawing or writing anything on the canvas - the simple fact of opening the tgwb was responsible
for that. We started trying to solve the problem using the select(2) system call. Using select(2)
we would be able to �sleep� waiting for data to arrive either from the network or from commands
sent by the local user. Instead of having something like:

while(1)
{

if (data received from the network)
do this;

else if (there is an X event to be processed)
do that;

else
do nothing;

30

}

We would like to get:

while(1)
{

select (...); /* sleep waiting for data from the network
or for an X event */

if (data received from the network)
do this;

else if (there is an X event to be processed)
do that;

}

First we tried to do this by making the �reliable messages receiver thread� write a character into
a conventional �le when a message arrived from the networking, and the select would watch the
�le to see if characters become available for reading. The select would return if there were some
character on the �le or there were an pending X event. The problem is that select() doesn't
work with conventional �les. After �nding out this problem, instead of using conventional �les we
started working with a pipe. An important reference that we used was [17].

Follows below a piece of a message from William Cheng, who is the tgif's main developer :

Basically, you create a pipe to send notification characters to yourself! So, when
tgwb starts, a pipe is created and its 2 endpoints (file descriptors) are stored in
an array. In GetAnXEvent(), you need to do a select() call. This call will wait
for 3 conditions: (1) an X events has arrived; (2) the pipe contains some data; and
(3) a timeout has occurred. The timeout is there just case something goes wrong.
I would set a very large timeout, for example, 15 seconds.

In ReceivePacket(), instead of calling SendCommandToSelf(),
it should write 1 byte to the pipe! That's it!

In GetAnXEvent(), if select() returns with the pipe having some data, you should
read 1 bytes and then calls SendCommandToSelf().

(Well, calling HandleDataInMBuff() directly would be fine too.)

Note that we call the SendCommadToSelf() function when we receive a command from the
network. This function, which is also called in menu.c, is used to put X events in the X internal
queue. Using this functionality, when we receive a data from the network it is processed and then
the resulting action is put in the X queue, and then treated as any other X event.

Now, if we run tgwb and type �top� at the Linux shell prompt, we get:

PID %CPU %MEM TIME COMMAND
26919 0.0 0.6 0:00 bash
27049 0.0 0.7 0:00 tgwb
27050 0.0 0.7 0:00 tgwb
27051 0.0 0.7 0:00 tgwb
27052 0.0 0.7 0:00 tgwb
27053 0.0 0.7 0:00 tgwb

Note that the %CPU (percentage of total CPU time) of tgwb now is almost 0.

8 Appendix - Interprocess Communication Resources
In order to implement the reliable multicast library we have used a lot of interprocess communi-
cation resources. The operating system and interprocess communication resources used were:

31

1. threads;

2. mutexes;

3. message queues;

4. pipes;

5. sockets (TCP and UDP);

6. signals.

We will give here a brief introduction to these topics. The interested reader should consult [12, 13].

8.1 Threads
When we have a lot of tasks to do, we try to do di�erent tasks at the same time. This tasks are
the human analogy to what threads are for computer programs. In our Reliable Multicast Library
(RML) we have used mainly the following pthread system calls:

· pthread_create

· pthread_join

· pthread_exit

To get more info about pthreads, please refer to the man pages of this functions, and [5, 14, 15]

8.2 Mutexes
In order to synchronize threads we have to use mutexes. We can't, for example, change the value
of a variable at two distinct points at the same time because this may generate an inconsistency.
In the RML, we used the system calls:

· pthread_mutex_lock

· pthread_mutex_unlock

in order to protect some critical points of the program - mainly the ones that work with the cache
and the event list, which are the global structures accessed by more than one thread.

8.3 Message Queues
The message queues are a �rst in �rst out (FIFO) operating system mechanism that are used to
pass data between di�erent thread/processes. They are an important IPC mechanism. Among
the message queue functions used, we may focus:

· msgget - int msgget (key_t key, int msg�g)

· msgctl - int msgctl (int msqid, int cmd, struct msqid_ds *buf)

· msgsnd - int msgsnd (int msqid, struct msgbuf *msgp, size_t msgsz, int msg�g)

· msgrcv - ssize_t msgrcv (int msqid, struct msgbuf *msgp, size_t msgsz, long msgtyp, int
msg�g)

32

The �rst important concept to understand is the concept of a �key�. Keys are numbers used to
identify an IPC resource in UNIX, in an analogy to the fact that �le names are used to identify �les.
It's the key that allows that an IPC resource be shared between di�erent threads and processes,
similarly to the fact that the �le names allow that a �le be referenced by any program running in
the operating system.

The function msgget receives as �rst parameter a key, and return an identi�er for the object
which is analogous to the ��le descriptor� in the case of �les. The last parameter, msg�g, must be
set to IPC_CREAT when we want to create a new object. It's necessary to make a logical OR
of IPC_CREAT with the values of table 2 depending on the permissions wanted for the created
object.

octal value meaning
0400 read permited for the owner of the object
0200 write permited for the owner of the object
0040 read permited for the group
0020 write permited for the group
0004 read permited for all
0002 write permited for all

Table 2: Message queue permissions

The functions msgsnd and msgrcv are used to send/receive messages to/from the queue. The
msgctl function is used to set control properties of the queue. Please, refer to the man pages of
this functions for more details about them.

8.4 Pipes
The pipes, as the message queues, are used to transmit data between processes/threads. The
di�erence between pipes and message queues is that pipes work with characters (we write/read
characters to/from the pipe) while message queues work with messages of variable sizes.

The main pipe system call used was:

· pipe

8.5 Sockets
Sockets are IPC mechanisms that may be used to send/receive messages between two hosts. Please,
consult [16] in order to get more information about sockets.

8.6 Signals
Please, see the comments about the �signal handler thread�, in section 7.1.

References
[1] Tangram II web site: http://www.land.ufrj.br

[2] Multicast HOWTO available at http://www.linuxdoc.org/HOWTO/Multicast-
HOWTO.html

[3] Cheng, W.C. Tangram Graphical Interface Facility
<URL: http://bourbon.cs.umd.edu:8001/tgif>
TGWB has been integrated with TGIF since version 4.1.29 released on April 18,2000.

33

[4] Kurose, J.F. and Ross, K.W., Computer Networking - A Top-Down Approach Featuring the
Internet.

[5] Leroy, X. The Linux Threads library - an implementation of the Posix 1003.1c thread package
for Linux.
http://pauillac.inria.fr/~xleroy/linuxthreads/

[6] http://www.unet.univie.ac.at/aix/aixprggd/genprogc/signal_mgmt.htm

[7] http://support.entegrity.com/private/doclib/docs/osfhtm/develop/apgstyle/Apgsty83.htm

[8] http://www.gnu.org/manual/glibc-2.2.3/html_node/libc_458.html

[9] http://www-h.eng.cam.ac.uk/help/tpl/graphics/X/signals.html

[10] Stallings, William. Operating Systems, Internals and Design Principles. Prentice Hall.

[11] C. E. F. Brito, E. Souza e Silva and W. Cheng. Reliable Multicast Communication and the
Implementation of TGWB, a Shared Vector-based Whiteboard Tool. Technical Report.

[12] Haviland, Keith. Unix System Programming. Addison Wesley Publishing Company.

[13] Stevens, Richard. Advanced Programming in the UNIX Environment. Addison Wesley Pro-
fessional Computing Series.

[14] Nichols, Bradford et al. Pthreads Programming. O'Reilly.

[15] Kleiman, Steve et al. Programming with Threads.

[16] Stevens, Richard. UNIX Network Programming. Prentice Hall.

[17] http://www-h.eng.cam.ac.uk/help/tpl/graphics/X/signals.html

[18] RNP: http://www.rnp.br/multicast/multicast-bene�cios.html

[19] A.Erramilli and R.P Sing. �A Reliable and E�cient Multicast Protocol for Broadband Broad-
cast Networks Proccedings of ACM SIGCOMM 87, pp. 343-352, August 1987.

[20] Peterson, Larry et al. �Computer Networks: A Systems Approach�.

[21] http://www.gnuplot.info

34

