Stream: Internet Engineering Task Force (IETF)

RFC: 9936

Category: Standards Track

Published: February 2026

ISSN: 2070-1721

Authors: J. Prat M. Ounsworth D. Van Geest
CryptoNext Security Entrust CryptoNext Security

RFC 9936
Use of ML-KEM in the Cryptographic Message Syntax
(CMS)

Abstract

Module-Lattice-Based Key-Encapsulation Mechanism (ML-KEM) is a quantum-resistant Key
Encapsulation Mechanism (KEM). Three parameter sets for the ML-KEM algorithm are specified
by the US National Institute of Standards and Technology (NIST) in FIPS 203. In order of
increasing security strength (and decreasing performance), these parameter sets are ML-
KEM-512, ML-KEM-768, and ML-KEM-1024. This document specifies the conventions for using
ML-KEM with the Cryptographic Message Syntax (CMS) using the KEMRecipientInfo structure
defined in "Using Key Encapsulation Mechanism (KEM) Algorithms in the Cryptographic
Message Syntax (CMS)" (RFC 9629).

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at https://www.rfc-editor.org/info/rfc9936.

Copyright Notice

Copyright (c) 2026 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions

Prat, et al. Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9936
https://www.rfc-editor.org/info/rfc9936
https://trustee.ietf.org/license-info

RFC 9936 ML-KEM in the CMS

February 2026

with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are

provided without warranty as described in the Revised BSD License.

Table of Contents

1.

D U1~ W

Introduction
1.1. Conventions and Terminology

1.2. ML-KEM

. Use of the ML-KEM Algorithm in the CMS

2.1. RecipientInfo Conventions
2.2. Underlying Components
2.2.1. Use of the HKDF-Based Key Derivation Function

2.3. Certificate Conventions

2.4. SMIME Capabilities Attribute Conventions

. Identifiers
. Security Considerations
. IANA Considerations

. References

6.1. Normative References

6.2. Informative References

Appendix A. ASN.1 Module

Appendix B. Parameter Set Security and Sizes

Appendix C. ML-KEM CMS Authenticated-Enveloped-Data Example

C.1. Originator CMS Processing
C.2. Recipient CMS Processing

Acknowledgements

Authors' Addresses

Prat, et al. Standards Track

[I

o 0 00 N O

10

10
12
12
13
17

17
17

Page 2

RFC 9936 ML-KEM in the CMS February 2026

1. Introduction

The Module-Lattice-Based Key-Encapsulation Mechanism (ML-KEM) is an IND-CCA2-secure Key
Encapsulation Mechanism (KEM) standardized in [FIPS203] by the NIST PQC Project [NIST-PQ].
ML-KEM is the name given to the final standardized version and is incompatible with pre-
standards versions, often called "Kyber".

[RFC9629] defines the KEMRecipientInfo structure for the use of KEM algorithms for the CMS
enveloped-data content type, the CMS authenticated-data content type, and the CMS
authenticated-enveloped-data content type. This document specifies the direct use of ML-KEM in
the KEMRecipientInfo structure using each of the three parameter sets from [FIPS203], namely
ML-KEM-512, ML-KEM-768, and ML-KEM-1024. It does not address or preclude the use of ML-
KEM as part of any hybrid scheme.

1.1. Conventions and Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to
be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in
all capitals, as shown here.

1.2. ML-KEM

ML-KEM is a lattice-based KEM using Module Learning with Errors as its underlying primitive,
which is a structured lattices variant that offers good performance and relatively small and
balanced key and ciphertext sizes. ML-KEM was standardized with three parameter sets: ML-
KEM-512, ML-KEM-768, and ML-KEM-1024. The parameters for each of the security levels were
chosen to be at least as secure as a generic block cipher of 128, 192, or 256 bits, respectively.
Appendix B provides more information on ML-KEM security levels and sizes.

All KEM algorithms provide three functions: KeyGen(), Encapsulate(), and Decapsulate().

The following summarizes these three functions for the ML-KEM algorithm, referencing
corresponding functions in [FIPS203]:

KeyGen() -> (ek, dk): Generate the public encapsulation key (ek) and a private decapsulation
key (dk). [FIPS203] specifies two formats for an ML-KEM private key: a 64-octet seed (d,z) and
an (expanded) private decapsulation key (dk). Algorithm 19 (ML-KEM.KeyGen()) from
[FIPS203] generates the public encapsulation key (ek) and the private decapsulation key (dk).
As an alternative, when a seed (d,z) is generated first and then the seed is expanded to get the
keys, algorithm 16 (ML-KEM.KeyGen_internal(d, z)) from [FIPS203] expands the seed to ek
and dk. See Section 6 of [RFC9935] for private key encoding considerations.

Prat, et al. Standards Track Page 3

https://www.rfc-editor.org/rfc/rfc9935#section-6

RFC 9936 ML-KEM in the CMS February 2026

Encapsulate(ek) -> (c, ss): Given the recipient's public key (ek), produce both a ciphertext (c) to
be passed to the recipient and a shared secret (ss) for use by the originator. Algorithm 20 (ML-
KEM.Encaps(ek)) from [FIPS203] is the encapsulation function for ML-KEM.

Decapsulate(dk, c) -> ss: Given the private key (dk) and the ciphertext (c), produce the shared
secret (ss) for the recipient. Algorithm 21 (ML-KEM.Decaps(dk, c)) from [FIPS203] is the
decapsulation function for ML-KEM. If the private key is stored in seed form, ML-
KEM.KeyGen_internal(d, z) may be needed as a first step to compute dk. See Section 8 of
[RFC9935] for consistency considerations if the private key was stored in both seed and
expanded formats.

All security levels of ML-KEM use SHA3-256, SHA3-512, SHAKE128, and SHAKE256 internally.

2. Use of the ML-KEM Algorithm in the CMS

The ML-KEM algorithm MAY be employed for one or more recipients in the CMS enveloped-data
content type [RFC5652], the CMS authenticated-data content type [RFC5652], or the CMS
authenticated-enveloped-data content type [RFC5083]. In each case, the KEMRecipientInfo
[RFC9629] is used with the ML-KEM algorithm to securely transfer the content-encryption key
from the originator to the recipient.

Processing ML-KEM with KEMRecipientInfo follows the same steps as Section 2 of [RFC9629]. To
support the ML-KEM algorithm, a CMS originator MUST implement the Encapsulate() function
and a CMS recipient MUST implement the Decapsulate() function.

2.1. RecipientInfo Conventions

When the ML-KEM algorithm is employed for a recipient, the RecipientInfo alternative for that
recipient MUST be OtherRecipientInfo using the KEMRecipientInfo structure as defined in
[RFC9629].

The fields of the KEMRecipientInfo have the following meanings:

version

The syntax version number; it MUST be 0.
rid

Identifies the recipient's certificate or public key.
kem

Identifies the KEM algorithm; it MUST contain one of id-alg-ml-kem-512, id-alg-ml-kem-768, or
id-alg-ml-kem-1024. These identifiers are reproduced in Section 3.

kemct
The ciphertext produced for this recipient.

Prat, et al. Standards Track Page 4

https://www.rfc-editor.org/rfc/rfc9935#section-8
https://www.rfc-editor.org/rfc/rfc9629#section-2

RFC 9936 ML-KEM in the CMS February 2026

kdf
Identifies the key derivation algorithm. Note that the Key Derivation Function (KDF) used for
CMS RecipientInfo process MAY be different than the KDF used within the ML-KEM
algorithm. Implementations MUST support the HMAC-based Key Derivation Function (HKDF)
[RFC5869] with SHA-256 [FIPS180] using the id-alg-hkdf-with-sha256 KDF object identifier
(OID) [RFC8619]. As specified in [RFC8619], the parameter field MUST be absent when this OID
appears within the ASN.1 type AlgorithmIdentifier. Implementations MAY support other KDFs
as well.

kekLength
The size of the key-encryption key in octets.

ukm
Optional input to the KDF. The secure use of ML-KEM in CMS does not depend on the use of a
ukm value, so this document does not place any requirements on this value. See Section 3 of
[RFC9629] for more information about the ukm parameter.

wrap
Identifies a key-encryption algorithm used to encrypt the content-encryption key.
Implementations supporting ML-KEM-512 MUST support the AES-Wrap-128 [RFC3394] key-
encryption algorithm using the id-aes128-wrap key-encryption algorithm OID [RFC3565].
Implementations supporting ML-KEM-768 or ML-KEM-1024 MUST support the AES-Wrap-256
[RFC3394] key-encryption algorithm using the id-aes256-wrap key-encryption algorithm OID
[RFC3565]. Implementations MAY support other key-encryption algorithms as well.

Appendix C contains an example of establishing a content-encryption key using ML-KEM in the
KEMRecipientInfo type.

2.2. Underlying Components

When ML-KEM is employed in the CMS, the underlying components used within the
KEMRecipientInfo structure SHOULD be consistent with a minimum desired security level.
Several security levels have been identified in [NIST.SP.800-57pt1r5].

If underlying components other than those specified in Section 2.1 are used, then the following
table gives the minimum requirements on the components used with ML-KEM in the
KEMRecipientInfo type in order to satisfy the KDF and key wrapping algorithm requirements
from Section 7 of [RFC9629]:

Security Algorithm KDF Preimage Symmetric Key-Encryption
Strength Strength Strength

128-hit ML-KEM-512 128-bit 128-hit

192-bit ML-KEM-768 192-bit 192-bit (*)

Prat, et al. Standards Track Page 5

https://www.rfc-editor.org/rfc/rfc9629#section-3
https://www.rfc-editor.org/rfc/rfc9629#section-7

RFC 9936 ML-KEM in the CMS February 2026

Security Algorithm KDF Preimage Symmetric Key-Encryption
Strength Strength Strength
256-bit ML- 256-bit 256-bit

KEM-1024

Table 1: ML-KEM KEMRecipientInfo Component Security Levels

(*) In the case of AES Key Wrap, a 256-bit key is typically used because AES-192 is not as
commonly deployed.

2.2.1. Use of the HKDF-Based Key Derivation Function
The HKDF function is a composition of the HKDF-Extract and HKDF-Expand functions.

HKDF (salt, IKM, info, L)
= HKDF-Expand(HKDF-Extract(salt, IKM), info, L)

When used with KEMRecipientInfo, the salt parameter is unused; that is, it is the zero-length
string "". The IKM, info, and L parameters correspond to the same KDF inputs from Section 5 of
[RFC9629]. The info parameter is independently generated by the originator and recipient.
Implementations MUST confirm that L is consistent with the key size of the key-encryption
algorithm.

2.3. Certificate Conventions

[RFC5280] specifies the profile for using X.509 certificates in Internet applications. A recipient
static public key is needed for ML-KEM and the originator obtains that public key from the
recipient's certificate. The conventions for carrying ML-KEM public keys are specified in
[RFC9935].

2.4. SMIME Capabilities Attribute Conventions

Section 2.5.2 of [RFC8551] defines the SMIMECapabilities attribute to announce a partial list of
algorithms that an S/MIME implementation can support. When constructing a CMS signed-data
content type [RFC5652], a compliant implementation MAY include the SMIMECapabilities
attribute that announces support for one or more of the ML-KEM algorithm identifiers.

The SMIMECapability SEQUENCE representing the ML-KEM algorithm MUST include one of the
ML-KEM OIDs in the capabilityID field. When one of the ML-KEM OIDs appears in the
capabilityID field, the parameters MUST NOT be present.

3. Identifiers

All identifiers used to indicate ML-KEM within the CMS are defined in [CSOR] and [RFC8619];
they are reproduced here for convenience:

Prat, et al. Standards Track Page 6

https://www.rfc-editor.org/rfc/rfc9629#section-5
https://www.rfc-editor.org/rfc/rfc8551#section-2.5.2

RFC 9936 ML-KEM in the CMS February 2026

nistAlgorithms OBJECT IDENTIFIER ::= { joint-iso-ccitt(2)
country(16) us(840) organization(1) gov(101) csor(3)
nistAlgorithm(4) }

kems OBJECT IDENTIFIER ::= { nistAlgorithms 4 }

id-alg-ml-kem-512 OBJECT IDENTIFIER ::

{ kems 1 }

id-alg-ml-kem-768 OBJECT IDENTIFIER ::

{ kems 2 }

id-alg-ml-kem-1024 OBJECT IDENTIFIER ::= { kems 3 }

id-alg-hkdf-with-sha256 OBJECT IDENTIFIER ::= { iso(1)
member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9)
smime(16) alg(3) 28 }

aes OBJECT IDENTIFIER ::= { joint-iso-itu-t(2) country(16) us(840)
organization(1) gov(101) csor(3) nistAlgorithms(4) 1 }

id-aes128-wrap OBJECT IDENTIFIER ::
id-aes256-wrap OBJECT IDENTIFIER ::

{ aes 5 }
{ aes 45 }

4. Security Considerations

The Security Considerations sections of [RFC9935] and [RFC9629] apply to this specification as
well.

For ongoing discussions of ML-KEM-specific security considerations, refer to [MLKEM-SEC-
CONS].

Implementations MUST protect the ML-KEM private key, the key-encryption key, the content-
encryption key, message-authentication key, and the content-authenticated-encryption key. Of
these keys, all but the private key are ephemeral and MUST be wiped after use. Disclosure of the
ML-KEM private key could result in the compromise of all messages protected with that key.
Disclosure of the key-encryption key, the content-encryption key, or the content-authenticated-
encryption key could result in the compromise of the associated encrypted content. Disclosure of
the key-encryption key, the message-authentication key, or the content-authenticated-encryption
key could allow modification of the associated authenticated content.

Additional considerations related to key management may be found in [NIST.SP.800-57pt1r5].

The generation of private keys relies on random numbers, as does the encapsulation function of
ML-KEM. The use of inadequate pseudorandom number generators (PRNGs) to generate these
values can result in little or no security. In the case of key generation, a random 32-byte seed is
used to deterministically derive the key (with an additional 32 bytes reserved as a rejection
value). In the case of encapsulation, a KEM is derived from the underlying ML-KEM public key
encryption algorithm by deterministically encrypting a random 32-byte message for the public
key. If the random value is weakly chosen, then an attacker may find it much easier to reproduce
the PRNG environment that produced the keys or ciphertext, searching the resulting small set of

Prat, et al. Standards Track Page 7

RFC 9936 ML-KEM in the CMS February 2026

possibilities for a matching public key or ciphertext value, rather than performing a more
complex algorithmic attack against ML-KEM. The generation of quality random numbers is
difficult; see Section 3.3 of [FIPS203] for some additional information.

ML-KEM encapsulation and decapsulation only outputs a shared secret and ciphertext.
Implementations MUST NOT use intermediate values directly for any purpose.

Implementations SHOULD NOT reveal information about intermediate values or calculations,
whether by timing or other "side channels"; otherwise, an opponent may be able to determine
information about the keying data and/or the recipient's private key. Although not all
intermediate information may be useful to an opponent, it is preferable to conceal as much
information as is practical, unless analysis specifically indicates that the information would not
be useful to an opponent.

Generally, good cryptographic practice employs a given ML-KEM key pair in only one scheme.
This practice avoids the risk that vulnerability in one scheme may compromise the security of
the other and may be essential to maintain provable security.

Parties can gain assurance that implementations are correct through formal implementation
validation, such as the NIST Cryptographic Module Validation Program (CMVP) [CMVP].

5. IANA Considerations

For the ASN.1 Module in Appendix A, IANA has assigned an OID for the module identifier (84)
with a description of "id-mod-cms-ml-kem-2024" in the "SMI Security for S/MIME Module
Identifier (1.2.840.113549.1.9.16.0)" registry.

6. References

6.1. Normative References

[CSOR] NIST, "Computer Security Objects Register (CSOR)", 13 June 2025, <https://
csrc.nist.gov/projects/computer-security-objects-register/algorithm-registration>.

[FIPS180] NIST, "Secure Hash Standard", NIST FIPS 180-4, DOI 10.6028/NIST.FIPS.180-4,
August 2015, <https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf>.

[FIPS203] NIST, "Module-Lattice-Based Key-Encapsulation Mechanism Standard", NIST
FIPS 203, DOI 10.6028/NIST.FIPS.203, August 2024, <https://doi.org/10.6028/
NIST.FIPS.203>.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14,
RFC 2119, DOI 10.17487/RFC2119, March 1997, <https://www.rfc-editor.org/info/
rfc2119>.

Prat, et al. Standards Track Page 8

https://csrc.nist.gov/projects/computer-security-objects-register/algorithm-registration
https://csrc.nist.gov/projects/computer-security-objects-register/algorithm-registration
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://doi.org/10.6028/NIST.FIPS.203
https://doi.org/10.6028/NIST.FIPS.203
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119

RFC 9936

[RFC3394]

[RFC3565]

[RFC5083]

[RFC5280]

[RFC5652]

[RFC5869]

[RFC5911]

[RFC8174]

[RFC8411]

[RFC8551]

[RFC8619]

[RFC9629]

Prat, et al.

ML-KEM in the CMS February 2026

Schaad, J. and R. Housley, "Advanced Encryption Standard (AES) Key Wrap
Algorithm", RFC 3394, DOI 10.17487/RFC3394, September 2002, <https://www.rfc-
editor.org/info/rfc3394>.

Schaad, J., "Use of the Advanced Encryption Standard (AES) Encryption
Algorithm in Cryptographic Message Syntax (CMS)", RFC 3565, DOI 10.17487/
RFC3565, July 2003, <https://www.rfc-editor.org/info/rfc3565>.

Housley, R., "Cryptographic Message Syntax (CMS) Authenticated-Enveloped-
Data Content Type", RFC 5083, DOI 10.17487/RFC5083, November 2007, <https://
www.rfc-editor.org/info/rfc5083>.

Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and W. Polk,
"Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008, <https://www.rfc-
editor.org/info/rfc5280>.

Housley, R., "Cryptographic Message Syntax (CMS)", STD 70, RFC 5652, DOI
10.17487/RFC5652, September 2009, <https://www.rfc-editor.org/info/rfc5652>.

Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand Key Derivation
Function (HKDF)", RFC 5869, DOI 10.17487/RFC5869, May 2010, <https://www.rfc-
editor.org/info/rfc5869>.

Hoffman, P. and]J. Schaad, "New ASN.1 Modules for Cryptographic Message
Syntax (CMS) and S/MIME", RFC 5911, DOI 10.17487/RFC5911, June 2010, <https://
www.rfc-editor.org/info/rfc5911>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP
14, RFC 8174, DOI 10.17487/RFC8174, May 2017, <https://www.rfc-editor.org/info/
rfc8174>.

Schaad, J. and R. Andrews, "TANA Registration for the Cryptographic Algorithm
Object Identifier Range", RFC 8411, DOI 10.17487/RFC8411, August 2018, <https://
www.rfc-editor.org/info/rfc8411>.

Schaad, J., Ramsdell, B., and S. Turner, "Secure/Multipurpose Internet Mail
Extensions (S/MIME) Version 4.0 Message Specification", RFC 8551, DOI 10.17487/
RFC8551, April 2019, <https://www.rfc-editor.org/info/rfc8551>.

Housley, R., "Algorithm Identifiers for the HMAC-based Extract-and-Expand Key
Derivation Function (HKDF)", RFC 8619, DOI 10.17487/RFC8619, June 2019,
<https://www.rfc-editor.org/info/rfc8619>.

Housley, R., Gray, J., and T. Okubo, "Using Key Encapsulation Mechanism (KEM)
Algorithms in the Cryptographic Message Syntax (CMS)", RFC 9629, DOI
10.17487/RFC9629, August 2024, <https://www.rfc-editor.org/info/rfc9629>.

Standards Track Page 9

https://www.rfc-editor.org/info/rfc3394
https://www.rfc-editor.org/info/rfc3394
https://www.rfc-editor.org/info/rfc3565
https://www.rfc-editor.org/info/rfc5083
https://www.rfc-editor.org/info/rfc5083
https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc5652
https://www.rfc-editor.org/info/rfc5869
https://www.rfc-editor.org/info/rfc5869
https://www.rfc-editor.org/info/rfc5911
https://www.rfc-editor.org/info/rfc5911
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8411
https://www.rfc-editor.org/info/rfc8411
https://www.rfc-editor.org/info/rfc8551
https://www.rfc-editor.org/info/rfc8619
https://www.rfc-editor.org/info/rfc9629

RFC 9936 ML-KEM in the CMS February 2026

[RFC9935] Turner, S., Kampanakis, P., Massimo,]J., and B. E. Westerbaan, "Internet X.509
Public Key Infrastructure - Algorithm Identifiers for the Module-Lattice-Based
Key-Encapsulation Mechanism (ML-KEM)", RFC 9935, DOI 10.17487/RFC9935,
February 2026, <https://www.rfc-editor.org/info/rfc9935>.

[X680] ITU-T, "Information technology - Abstract Syntax Notation One (ASN.1):
Specification of basic notation", ITU-T Recommendation X.680, ISO/IEC
8824-1:2021, February 2021, <https://www.itu.int/rec/T-REC-X.680>.

6.2. Informative References

[CMVP] NIST, "Cryptographic Module Validation Program (CMVP)", 3 September 2025,
<https://csrc.nist.gov/projects/cryptographic-module-validation-program>.

[IKEv2-MLKEM] Kampanakis, P, "Post-quantum Hybrid Key Exchange with ML-KEM in the
Internet Key Exchange Protocol Version 2 (IKEv2)", Work in Progress, Internet-
Draft, draft-ietf-ipsecme-ikev2-mlkem-03, 29 September 2025, <https://
datatracker.ietf.org/doc/html/draft-ietf-ipsecme-ikev2-mlkem-03>.

[MLKEM-SEC-CONS] Fluhrer, S., Dang, Q., Mattsson, J. P., Milner, K., and D. Shiu, "ML-KEM
Security Considerations", Work in Progress, Internet-Draft, draft-sfluhrer-cfrg-
ml-kem-security-considerations-04, 17 November 2025, <https://
datatracker.ietf.org/doc/html/draft-sfluhrer-cfrg-ml-kem-security-
considerations-04>.

[NIST-PQ] NIST, "Post-Quantum Cryptography (PQC)", 30 September 2025, <https://
csrc.nist.gov/projects/post-quantum-cryptography>.

[NIST.SP.800-57ptlr5] Barker, E., "Recommendation for Key Management: Part 1 - General",
NIST SP 800-57pt1r5, DOI 10.6028/NIST.SP.800-57pt1r5, May 2020, <https://
nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf>.

[RFC9690] Housley, R. and S. Turner, "Use of the RSA-KEM Algorithm in the Cryptographic
Message Syntax (CMS)", REC 9690, DOI 10.17487/RFC9690, February 2025,
<https://www.rfc-editor.org/info/rfc9690>.

Appendix A. ASN.1 Module

This appendix includes the ASN.1 module [X680] for ML-KEM. This module imports objects from
[RFC5911], [RFC9629], [RFC8619], and [RFC9935].

<CODE BEGINS>

CMS-ML-KEM-2024

{ iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
pkcs-9(9) smime(16) modules(®) id-mod-cms-ml-kem-2024(84) }

DEFINITIONS IMPLICIT TAGS ::= BEGIN

EXPORTS ALL;

Prat, et al. Standards Track Page 10

https://www.rfc-editor.org/info/rfc9935
https://www.itu.int/rec/T-REC-X.680
https://csrc.nist.gov/projects/cryptographic-module-validation-program
https://datatracker.ietf.org/doc/html/draft-ietf-ipsecme-ikev2-mlkem-03
https://datatracker.ietf.org/doc/html/draft-ietf-ipsecme-ikev2-mlkem-03
https://datatracker.ietf.org/doc/html/draft-sfluhrer-cfrg-ml-kem-security-considerations-04
https://datatracker.ietf.org/doc/html/draft-sfluhrer-cfrg-ml-kem-security-considerations-04
https://datatracker.ietf.org/doc/html/draft-sfluhrer-cfrg-ml-kem-security-considerations-04
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf
https://www.rfc-editor.org/info/rfc9690

RFC 9936 ML-KEM in the CMS February 2026

IMPORTS
SMIME-CAPS
FROM AlgorithmInformation-2609 -- [RFC5911]
{ iso(1) identified-organization(3) dod(6) internet(1)
security(5) mechanisms(5) pkix(7) id-mod(0)
id-mod-algorithmInformation-02(58) }

KEM-ALGORITHM
FROM KEMAlgorithmInformation-2023 -- [RFC9629]
{ iso(1) identified-organization(3) dod(6) internet(1)
security(5) mechanisms(5) pkix(7) id-mod(0)
id-mod-kemAlgorithmInformation-2023(109) }

kda-hkdf-with-sha256
FROM HKDF-0ID-2019 -- [RFC8619]
{ iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)
pkcs-9(9) smime(16) modules(®) id-mod-hkdf-0id-2019(68) }

kwa-aes128-wrap, kwa-aes256-wrap
FROM CMSAesRsaesOaep-2009 -- [RFC5911]
{ iso(1) member-body(2) us(840) rsadsi(113549)
pkcs(1) pkcs-9(9) smime(16) modules(®)
id-mod-cms-aes-02(38) }

id-alg-ml-kem-512, id-alg-ml-kem-768, id-alg-ml-kem-1024,
pk-ml-kem-512, pk-ml-kem-768, pk-ml-kem-1024
FROM X509-ML-KEM-2024 -- [RFC9935]
{ iso(1) identified-organization(3) dod(6)
internet(1) security(5) mechanisms(5) pkix(7) id-mod(9©)
id-mod-x509-ml-kem-2025(121) };

-- ML-KEM Key Encapsulation Mechanism Algorithms

kema-ml-kem-512 KEM-ALGORITHM ::
IDENTIFIER id-alg-ml-kem-512
PARAMS ARE absent
PUBLIC-KEYS { pk-ml-kem-512 }
UKM ARE optional
SMIME-CAPS { IDENTIFIED BY id-alg-ml-kem-512 } }

{

kema-ml-kem-768 KEM-ALGORITHM ::= {
IDENTIFIER id-alg-ml-kem-768
PARAMS ARE absent
PUBLIC-KEYS { pk-ml-kem-768 }
UKM ARE optional
SMIME-CAPS { IDENTIFIED BY id-alg-ml-kem-768 } }

kema-ml-kem-1024 KEM-ALGORITHM ::= {
IDENTIFIER id-alg-ml-kem-1024
PARAMS ARE absent
PUBLIC-KEYS { pk-ml-kem-1624 }
UKM ARE optional
SMIME-CAPS { IDENTIFIED BY id-alg-ml-kem-1024 } }

-- Updates for the SMIME-CAPS Set from RFC 5911

Prat, et al. Standards Track Page 11

RFC 9936 ML-KEM in the CMS February 2026

SMimeCapsSet SMIME-CAPS ::=
{ kema-ml-kem-512.&smimeCaps |
kema-ml-kem-768.&smimeCaps |
kema-ml-kem-1024.&smimeCaps |
kda-hkdf-with-sha256.&smimeCaps |
kwa-aes128-wrap.&smimeCaps |
kwa-aes256-wrap.&smimeCaps,

-}

END
<CODE ENDS>

Appendix B. Parameter Set Security and Sizes

Instead of defining the strength of a quantum algorithm using the imprecise notion of bits of
security, NIST has defined security levels by picking a reference scheme, which is expected to
offer notable levels of resistance to both quantum and classical attacks. To wit, a KEM algorithm
that achieves NIST Post-Quantum Cryptography (PQC) security must require computational
resources to break IND-CCA2 security comparable or greater than that required for key search
on AES-128, AES-192, and AES-256 for Levels 1, 3, and 5, respectively. Levels 2 and 4 use collision
search for SHA-256 and SHA-384 as reference.

Parameter Level Encap. Key Decap. Key Ciphertext Shared Secret
Set Size Size Size Size
ML-KEM-512 1 800 1632 768 32
ML-KEM-768 3 1184 2400 1088 32
ML-KEM-1024 5 1568 3168 1568 32

Table 2: ML-KEM parameter Sets, NIST Security Level, and Sizes in Bytes

Appendix C. ML-KEM CMS Authenticated-Enveloped-Data
Example

This example shows the establishment of an AES-128 content-encryption key using:

* ML-KEM-512;
* KEMRecipientInfo key derivation using HKDF with SHA-256; and
* KEMRecipientInfo key wrap using AES-128-KEYWRAP.

In real-world use, the originator would encrypt the content- encryption key in a manner that
would allow decryption with their own private key as well as the recipient's private key. This is
omitted in an attempt to simplify the example.

Prat, et al. Standards Track Page 12

RFC 9936 ML-KEM in the CMS February 2026

C.1. Originator CMS Processing
Alice obtains Bob's ML-KEM-512 public key:

————— BEGIN PUBLIC KEY-----
MIIDMjALBglghkgBZQMEBAEDggMhADmMVgV5ZfRBDVc8pqlMzyTJRhp1bzb5IcST2
Ari2pmwWxHYWSK12XPXYAGtRXpBafwrAdrDGLvoygVPnylcBaZ8TBfHmvG+Qs0Sh
aTUSts6ZKouAFt38GmYsfj+WGcvYad13GvMIlszVkY rGy3dGbF53mzZbWf/mqvJdQ
Pyx7fi@ADYZFD7GAfKTKvaR1lgloxx4mht6SRqzhydl0yDQtxkg+iE81AkOFrg7gS
Tmn2XmLLUADcw3qpoP/30XDEdy81fSQYnKb1MFVow0I3ajdipoxgX1Y8XSCVcuD8
dTLKKUcpU1VntfxBPF6HktJGRTbMgI+YrddGZPFBVm+QF gkKVBgpqYoEZM5BqL tE
wtT6PCwglGBY jVvFKGNxMm5jRIg00zDUpFgqasteDj3/2tTrgWgMafWRrevpsRZM1
JqPDAVYZvplMIRwWgMcBbNEeDbLIVC+GCna5rBMVTXPOUbjkrp5dBFyD5JPSQpaxU
1fITVtVQt4KmTBaItrZVvMeEIZekNML2Vjtbfwmni8xIgjJ4NWHRbOY6tnVUAAUH
gVcMZmBLgXrRJSKUC26LAYYaS1pOUZuLb+UUiaUHI5L1h2JscTd2V10zgGocjicy
r5fCaA9RZmMxx0uLvAQxxPloMt rxs8RVKPuhU/bHixwZhwKUfMBzdyekb7U70R31
yOGRNGhZUWy2rXJADzzyCbI2rvNaWArIfrPjD6/WaXPKin3SZ1rOH30XthQzzRr4
D3cIhp9mVIhJeYCxrBCgzctjagDthoGzXkKRJMgANQcluF+DperDpKPMFgCQPmUp
NWC5szblrw1SnawaBIEZMCy3qbzBEL1IUb8CEX8ZncSFqFK3Rz8JuDGmgx1bVMC3
kNI1z2u5LZRiomzbM921Ejx6rw4molLg2Ve6ii/00BOBCclAY/WuuS2Ac9huqtxp6PT
UZejQ+dLSicsE11UCJZCbYW31YB70KabmH7DciXHtEZzbEt3kU5tKsII2NoPwS/eg
NMXEHf6DChsWLgsyQzQ2LwhKFEZ3IzRLrdAA+NjFN8SPmY8FMHzr0@e3guBw7xZoG
WhttY7Js

————— END PUBLIC KEY-----

Bob's ML-KEM-512 public key has the following key identifier:
599788C37AED40BOEE405D1B2A3366AB17D824A51

Alice generates a shared secret and ciphertext using Bob's ML-KEM-512 public key:

Shared secret:
7DF12D412AE299A24FDE6D7C3BB8E3194C80AD3C733DCF2775E09FEBBEDB86D8

Ciphertext:

Prat, et al. Standards Track Page 13

RFC 9936 ML-KEM in the CMS February 2026

3EA4BFC6CAB90E2C8AF76E2727AB38EO652D9515986FE186827FEB4E596E421B
85FD459CC78997372C9DE31D191B39C1D5A3EB6DDB56AADEDE765CC390FDBBC2
F88CB175681D4201B81CCDFCB24FEF13AF2F5ATABCF8D8AF384F02A010A6E919
F1987A5E9B1COE2D3FO7F58A9FA539CE86CC149910A1692COCA4CEQECE4EEED2
E6699CB976332452DE4A2EB5CA61F7B081330C34798EF712A24E59C33CEATF1F
9E6D4FBF3743A38467430011336F62D870792B866BEFCD1D1B365BED1952673D
3A5B0BC20B386B4EFD1CF63FD376BD47CCC46AC4DD8EC66B0O47C4C95ACFF1CFDO
28A419B002FDA1B617CBA61D2E91CFE8FFFBCB8FFD4D5F6AD8B158C219E36DC5
1405DCOCOB234979AC658E72BDDF1B6773B96B2AE3E4ADO7BE86048040C016743
6FA839E7529BOOCCI9AB55A2F25DB63CCI9F557594E691C11E553D4A3EBC760F5F
T19ES5FE144838B4C7D1591DA9B5D467494FD9CAC52CC5504060399DBDB72298EB
9A4C017BBO786FDC7D9D7AA57ADBB8B61C34DE1E288B2AB728171DCE143CD169
53F984C1AEDS559E56BAAOCE658D32CCE42F44075064CD7A579ADOEF9B77135EAA
39B6F93A3A2E5997807F06361C83F4E67F8E3F9CF68316011514F5D85A181CEA
D714CD4940E4EBACO1D66528DA32F89CEAO428E8EBCADCF8AA188COF62E85B19
57655B7FE2B8D7973B7A7226B66D93BF7B232F3DCF653C84B4ECF1A9920DB194
9AD750B546A5552A20E54969719B8COCO7056FCB7E574AD2A32EC95001DDE844
81BE77DO39EDSBF74262ECF3981F1B00D3366A9C2EQ61C47E241A061C6249560
D2B8446A480C38C28BA989D9F68ADCA4BBAF2A20B47E4923128C72342D597FDA2
59DEOB83C2656D6B77E799B319324AA50B1D659C2A56029B7453C5F3BA5243D9
FA749D917C40D9D101E453BC8B10E42A7C089323C026F783E100BOFAGE701442
4DA6FA3792BC957EE8219D016B773F28FEDCC962A485ABAFFEC023281971E29A
A689839ECFD2619E92287CD230DB26A2507CC500EB1C7A5293B5FE917AE29BF1
AD350124F8A311635214B411DB9F67D3B85BD715018537EA45B41F41B4C66051

Alice encodes the CMSORIforKEMOtherInfo:

3010300B06096086480165030401050260110

Alice derives the key-encryption key from the shared secret and CMSORIforKEMOtherInfo using
HKDF with SHA-256:

CF453A3E2BAEOA78701B8206C185A008

Alice randomly generates a 128-bit content-encryption key:

C5153005588269A0A59F3C01943FDD56

Alice uses AES-128-KEYWRAP to encrypt the content-encryption key with the key-encryption key:

CO50E4392F9C14DDBAC2220203F317D701F94F9DD92778F5

Alice encrypts the padded content using AES-128-GCM with the content-encryption key and
encodes the AuthEnvelopedData (using KEMRecipientInfo) and ContentInfo, and then sends the
result to Bob.

The Base64-encoded result is:

Prat, et al. Standards Track Page 14

RFC 9936 ML-KEM in the CMS February 2026

————— BEGIN CMS-----
MIID4gYLKoZIhvcNAQkQARegggPRMIIDzQIBADGCA3ikggNOBgsqhkiGOwOBCRAN
AzCCA2MCAQCAFFmXiMN67UAO5AXRsgM2arF9gkpRMAsGCWCGSAF1AWQEAQSCAwWA+
pA/GygkOLIr3bicnqzjgZS2VFZhv4YaCf+hOWW5CG4X9RZzHiZc3LJ3 jHRkbOCHV
0+tt21aq3t52XM0Q/bvC+IyxdWgdQgG4HM38sk /vVE68vIWhq8+NivOE8CoBCm6RNX
mHpemxwOLT8H9YqfpTnOhswUmRChaSwMpM40zk7uBuZpnlL12MyRS3koutcph97CB
MwwBeY73EqJOWcM86h8fnm1PvzdDo4RnQWARM29i2HB5K4Zr780dGzZb7R1SZz06
Wwwgs4a079HPY /03a9R8zEasTdjsZrBHxMlaz /HPOCikGbAC/aG2F8umHS6Rz+j /
+8uP/U1fatixWMIZ423FFAXcDAsjSXmsZY5yvd8bZ305ayrj5NB76GBIBAWBZONv
gDnnUpsAzJq1Wi8122PMn1V110aRwR5VPUo+VHYPXxn1l/hRIOLTHOVkdgbXUZ01P
2crFLMVQQGASnb23IpjrmkwBewB4b9x9nXqletudthwO3h4o0iyq3KBcdzhQ8OW1T
+YTBrtVZ5WugD0ZY0Oyz0QvRAdQTNeleaB0+bdxNeqjm2+To6L1mXgH8GNhyD90Z /
jj+c9oMWARUU9dhaGBzq1xTNSUDk66wB1mU02 jL4N00EKOjrytz4ghiMn2LoWx1X
ZVt/4rjX1lzt6cia2bZ0/eyMvPc91PISO7PGpkg2x1JrXULVGpVUqIOVJCXGbjAwH
BW/LfldKegMuyVAB3ehEgb530DntW/dCYuzzmB8bANM2apwuBhxH4kGgYcYk1WDS
uERgSAw4woupidn2itxLuvKiCOfkk jEoxyNC1Zf901neC4PCBW1rd+eZsxkySquUL
HWWcK1YCm3RTxfO06UkPZ+nSdkXxA2dEB5F08ixDkKnwIkyPAJveD4QC5+m5wFEJN
pvo3kryVfughnQFrdz8o/tzJYqSFq6/+wCMoGXHimqaJg57POmGekih86jDbJqJQ
fMUA6xx6Up01/pF64pvxrTUBJP1ijEWNSFLQR259n87hb1xUBhTfqRbQfQbTGYFEwW
DQYLKoZIhvcNAQkQAxwCARAwWCWYJYIZIAWUDBAEFBBjAUOQ5L5wU3QrCIgID8xfX
Af1PndknePUwOgYJKoZIhvcNAQcBMB4GCWCGSAF1AwQBBjARBAxcpXRouBvw042n
GGWCARCADZTIaJqZ0s00GS+muggEEFzxeGxXx0ArVPyTwwpKRTM=

This result decodes to:

0@ 994: SEQUENCE {
4 11: OBJECT IDENTIFIER
: authEnvelopedData (1 2 848 113549 1 9 16 1 23)
17 977: [0] {
21 973: SEQUENCE {

25 1: INTEGER ©
28 888: SET {
32 884: [4] {
36 11: OBJECT IDENTIFIER '1 2 848 113549 1 9 16 13 3'
49 867: SEQUENCE {
53 1: INTEGER ©
56 20: [0]
: 59 97 88 C3 7A ED 48 OE E4 05 D1 B2 A3 36 6A B1
- 7D 82 4A 51
78 11: SEQUENCE {
80 9: OBJECT IDENTIFIER '2 16 848 1 101 3 4 4 1'
: }
91 768: OCTET STRING

3E A4 OF C6 CA 09 OE 2C 8A F7 6E 27 27 AB 38 E@
65 2D 95 15 98 6F E1 86 82 7F E8 4E 59 6E 42 1B
85 FD 45 9C C7 89 97 37 2C 9D E3 1D 19 1B 39 C1
D5 A3 EB 6D DB 56 AA DE DE 76 5C C3 90 FD BB C2
F8 8C B1 75 68 1D 42 01 B8 1C CD FC B2 4F EF 13
AF 2F 5A 1A BC F8 D8 AF 38 4F 02 A0 10 A6 E9 19
F1 98 7A 5E 9B 1C OE 2D 3F ©7 F5 8A 9F A5 39 CE
86 CC 14 99 10 A1 69 2C ©C A4 CE OE CE 4E EE D2
E6 69 9C B9 76 33 24 52 DE 4A 2E B5 CA 61 F7 B@
81 33 0C 34 79 8E F7 12 A2 4E 59 C3 3C EA 1F 1F
9E 6D 4F BF 37 43 A3 84 67 43 00 11 33 6F 62 D8

Prat, et al. Standards Track Page 15

RFC 9936

863
865

878
881
883

894

920
922
933
935

946

Prat, et al.

58
30:

17+

B8 5B

D7

15

01

SEQUENCE {
OBJECT IDENTIFIER

}
INTEGER 16
SEQUENCE {

OBJECT IDENTIFIER

h
OCTET STRING

ML-KEM in the CMS

aes128-wrap (2 16 8406 1 101 3 4 1 5)

hkdfWithSha256 (1 2 8406 113549 1 9 16 3

CoO 50 E4 39 2F 9C 14 DD BA C2 22 02 @3 F3 17
01 F9 4F 9D D9 27 78 F5

}
}

}
SEQUENCE {
OBJECT IDENTIFIER data (1 2 846 113549 1 7 1)
SEQUENCE {
OBJECT IDENTIFIER
aes128-GCM (2 16 840 1 101 3 4 1 6)

SEQUENCE {

Standards Track

D7

February 2026

Page 16

RFC 9936 ML-KEM in the CMS February 2026

948 12: OCTET STRING 5C A5 74 68 B8 1B F@ 3B 8D A7 18 6C
962 1: INTEGER 16
. }}
965 13: [8] 94 C8 68 9A 99 D2 C3 8E 19 2F A6 BA 08
: }
980 16: OCTET STRING
: 5C F1 78 6C 57 C7 48 2B 54 FC 93 C3 @A 4A 45 33
}
}
}

C.2. Recipient CMS Processing
Bob's ML-KEM-512 private key:

----- BEGIN PRIVATE KEY-----
MFQCAQAWCWYJYIZIAWUDBAQBBEKAQAABAGMEBQYHCAKKCWWNDg8QERITFBUWFxgZ
GhscHR4FICEiIyQlJicoKSorLCOuLzAXMjMBNTY30Dk60zwIP 8=

----- END PRIVATE KEY-----

Bob decapsulates the ciphertext in the KEMRecipientInfo to get the ML-KEM-512 shared secret,
encodes the CMSORIforKEMOtherInfo, derives the key-encryption key from the shared secret
and the DER-encoded CMSORIforKEMOtherInfo using HKDF with SHA-256, uses AES-128-
KEYWRAP to decrypt the content-encryption key with the key-encryption key, and decrypts the
encrypted contents with the content-encryption key, revealing the plaintext content:

Hello, world!

Acknowledgements

This document borrows heavily from [RFC9690], [FIPS203], [RFC9935], and [IKEv2-MLKEM].
Thanks go to the authors of those documents. "Copying always makes things easier and less
error prone." - [RFC8411].

Thanks to Carl Wallace, Jonathan Hammel, and Sean Turner for the detailed review and Carl
Wallace and Philippe Cece for interoperability testing for the examples.

Authors' Addresses

Julien Prat

CryptoNext Security

16, Boulevard Saint-Germain

75005 Paris

France

Email: julien.prat@cryptonext-security.com

Prat, et al. Standards Track Page 17

mailto:julien.prat@cryptonext-security.com

RFC 9936 ML-KEM in the CMS February 2026

Mike Ounsworth

Entrust Limited

2500 Solandt Road -- Suite 100
Ottawa Ontario K2K 3G5

Canada

Email: mike.ounsworth@entrust.com

Daniel Van Geest

CryptoNext Security

16, Boulevard Saint-Germain

75005 Paris

France

Email: daniel.vangeest@cryptonext-security.com

Prat, et al. Standards Track Page 18

mailto:mike.ounsworth@entrust.com
mailto:daniel.vangeest@cryptonext-security.com

	RFC 9936
	Use of ML-KEM in the Cryptographic Message Syntax (CMS)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Conventions and Terminology
	1.2. ML-KEM

	2. Use of the ML-KEM Algorithm in the CMS
	2.1. RecipientInfo Conventions
	2.2. Underlying Components
	2.2.1. Use of the HKDF-Based Key Derivation Function

	2.3. Certificate Conventions
	2.4. SMIME Capabilities Attribute Conventions

	3. Identifiers
	4. Security Considerations
	5. IANA Considerations
	6. References
	6.1. Normative References
	6.2. Informative References

	Appendix A. ASN.1 Module
	Appendix B. Parameter Set Security and Sizes
	Appendix C. ML-KEM CMS Authenticated-Enveloped-Data Example
	C.1. Originator CMS Processing
	C.2. Recipient CMS Processing

	Acknowledgements
	Authors' Addresses

