
RFC 9868
Transport Options for UDP

Abstract
Transport protocols are extended through the use of transport header options. This document
updates RFC 768 (UDP) by indicating the location, syntax, and semantics for UDP transport layer
options within the surplus area after the end of the UDP user data but before the end of the IP
datagram.

Stream: Internet Engineering Task Force (IETF)
RFC: 9868
Updates: 768
Category: Standards Track
Published: September 2025
ISSN: 2070-1721
Authors: J. Touch

Independent Consultant
C. Heard, Ed.
Unaffiliated

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9868

Copyright Notice
Copyright (c) 2025 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Touch & Heard Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9868
https://www.rfc-editor.org/rfc/rfc768
https://www.rfc-editor.org/info/rfc9868
https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

2. Conventions Used in This Document

3. Terminology

4. Background

5. UDP Option Intended Uses

6. UDP Option Design Principles

7. The UDP Option Area

8. The UDP Surplus Area Structure

9. The Option Checksum (OCS)

10. UDP Options

11. SAFE UDP Options

11.1. End of Options List (EOL)

11.2. No Operation (NOP)

11.3. Additional Payload Checksum (APC)

11.4. Fragmentation (FRAG)

11.5. Maximum Datagram Size (MDS)

11.6. Maximum Reassembled Datagram Size (MRDS)

11.7. Echo Request (REQ) and Echo Response (RES)

11.8. Timestamps (TIME)

11.9. Authentication (AUTH), RESERVED Only

11.10. Experimental (EXP)

12. UNSAFE Options

12.1. UNSAFE Compression (UCMP)

12.2. UNSAFE Encryption (UENC)

12.3. UNSAFE Experimental (UEXP)

13. Rules for Designing New Options

14. Option Inclusion and Processing

15. UDP API Extensions

3

4

4

5

6

6

8

10

11

12

16

16

17

18

19

25

26

27

28

29

29

30

31

31

31

31

32

34

RFC 9868 Transport Options for UDP September 2025

Touch & Heard Standards Track Page 2

16. UDP Options Are for Transport, Not Transit

17. UDP Options vs. UDP-Lite

18. Interactions with Legacy Devices

19. Options in a Stateless, Unreliable Transport Protocol

20. UDP Option State Caching

21. Updates to RFC 768

22. Interactions with Other RFCs (and drafts)

23. Multicast and Broadcast Considerations

24. Network Management Considerations

25. Security Considerations

25.1. General Considerations Regarding the Use of Options

25.2. Considerations Regarding On-Path Attacks

25.3. Considerations Regarding Option Processing

25.4. Considerations for Fragmentation

25.5. Considerations for Providing UDP Security

25.6. Considerations Regarding Middleboxes

26. IANA Considerations

27. References

27.1. Normative References

27.2. Informative References

Appendix A. Implementation Information

Acknowledgments

Authors' Addresses

35

36

36

37

37

38

38

39

39

39

39

40

41

41

41

42

42

43

43

44

48

51

51

1. Introduction
Transport protocols use options as a way to extend their capabilities. TCP , the Stream
Control Transmission Protocol (SCTP) , and the Datagram Congestion Control Protocol
(DCCP) include space for these options, but UDP currently does not. This
document updates RFC 768 with an extension to UDP that provides space for transport options

[RFC9293]
[RFC9260]

[RFC4340] [RFC0768]

RFC 9868 Transport Options for UDP September 2025

Touch & Heard Standards Track Page 3

including their generic syntax and semantics for their use in UDP's stateless, unreliable message
protocol. The details of the impact on RFC 768 are provided in Section 21. This extension does
not apply to UDP-Lite, as discussed further in Section 17.

2. Conventions Used in This Document
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

In this document, the characters ">>" preceding an indented line(s) indicate a statement using
the key words listed above. This convention aids reviewers in quickly identifying or finding the
portions of this RFC covered by these key words.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

IP datagram :

Must-support options:

SAFE options:

Socket pair:

Surplus area:

UDP packet:

UDP fragment:

(UDP) User data:

UDP Length:

3. Terminology
The following terminology is used in this document:

An IP packet, composed of the IP header (including any IPv4
options) and an IP payload area (including any IPv6 extension headers or other shim
headers).

UDP options that all implementations are required to support. Their use
in individual UDP packets is optional.

UDP options that are designed to be safe to ignore for a receiver that does not
understand them. Such options do not alter the UDP user data or signal a change in what its
contents represent.

A pair of sockets defining a UDP exchange, defined by a remote socket and a local
socket, each composed of an IP address and UDP port number (most widely known from TCP

).

The area of an IP payload that follows a UDP packet; this area is used for UDP
options in this document.

The more contemporary term used herein to refer to a user datagram .

One or more components of a UDP packet and its UDP options that enable
transmission over multiple IP payloads, larger than permitted by the maximum size of a
single IP packet; note that each UDP fragment is itself transmitted as a UDP packet with its
own options.

The user data field of a UDP packet .

The length field of a UDP header .

[RFC0791] [RFC8200]

[RFC0793]

[RFC0768]

[RFC0768]

[RFC0768]

RFC 9868 Transport Options for UDP September 2025

Touch & Heard Standards Track Page 4

UNSAFE options:

User:

User datagram:

UDP options that are not designed to be safe for a receiver that does not
understand them to ignore. Such options could alter the UDP user data or signal a change in
what its contents represent, but there are restrictions on how they can be transmitted; these
restrictions are noted in Sections 10 and 12.

The upper layer application, protocol, or service that produces and consumes content
that UDP transfers.

A UDP packet, composed of a UDP header and UDP payload; as discussed
herein, that payload need not extend to the end of the IP datagram. In this document, the
original intent that a UDP datagram corresponds to the user portion of a single IP datagram is
redefined, where a UDP datagram can span more than one IP datagram through UDP
fragmentation.

4. Background
Many protocols include a default, invariant header and an area for header options that varies
from packet to packet. These options enable the protocol to be extended for use in particular
environments or in ways unforeseen by the original designers. Examples include TCP's
Maximum Segment Size (MSS), Window Scale, Timestamp, and Authentication Options

.

Header options are used both in stateful (connection-oriented, e.g., TCP , SCTP
, and DCCP) and stateless (connectionless, e.g., IPv4 and IPv6
) protocols. In stateful protocols, they can help extend the way in which state is

managed. In stateless protocols, their effect is often limited to individual packets, but they can
have an aggregate effect on a sequence of packets as well.

UDP is one of the most popular protocols that lacks space for header options . The UDP
header was intended to be a minimal addition to IP, providing only port numbers and a
checksum for error detection. This document extends UDP to provide a trailer area for such
options, located after the UDP user data.

UDP options are possible because UDP includes its own length field, separate from that of the IP
header. Other transport protocols infer transport payload length from the IP datagram length
(TCP, DCCP, and SCTP). Internet historians have suggested a number of possible reasons why the
design of UDP includes this field, e.g., to support multiple UDP packets within the same IP
datagram or to indicate the length of the UDP user data as distinct from zero padding required
for systems that require writes that are not byte-aligned. These suggestions are not consistent
with earlier versions of UDP or with the concurrent design of multi-segment, multiplexing
protocols; however, the real reason remains unknown. Regardless, this field presents an
opportunity to differentiate the UDP user data from the implied transport payload length, which
this document leverages to support a trailer options field.

[RFC9293]
[RFC5925] [RFC7323]

[RFC9293]
[RFC9260] [RFC4340] [RFC0791]
[RFC8200]

[RFC0768]

RFC 9868 Transport Options for UDP September 2025

Touch & Heard Standards Track Page 5

There are other ways to include additional header fields or options in protocols that otherwise
are not extensible. In particular, in- band encoding can be used to differentiate transport
payload from additional fields, such as was proposed in . This approach can cause
complications for interactions with legacy devices and is thus not considered further in this
document.

IPv6 Teredo extensions (TEs) use a similar inconsistency between UDP and
IPv6 packet lengths to support trailers, but in this case, the values differ between the UDP header
and an IPv6 length contained as the payload of the UDP user data. This allows IPv6 trailers in the
UDP user data but has no relation to the surplus area discussed in this document. As a
consequence, TEs are compatible with UDP options.

[Hi15]

[RFC4380] [RFC6081]

5. UDP Option Intended Uses
UDP options can be used to provide a soft control plane to UDP. They enable capabilities
available in other transport protocols, such as fragmentation and reassembly, that enable UDP
frames larger than the IP MTU to traverse devices that rely on transport ports, e.g., Network
Address Translations (NATs), without additional mechanisms or state. They add features that
could, in the future, protect transport integrity and validate source identity (authentication), as
well as those that could encrypt the user payload while still protecting the UDP transport header
-- unlike Datagram Transport Layer Security (DTLS) . They also enable Packetization
Layer Path MTU Discovery (PLPMTUD) over UDP, known as Datagram Packetization Layer Path
Maximum Transmission Unit Discovery (DPLPMTUD) , providing a means for probe
packet validation without affecting the user data plane, as well as providing explicit indication
of the receiver transport reassembly size.

UDP originally assumed that such capabilities would be provided by the user or by a layer above
UDP . However, enough protocols have evolved to use UDP directly, so such an
intermediate layer would be difficult to deploy for legacy applications. UDP options leverage the
opportunity presented by the surplus area to enable these extensions within the UDP transport
layer itself. Among the use cases where this approach could be of benefit are request- response
protocols such as DNS over UDP .

[RFC9147]

[RFC9869]

[RFC0768]

[He24]

6. UDP Option Design Principles
UDP options have been designed based on the following core principles. Each is an observation
about (preexisting) UDP in the absence of these extensions that this document does
not intend to change or a lesson learned from other protocol designs.

UDP is stateless; UDP options do not change that fact.

The state required or maintained by the endpoints is intended to be managed either by the
application or a layer/library on behalf of the application. Reassembly of fragments is the
only limited exception where this document introduces a notion of state to UDP.

UDP is unidirectional; UDP options do not change that fact.

[RFC0768]

1.

2.

RFC 9868 Transport Options for UDP September 2025

Touch & Heard Standards Track Page 6

Responses to options are initiated by the application or a layer/library on behalf of the
application. A mechanism that requires bidirectionality needs to be defined in a separate
document.

UDP options have no length limit separate from that of the UDP packet itself.

Past experience with other protocols confirms that static length limits will always need to be
exceeded, e.g., as has been an issue with TCP options and IPv4 addresses. Each
implementation can limit how long/many options there are, but a specification is more
robust when it does not introduce such a limit.

UDP options are not intended to replace or replicate other protocols.

This includes NTP, ICMP (notably echo), etc. UDP options are intended to introduce features
useful for applications, not to either replace these other protocols nor instrument UDP to
replace the need for network testing devices.

UDP options are a framework, not a protocol.

Options can be defined in this initial document even when the details are not sufficient to
specify a complete protocol. Uses of such options could then be described or supplemented
in other documents. Examples herein include REQ/RES and TIME; in both cases, the option
format is defined, but the protocol that uses these is specified elsewhere (REQ/RES for
DPLPMTUD) or left undefined (TIME).

The UDP option mechanism and UDP options themselves are intended to default to the same
behavior experienced by a legacy receiver.

By default, even when option checksums (OCS, APC), authentication, or decryption fail, all
received packets (with the exception of UDP fragments) are passed (possibly with an empty
data payload) to the user application. Options that do not modify user data are intended to
(by default) result in the user data also being passed, even if, e.g., option checksums or
authentication fails. It is always the user's or application's obligation to override this default
behavior explicitly.

These principles are intended to enable the design and use of UDP options with minimal impact
to legacy UDP endpoints, preferably none. UDP is -- and remains -- a minimal transport protocol.
Additional capability is explicitly activated by user applications or libraries acting on their
behalf.

Finally, UDP options do not attempt to match the number of zero- length UDP datagrams
received by legacy and option-aware receivers from a source using UDP fragmentation (see
Section 11.4). Legacy receivers interpret every UDP fragment as a zero-length packet (because
they do not perform reassembly), but option-aware receivers would reassemble the packet as a
non-zero-length packet. Zero-length UDP packets have been used as "liveness" indicators (see

), but such use is dangerous because they lack unique identifiers (the IPv6
base header has none, and the IPv4 ID field is deprecated for such use).

3.

4.

5.

[RFC9869]

6.

Section 5 of [RFC8085]
[RFC6994]

RFC 9868 Transport Options for UDP September 2025

Touch & Heard Standards Track Page 7

https://www.rfc-editor.org/rfc/rfc8085#section-5

7. The UDP Option Area
The UDP transport header includes demultiplexing and service identification (port numbers), an
error detection checksum, and a field that indicates the UDP datagram length (including UDP
header). The UDP Length field is typically redundant with the size of the maximum space
available as a transport protocol payload, as determined by the IP header (see details in Section
18). The UDP option area is created when the UDP Length indicates a smaller transport payload
than implied by the IP header.

For IPv4, the IP Total Length field indicates the total IP datagram length (including the IP
header), and the size of the IP options is indicated in the IP header (in 4-byte words) as the
"Internet Header Length" (IHL) , as shown in Figure 1. In exceptional cases, the
Protocol field in IPv4 might not indicate UDP (i.e., 17), e.g., when intervening shim headers are
present such as IP Security (IPsec) or for IP Payload Compression (IPComp) .

The upper bound for UDP Length when Protocol = 17 is given by:

If shim headers are present, this upper bound must be reduced by the sum of the lengths of shim
headers that precede the UDP header.

[RFC0791]

[RFC4301] [RFC3173]

 UDP_Length <= IPv4_Total_Length - IPv4_IHL * 4

Figure 1: IPv4 Datagram with UDP Header

+-+
|Version| IHL | DSCP |ECN| Total Length |
+-+
| Identification |Flags| Fragment Offset |
+-+
| Time to Live | Proto=17 (UDP)| Header Checksum |
+-+
| Source Address |
+-+
| Destination Address |
+-+
... zero or more IP Options (using space as indicated by IHL) ...
+-+
... zero or more shim headers (each indicating size) ...
+-+
| UDP Source Port | UDP Destination Port |
+-+
| UDP Length | UDP Checksum |
+-+

RFC 9868 Transport Options for UDP September 2025

Touch & Heard Standards Track Page 8

For IPv6, the IP Payload Length field indicates the transport payload after the base IPv6 header,
which includes the IPv6 extension headers and space available for the transport protocol, as
shown in Figure 2 . Note that the Next Header field in IPv6 might not indicate UDP (i.e.,
17), e.g., when intervening IP extension headers are present. For IPv6, the lengths of any
additional IP extensions are indicated within each extension , so the upper bound for
UDP Length is given by:

In both cases, the space available for the UDP packet is indicated by IP, either directly in the base
header or by adding information in the shim headers or extensions. In either case, this
document will refer to this available space as the "IP transport payload".

As a result of this redundancy, there is an opportunity to use the UDP Length field as a way to
break up the IP transport payload into two areas -- that intended as UDP user data and an
additional "surplus area" (as shown in Figure 3).

[RFC8200]

[RFC8200]

 UDP_Length <= IPv6_Payload_Length - sum(extension header lengths)

Figure 2: IPv6 Datagram with UDP Header

+-+
|Version| Traffic Class | Flow Label |
+-+
| Payload Length | Next Header | Hop Limit |
+-+
...
| Source Address (128 bits) |
...
+-+
...
| Destination Address (128 bits) |
...
+-+
... zero or more IP Extension headers (each indicating size) ...
+-+
| UDP Source Port | UDP Destination Port |
+-+
| UDP Length | UDP Checksum |
+-+

RFC 9868 Transport Options for UDP September 2025

Touch & Heard Standards Track Page 9

In most cases, the IP transport payload and UDP Length point to the same location, indicating
that there is no surplus area. This is not a requirement of UDP (discussed further in
Section 18). This document uses the surplus area for UDP options.

The surplus area can commence at any valid byte offset, i.e., it need not be 16-bit or 32-bit
aligned. In effect, this document redefines the UDP Length field as a "trailer options offset".

Figure 3: IP Transport Payload vs. UDP Length

 IP transport payload
 <--->
+--------+---------+----------------------+------------------+
| IP Hdr | UDP Hdr | UDP user data | surplus area |
+--------+---------+----------------------+------------------+
 <------------------------------>
 UDP Length

[RFC0768]

8. The UDP Surplus Area Structure
UDP options use the entire surplus area, i.e., the contents of the IP payload after the last byte of
the UDP payload. They commence with a 2-byte Option Checksum (OCS) field aligned to the first
2- byte boundary (relative to the start of the IP datagram) of that area, adding zeroes before OCS
as needed for alignment. The UDP option area can be used with any UDP payload length
(including zero, i.e., a UDP Length of 8), as long as there remains enough space for the aligned
OCS and the options used.

>> UDP options begin at any UDP length offset.

>> Option area bytes used for alignment before the OCS be zero. If this is not the case, all
options be ignored and the surplus area silently discarded.

These alignment bytes, coupled with OCS as computed over the remainder of the surplus area,
ensure that the one's complement sum of the surplus area is zero. OCS is half-word (2-byte)
aligned to avoid the need for byte-swapping in its implementation.

The OCS contains an optional one's complement sum that detects errors in the surplus area,
which is not otherwise covered by the UDP checksum, as detailed in Section 9.

The remainder of the surplus area consists of options, all except two of which are defined using
a TLV (type, length, and optional value) syntax similar to that of TCP , as detailed in
Section 10 (types No Operation (NOP) and End of Options List (EOL) have an implicit length of
one byte). These options continue until the end of the surplus area or can end earlier using the
EOL option, followed by zeroes (discussed further in Section 10).

MAY

MUST
MUST

[RFC9293]

RFC 9868 Transport Options for UDP September 2025

Touch & Heard Standards Track Page 10

9. The Option Checksum (OCS)
The Option Checksum (OCS) option is a conventional Internet checksum that detects
errors in the surplus area. The OCS option contains a 16-bit checksum that is aligned to the first
2-byte boundary, preceded by zeroes for padding (if needed), as shown in Figure 4.

The OCS consists of a 16-bit Internet checksum , computed over the surplus area and
including the length of the surplus area as an unsigned 16-bit value. The OCS protects the
surplus area from errors in a similar way that the UDP checksum protects the UDP user data
(when not zero).

The primary purpose of the OCS is to detect existing nonstandard (i.e., non-option) uses of that
area and accidental errors. It is not intended to detect attacks, as discussed further in Section 25.
OCS is not intended to prevent future nonstandard uses of the surplus area nor does it enable
shared use with mechanisms that do not comply with UDP options.

The design enables traversal of errant middleboxes that incorrectly compute the UDP checksum
over the entire IP payload , rather than only the UDP header and UDP payload (as
indicated by the UDP header length). Because the OCS is computed over the surplus area and its
length and then inverted, the OCS effectively negates the effect that incorrectly including the
surplus has on the UDP checksum. As a result, when OCS is non-zero, the UDP checksum is the
same in either case.

>> The OCS be non-zero when the UDP checksum is non-zero.

>> When the UDP checksum is zero, the OCS be unused and is then indicated by a zero OCS
value.

>> UDP option implementations default to using the OCS (i.e., as a non-zero value); users
overriding that default take the risk of not detecting nonstandard uses of the option area (of
which there are none currently known).

Like the UDP checksum, the OCS is optional under certain circumstances and contains zero
when not used. UDP checksums can be zero for IPv4 and for IPv6 when the
UDP payload is already covered by another checksum, as might occur for tunnels . The
same exceptions apply to the OCS when used to detect bit errors; an additional exception occurs
for its use in the UDP datagram prior to fragmentation or after reassembly (see Section 11.4).

[RFC0791]

Figure 4: UDP OCS Format, Here Using One Zero Byte for Alignment

 +--------+--------+--------+--------+
 | UDP data | 0 |
 +--------+--------+--------+--------+
 | OCS | UDP options... |
 +--------+--------+--------+--------+

[RFC1071]

[Fa18] [Zu20]

MUST

MAY

MUST

[RFC0791] [RFC8200]
[RFC6935]

RFC 9868 Transport Options for UDP September 2025

Touch & Heard Standards Track Page 11

The benefits are similar to allowing UDP checksums to be zero, but the risks differ. The OCS is
additionally important to ensure packets with UDP options can traverse errant middleboxes

. When the cost of computing an OCS is negligible, it is better to use the OCS to ensure such
traversal. In cases where such traversal risks can safely be ignored, such as controlled
environments, over paths where traversal is validated, or where upper layer protocols
(applications, libraries, etc.) can adapt (by enabling the OCS when packet exchange fails), and
when bit errors at the UDP layer would be detected by other layers (as with the UDP checksum),
the OCS can be disabled, e.g., to conserve energy or processing resources or when performance
can be improved. This is why zeroing the OCS is only safe when UDP checksum is also zero and
why OCS might still be used in that case.

The OCS covers the surplus area as formatted for transmission and is processed immediately
upon reception.

>> If the receiver validation of the OCS fails, all options be ignored and the surplus area
silently discarded.

>> UDP user data that is validated by a correct UDP checksum by default be delivered to
the application layer, even if the OCS fails, unless the endpoints have negotiated otherwise for
this UDP packet's socket pair.

When not used (i.e., containing zero), the OCS is assumed to be "correct" for the purpose of
accepting UDP datagrams at a receiver (see Section 14).

[Zu20]

MUST

MUST

10. UDP Options
UDP options are a minimum of two bytes in length as shown in Figure 5, except only the one-
byte options No Operation (NOP) and End of Options List (EOL) described below.

The Kind field is always one byte and is named after the corresponding TCP field (though other
protocols refer to this as "Type"). The Length field, which indicates the length in bytes of the
entire option, including Kind and Length, is one byte for all lengths below 255 (including the
Kind and Length bytes). A Length of 255 indicates use of the UDP option extended format shown
in Figure 6. The Extended Length field is a 16-bit field in network standard byte order. The
length of the option refers to its Length field or Extended Length field, whichever is applicable.

Figure 5: UDP Option Default Format

 +--------+--------+-------
 | Kind | Length | (remainder of option...)
 +--------+--------+-------

RFC 9868 Transport Options for UDP September 2025

Touch & Heard Standards Track Page 12

>> The UDP length be at least as large as the UDP header (8) and no larger than the IP
transport payload. Datagrams with length values outside this range be silently dropped as
invalid and logged.

>> All logging be rate limited. Excess logging events can be coalesced and reported as a
count or can be silently dropped if needed to avoid resource overloading.

>> Option Lengths (or Extended Lengths, where applicable) smaller than the minimum for the
corresponding Kind be treated as an error. Such errors call into question the remainder of
the surplus area and thus result in all UDP options being silently discarded.

>> Any UDP option other than NOP or EOL whose length is 254 or less use the UDP option
default format shown in Figure 5. NOP and EOL never use either length format.

>> Any UDP option whose length is larger than 254 use the UDP option extended format
shown in Figure 6.

>> For compactness, UDP options use the smallest option format possible.

>> UDP options be interpreted in the order in which they occur in the surplus area or, in
the case of UDP fragments, in the order in which they appear in the UDP fragment option area
(see Section 11.4).

The following UDP options are currently defined:

Kind Length Meaning

0* - End of Options List (EOL)

1* - No Operation (NOP)

2* 6 Additional Payload Checksum (APC)

3* 10/12 Fragmentation (FRAG)

4* 4 Maximum Datagram Size (MDS)

5* 5 Maximum Reassembled Datagram Size (MRDS)

6* 6 Request (REQ)

Figure 6: UDP Option Extended Format

 +--------+--------+--------+--------+
 | Kind | 255 | Extended Length |
 +--------+--------+--------+--------+
 | (remainder of option...) |
 +--------+--------+--------+--------+

MUST
MUST

SHOULD

MUST
MUST

MUST

MUST

SHOULD

MUST

RFC 9868 Transport Options for UDP September 2025

Touch & Heard Standards Track Page 13

Kind Length Meaning

7* 6 Response (RES)

8 10 Timestamps (TIME)

9 (varies) RESERVED for Authentication (AUTH)

10-126 (varies) Unassigned (assignable by IANA)

127 (varies) RFC3692-style experiments (EXP)

128-191 Reserved

192 (varies) Reserved for Compression (UCMP)

193 (varies) Reserved for Encryption (UENC)

194-253 Unassigned-UNSAFE (assignable by IANA)

254 (varies) RFC3692-style experiments (UEXP)

255 Reserved-UNSAFE

Table 1

Options indicated by Kind values in the range 0..191 are known as SAFE options because they do
not interfere with use of that data by legacy endpoints or when the option is unsupported.
Options indicated by Kind values in the range 192..255 are known as UNSAFE options because
they might interfere with use by legacy receiving endpoints (e.g., an option that alters the UDP
data payload).

UNSAFE option nicknames are expected to begin with capital "U", which needs to be avoided for
SAFE option nicknames (see Section 26). RESERVED and RESERVED-UNSAFE are not assignable
by IANA and not otherwise defined at this time. The AUTH, UCMP, and UENC reservations are
intended for all future options supporting authentication, compression, and encryption,
respectively, and remain reserved until assigned for those uses.

Although the FRAG option modifies the original UDP payload contents (i.e., is UNSAFE with
respect to the original UDP payload), it is used only in subsequent fragments with zero-length
UDP user data payloads, thus is SAFE in actual use, as discussed further in Section 11.4.

These options are defined in the following subsections. Options 0 and 1 use the same values as
for TCP.

>> An endpoint supporting UDP options support those marked with an "*" above: EOL,
NOP, APC, FRAG, MDS, MRDS, REQ, and RES. This includes both recognizing and being able to
generate these options if configured to do so. These are called "must-support" options.

MUST

RFC 9868 Transport Options for UDP September 2025

Touch & Heard Standards Track Page 14

The set of must-support options is defined herein. New options are not eligible for this
designation.

>> All other SAFE options (without an "*") be implemented, and their use be
determined either out-of-band or negotiated, notably if needed to detect when options are
silently ignored by legacy receivers.

>> Receivers supporting UDP options silently ignore unknown or malformed SAFE options
(i.e., in the same way a legacy receiver would ignore all UDP options). An option is malformed
when its length does not indicate (one of) the value(s) stated in the option's specification. A
malformed FRAG option is an exception to this rule; it be treated as an unsupported
UNSAFE option.

>> Options with inherently invalid Length field values, i.e., those that indicate underruns of the
option itself or overruns of the surplus area (pointing past the end of the IP payload), be
treated as an indication of a malformed surplus area, and all options silently be discarded.

Receivers cannot generally treat unexpected option lengths as invalid, as this would
unnecessarily limit future revision of options (e.g., defining a new APC that is defined by having
a different length).

>> When UNSAFE options are present, the UDP user data be empty, and any transport
payload be contained in a FRAG option (see Section 11.4). Recall that such options may
alter the transport payload or signal a change in what its contents represent. This restriction
ensures their safe use in environments that might include legacy receivers (see Section 12),
because the transport payload occurs inside the FRAG option area and is silently discarded by
legacy receivers.

>> Receivers supporting UDP options that receive unsupported options in the UNSAFE range
 terminate all option processing and silently drop all UDP options in that datagram.

See Section 12 for further discussion of UNSAFE options.

>> Other than FRAG, NOP, EXP, and UEXP, each option occur more than once in a
single UDP datagram. If an option other than these four occurs more than once, a receiver
interpret only the first instance of that option and ignore later instances. Section 25
provides additional advice for Denial of Service (DoS) issues that involve large numbers of
options, whether valid, unknown, or repeating.

>> NOP occur multiple times, either in succession or between other options, for option
alignment. Additional repetition constraints are indicated in Section 11.2.

>> If FRAG occurs more than once, the options area be considered malformed and
 be processed.

>> EXP and UEXP occur more than once but occur more than once using the
same Experimental ID (ExID) (see Sections 11.10 and 12.3).

MAY SHOULD

MUST

SHALL

MUST
MUST

MUST
MUST

MUST MUST

SHOULD NOT
MUST

MUST

MAY

MUST MUST
NOT

MAY SHOULD NOT

RFC 9868 Transport Options for UDP September 2025

Touch & Heard Standards Track Page 15

>> Options other than OCS, AUTH, and UENC include fields whose values depend on
the contents of the surplus area.

AUTH and UENC are always computed as if their hash and the OCS are zero; the OCS is always
computed as if its contents are zero and after the AUTH or UENC hash has been computed.

>> Future options be defined as having an option field value dependent on the
content or presence of other options or on the remaining contents of the surplus area, i.e., the
area after the last option (presumably EOL).

If future options were to depend on the contents or presence of other options, interactions
between those values, the OCS, and the AUTH and UENC options could be unpredictable. This
does not prohibit options that modify later options (in order of appearance within a packet),
such as would typically be the case for compression (UCMP).

Note that there is no need to reserve area after the last UDP option for future uses, because any
such use can be supported by defining a new UDP option over that area instead. Using an option
for this purpose is safer than treating the region as an exception, because its use can be verified
based on option Kind and Length.

>> AUTH and UENC be used concurrently.

AUTH and UENC are never used together because UENC would serve both purposes.

>> "Must-support" options other than NOP and EOL be placed by the transmitter before
other SAFE UDP options. A receiver drop all UDP options if this ordering is not honored.
Such events be logged for diagnostic purposes.

The requirement that must-support options come before others is intended to allow for
endpoints to implement DoS protection, as discussed further in Section 25.

MUST NOT

MUST NOT

MUST NOT

MUST
MAY

MAY

11. SAFE UDP Options
SAFE UDP options can be silently ignored by legacy receivers without affecting the meaning of
the UDP user data. They stand in contrast to UNSAFE options, which modify UDP user data in
ways that render it unusable by legacy receivers (Section 12). The following subsections describe
SAFE options defined in this document.

11.1. End of Options List (EOL)
The End of Options List (EOL, Kind=0) option indicates that there are no more options. It is used
to indicate the end of the list of options without needing to use NOP options (see the following
section) as padding to fill all available option space.

RFC 9868 Transport Options for UDP September 2025

Touch & Heard Standards Track Page 16

>> When the UDP options do not consume the entire surplus area or the options area of a UDP
fragment, the last non-NOP option be EOL.

>> NOPs be used as padding before the EOL option. As a one-byte option, EOL need
not be otherwise aligned.

>> All bytes after EOL in the surplus area or the options area of a UDP fragment be set to
zero on transmit.

>> Bytes after EOL in the surplus area or the options area of a UDP fragment be checked as
being zero on receipt but be otherwise processed (except for OCS calculation, which
zeros would not affect) and be passed to the user.

>> If a receiver elects to check the bytes following EOL and finds that they are not all set to zero,
it silently discard the options area. In this case, the UDP user data be delivered to the
application layer, unless the socket has been explicitly configured to do otherwise, as decided by
the upper layer or negotiated with the other endpoint.

Requiring the post-option surplus area to be zero prevents side- channel uses of this area, instead
requiring that all use of the surplus area be UDP options supported by both endpoints. It is
useful to allow this area to be used for zero padding to increase the UDP datagram length
without affecting the UDP user data length, e.g., for UDP DPLPMTUD ().

Figure 7: UDP EOL Option Format

 +--------+
 | Kind=0 |
 +--------+

MUST

SHOULD NOT

MUST

MAY
MUST NOT

MUST NOT

MUST MUST

Section 4.1 of [RFC9869]

11.2. No Operation (NOP)
The No Operation (NOP, Kind=1) option is a one-byte placeholder, intended to be used as
padding, e.g., to align multi-byte options along 16-bit, 32-bit, or 64-bit boundaries.

>> UDP packets use more than seven consecutive NOPs, i.e., to support alignment
up to 8-byte boundaries. UDP packets use NOPs at the end of the options area as a
substitute for EOL followed by zero-fill. NOPs are intended to assist with alignment, not as other
padding or fill.

Figure 8: UDP NOP Option Format

 +--------+
 | Kind=1 |
 +--------+

SHOULD NOT
SHOULD NOT

RFC 9868 Transport Options for UDP September 2025

Touch & Heard Standards Track Page 17

https://www.rfc-editor.org/rfc/rfc9869#section-4.1

>> Receivers persistently experiencing packets with more than seven consecutive NOPs
log such events, at least occasionally, as a potential DoS indicator.

NOPs are not reported to the user, whether used per-datagram or per- fragment (as defined in
Section 11.4).

This issue is discussed further in Section 25.

SHOULD

11.3. Additional Payload Checksum (APC)
The Additional Payload Checksum (APC, Kind=2) option provides a stronger supplement to the
checksum in the UDP header, using a 32- bit Cyclic Redundancy Check (CRC) of the conventional
UDP user data payload only (excluding the IP pseudoheader, UDP header, and surplus area). It is
not an alternative to the UDP checksum because it does not cover the IP pseudoheader or UDP
header, and it is not a supplement to the OCS because the latter covers the surplus area only. Its
purpose is to detect user data errors that the UDP checksum might not detect.

A CRC32c has been chosen because of its ubiquity and use in other Internet protocols, including
Internet Small Computer System Interface (iSCSI) and SCTP. The option contains the
CRC32c in network standard byte order, as used for iSCSI.

When present, the APC always contains a valid CRC checksum. There are no reserved values,
including the value zero. A CRC value of zero is a potentially valid checksum. As such, it does not
indicate that the APC is not used; instead, the option would simply not be included if that were
the desired effect.

The APC does not protect the UDP pseudoheader; only the current UDP checksum provides that
protection (when used). The APC cannot provide that protection because it would need to be
updated whenever the UDP pseudoheader changed, e.g., during NAT address and port
translation (see).

>> UDP packets with incorrect APC checksums be passed to the application with an
indication of APC failure. This is the default behavior for APC.

>> Like all SAFE UDP options, the APC be silently ignored when failing, unless the receiver
has been explicitly configured to do otherwise.

[RFC3385]

Figure 9: UDP APC Option Format

 +--------+--------+--------+--------+
 | Kind=2 | Len=6 | CRC32c... |
 +--------+--------+--------+--------+
 | CRC32c (cont.) |
 +--------+--------+

[RFC1141]

SHOULD

MUST

RFC 9868 Transport Options for UDP September 2025

Touch & Heard Standards Track Page 18

Although all UDP option-aware endpoints support the APC (being in the required set), this
silently ignored behavior ensures that option- aware receivers operate the same as legacy
receivers unless overridden. Another reason is because the APC check could fail even where the
user data has not been corrupted, such as when its contents have been intentionally
overwritten, e.g., by a middlebox to update embedded port numbers or IP addresses. Such
overwrites could be intentional and not widely known; defaulting to silent ignore ensures that
option-aware endpoints do not change how users or applications operate unless explicitly
directed to do otherwise.

>> UDP packets with unrecognized APC lengths receive the same treatment as UDP packets
with incorrect APC checksums.

Ensuring that unrecognized APC lengths are treated as incorrect checksums enables future
variants of APC to be treated like APC.

The APC is reported to the user and useful only per-datagram, because fragments have no UDP
user data.

MUST

11.4. Fragmentation (FRAG)
The Fragmentation (FRAG, Kind=3) option supports UDP fragmentation and reassembly, which
can be used to transfer UDP messages larger than allowed by the IP receive MTU (Effective MTU
for Receiving (EMTU_R)). FRAG includes a copy of the same UDP transport ports in
each fragment, enabling them to traverse stateless Network Address (and port) Translation
(NAT) devices, in contrast to the behavior of IP fragments . FRAG is typically used with
the UDP MDS and MRDS options to enable more efficient use of large messages, both at the UDP
and IP layers. The design of FRAG is similar to that of the IPv6 Fragmentation Header ,
except that the UDP variant uses a 16-bit Offset measured in bytes, rather than IPv6's 13-bit
Fragment Offset measured in 8-byte units. This UDP variant avoids creating reserved fields.

The FRAG header also enables use of options that modify the contents of the UDP payload, such
as encryption (UENC, see Section 12.2). Like FRAG, such options would not be safely used on UDP
payloads because they would be misinterpreted by legacy receivers. FRAG allows use of these
options, either on fragments or on a whole, unfragmented message (i.e., an "atomic" fragment at
the UDP layer, similar to atomic IP datagrams). This is safe because FRAG hides the
payload from legacy receivers by placing it within the surplus area.

>> When FRAG is present, it come as early as possible in the UDP options list.

When present, placing FRAG first can simplify some implementations, notably those using
hardware acceleration that assume a fixed location for the FRAG option. However, there are
cases where FRAG cannot occur first, such as when combined with per-fragment UENC or UCMP.
In those cases, encryption or compression (or both) would precede FRAG when they also encrypt
or compress the fragment option itself. Additional cases could include recoding, such as could be
used to support Forward Error Correction (FEC) over a group of fragments. FRAG not being first
might result in software (so-called "slow path") option processing or might also be
accommodated via a small set of known cases.

[RFC1122]

[RFC4787]

[RFC8200]

[RFC6864]

SHOULD

RFC 9868 Transport Options for UDP September 2025

Touch & Heard Standards Track Page 19

>> When FRAG is present, the UDP user data be empty. If the user data is not empty, all
UDP options be silently ignored and the user data received sent to the user.

Legacy receivers interpret FRAG messages as zero-length user data UDP packets (i.e., UDP Length
field is 8, the length of just the UDP header), which would not affect the receiver unless the
presence of the UDP packet itself were a signal (see). In this manner, the
FRAG option also helps hide UNSAFE options so they can be used more safely in the presence of
legacy receivers.

The FRAG option has two formats: non-terminal fragments use the shorter variant (Figure 10)
and terminal fragments use the longer (Figure 11). The latter includes stand-alone fragments,
i.e., when data is contained in the FRAG option but reassembly is not required.

Most fields are common to both FRAG option formats. The option Len field indicates whether
there are more fragments (Len=10) or no more fragments (Len=12).

The Frag. Start field indicates the location of the beginning of the fragment data, measured from
the beginning of the UDP header of the fragment. The fragment data follows the remainder of the
UDP options and continues to the end of the IP datagram (i.e., the end of the surplus area). Those
options (i.e., any that precede or follow the FRAG option) are applied to this UDP fragment.

The Frag. Offset field indicates the location of this fragment relative to the original UDP datagram
(prior to fragmentation or after reassembly), measured from the start of the original UDP
datagram's header.

The Identification field is a 32-bit value that, when used in combination with the IP source
address, UDP source port, IP destination address, and UDP destination port, uniquely identifies
the original UDP datagram.

MUST
MUST

Section 5 of [RFC8085]

Figure 10: UDP Non-Terminal FRAG Option Format

 +--------+--------+--------+--------+
 | Kind=3 | Len=10 | Frag. Start |
 +--------+--------+--------+--------+
 | Identification |
 +--------+--------+--------+--------+
 | Frag. Offset |
 +--------+--------+

RFC 9868 Transport Options for UDP September 2025

Touch & Heard Standards Track Page 20

https://www.rfc-editor.org/rfc/rfc8085#section-5

The terminal FRAG option format adds a Reassembled Datagram Option Start (RDOS) pointer,
measured from the start of the original UDP datagram header, indicating the end of the
reassembled data and the start of the surplus area within the original UDP datagram. UDP
options that apply to the reassembled datagram are contained in the reassembled surplus area,
as indicated by RDOS. UDP options that occur within the fragment are processed on the
fragment itself. This allows either pre-reassembly or post-reassembly UDP option effects, such as
using UENC on each fragment while also using TIME on the reassembled datagram for round-
trip latency measurements.

An example showing the relationship between UDP fragments and the original UDP datagram is
provided in Figure 12. In this example, the trailer containing per-datagram options resides
entirely within the terminal fragment, but this need not always be the case.

Figure 11: UDP Non-Terminal FRAG Option Format

 +--------+--------+--------+--------+
 | Kind=3 | Len=12 | Frag. Start |
 +--------+--------+--------+--------+
 | Identification |
 +--------+--------+--------+--------+
 | Frag. Offset |Reass DgOpt Start|
 +--------+--------+--------+--------+

RFC 9868 Transport Options for UDP September 2025

Touch & Heard Standards Track Page 21

The FRAG option does not need a "more fragments" bit (as used by IP fragmentation) because it
provides the same indication by using the longer, 12-byte variant, as shown in Figure 11.

>> The FRAG option be used on a single fragment; in which case, the Frag. Offset would be
zero and the option would have the 12-byte format.

>> Endpoints supporting UDP options be capable of fragmenting and reassembling at least
two fragments, each of a size that will fit within the standard Ethernet MTU of 1,500 bytes. For
further details, please see Section 11.6.

Use of the single fragment variant can be helpful in supporting use of UNSAFE options without
undesirable impact to receivers that do not support either UDP options or the specific UNSAFE
options.

Figure 12: UDP Fragments and Original UDP Datagram

 Constituent UDP Fragments Original UDP Datagram

 +-------------+------------+
 | Src Port | Dst Port |
 +-------------+------------+
 | UDP Len (8) | UDP Chksum |
 +-------------+------------+
 | OCS | K=3 L=10 | +-------------+------------+
 +-------------+------------+ | Src Port | Dst Port |
 ,--| Frag. Start | Identifi- ~ +-------------+------------+
 | +-------------+------------+ | UDP L.(RDOS)| UDP Chksum |
 | ~ cation | Frag. Off. |----->+-------------+------------+
 | +-------------+------------+ | Frag Data from 1st Frag. |
 | ~ Per-Fragment Options ~ | . |
 '->+-------------+------------+ ~ . ~
 ~ Fragment Data ~ | . |
 +-------------+------------+ ,-->+-------------+------------+
 | | Frag Data from 2nd Frag. |
 +-------------+------------+ | | . |
 | Src Port | Dst Port | | ~ . ~
 +-------------+------------+ | | . |
 | UDP Len (8) | UDP Chksum | | ,>+-------------+------------+
 +-------------+------------+ | | | OCS | UDP Options|
 | OCS | K=3 L=12 | | | +-------------+ +
 +-------------+------------+ | | ~ . ~
 ,--| Frag. Start | Identifi- ~ | | +-------------+------------+
 | +-------------+------------+ | |
 | ~ cation | Frag. Off. |--' |
 | +-------------+------------+ |
 | | RDOS | Frag.Opts. | |
 '->+--|----------+------------+ |
 ~ | Fragment Data ~ |
 +--|----------+------------+ |
 | |
 '----------------------------'

MAY

MUST

RFC 9868 Transport Options for UDP September 2025

Touch & Heard Standards Track Page 22

During fragmentation, the UDP header checksum of each fragment remains constant. It does not
depend on the fragment data (which appears in the surplus area) because all fragments have a
zero- length user data field.

>> The Identification field is a 32-bit value that be unique over the expected fragment
reassembly timeout.

>> The Identification field be generated in a manner similar to that of the IPv6
Fragment ID .

>> UDP fragments overlap.

>> Similar to IPv6 reassembly , if any of the fragments being reassembled overlap with
any other fragments being reassembled for the same UDP packet, reassembly of that UDP packet

 be abandoned and all the fragments that have been received for that UDP packet be
discarded, and no ICMP error messages are to be sent in this case (to avoid a potential DoS attack
turning into an ICMP storm in the reverse direction).

>> Note that fragments might be duplicated in the network. Instead of treating these exact
duplicate fragments as overlapping fragments, an implementation choose to detect this
case and drop exact duplicate fragments while keeping the other fragments belonging to the
same UDP packet.

UDP fragmentation relies on a fragment expiration timer, which can be preset or could use a
value computed using the UDP Timestamp option.

>> The default UDP reassembly expiration timeout be no more than 2 minutes.

>> UDP reassembly expiration generate an ICMP error. Such events are not an IP
error and can be addressed by the user/application layer if desired.

>> UDP reassembly space be limited to reduce the impact of DoS attacks on resource use.

>> UDP reassembly space limits be computed as a shared resource across multiple
sockets, to avoid cross-socket pair DoS attacks.

>> Individual UDP fragments be forwarded to the user. The reassembled datagram is
received only after complete reassembly, checksum validation, and continued processing of the
remaining UDP options.

Per-fragment UDP options, if used in addition to FRAG, occur before the fragment data. They
typically occur after the FRAG option, except where they modify the FRAG option itself (e.g.,
UENC or UCMP). Per-fragment options are processed before the fragment is included in the
reassembled datagram. Such options can be useful to protect the reassembly process itself, e.g.,
to prevent the reassembly cache from being polluted (using AUTH or UENC).

MUST

SHOULD
[RFC8200]

MUST NOT

[RFC8200]

MUST MUST

MAY

SHOULD

MUST NOT

SHOULD

SHOULD NOT

MUST NOT

RFC 9868 Transport Options for UDP September 2025

Touch & Heard Standards Track Page 23

>> Fragments of a single datagram use different sets of options. It is expected to be
computationally expensive to validate uniformity across all fragments, and there could be
legitimate reasons for including options in a fragment but not all fragments (e.g., MDS and
MRDS).

If an option is used per-fragment but defined as not usable per- fragment, it is treated the same
as any other unknown option.

Per-datagram UDP options, if used, reside in the surplus area of the original UDP datagram.
Processing of those options occurs after reassembly is complete. This enables the safe use of
UNSAFE options, which are required to result in discarding the entire UDP datagram if they are
unknown to the receiver or otherwise fail (see Section 12).

In general, UDP packets are fragmented as follows:

Create a UDP packet with data and UDP options. This is the original UDP datagram, which we
will call "D". The UDP options follow the UDP user data and occur in the surplus area, just as
in an unfragmented UDP datagram with UDP options.

>> UDP options for the original packet be fully prepared before the rest of the
fragmentation steps that follow here.

>> The UDP checksum of the original packet be set to zero because it is never
transmitted. Equivalent protection is provided if each fragment has a non-zero OCS value, as
will be the case if each fragment's UDP checksum is non-zero. Similarly, the OCS value of the
original packet be zero if each fragment will have a non-zero OCS value, as will be
the case if each fragment's UDP checksum is non-zero.

Identify the desired fragment size, which we will call "S". This value is calculated to take into
account the path MTU (if known) and to allow space for per-fragment options.
Fragment "D" into chunks of size no larger than "S"-12 each (10 for the non-terminal FRAG
option and 2 for OCS), with one final chunk no larger than "S"-14 (12 for the terminal FRAG
option and 2 for OCS). Note that all the per-datagram options in step #1 need not be limited
to the terminal fragment, i.e., the RDOS pointer can indicate the start of the original surplus
area anywhere in the reassembled datagram.
For each chunk of "D" in step #3, create a UDP packet with no user data (UDP Length=8)
followed by the word-aligned OCS, the FRAG option, and any additional per-fragment UDP
options, followed by the FRAG data chunk.
Complete the processing associated with creating these additional per-fragment UDP options
for each fragment.

Receivers reverse the above sequence. They process all received options in each fragment. When
the FRAG option is encountered, the FRAG data is used in reassembly. After all fragments are
received, the entire UDP packet is processed with any trailing UDP options applying to the
reassembled user data.

>> Reassembly failures at the receiver result in silent discard of any per-fragment options and
fragment contents, and such failures generate zero-length frames to the user.

MAY

1.

MUST

SHOULD

SHOULD

2.

3.

4.

5.

SHOULD NOT

RFC 9868 Transport Options for UDP September 2025

Touch & Heard Standards Track Page 24

>> Finally, because fragmentation processing can be expensive, the FRAG option be
avoided unless the original datagram requires fragmentation or it is needed for "safe" use of
UNSAFE options.

>> The FRAG option also be used to provide limited support for UDP options in systems that
have access to only the initial portion of the data in incoming or outgoing packets, as such
systems could potentially access per-fragment options. Such packets would, of course, be silently
ignored by legacy receivers that do not support UDP options.

The presence of the FRAG option is not reported to the user.

SHOULD

MAY

11.5. Maximum Datagram Size (MDS)
The Maximum Datagram Size (MDS, Kind=4) option is a 16-bit hint of the largest UDP packet or
UDP fragment that an endpoint believes can be received without use of IP fragmentation. It
helps UDP applications limit the largest UDP packet that can be sent without UDP fragmentation
and helps UDP fragmentation determine the largest UDP fragment to send -- in both cases, to
avoid IP fragmentation.

As with the TCP Maximum Segment Size (MSS) option , the size indicated is the IP layer
MTU decreased by the fixed IP and UDP headers only . The space needed for IP and
UDP options needs to be adjusted by the sender when using the value indicated. The value
transmitted is based on EMTU_R, the largest IP datagram that can be received (i.e., reassembled
at the receiver) . However, as with TCP, this value is only a hint at what the receiver
believes, as when used with PLPMTUD at the UDP layer, as discussed later in this section.

>> MDS does not indicate a known path MTU and thus be used to limit transmissions.

>> The UDP MDS option be used as a hint for path MTU discovery , but
this could be difficult because of known issues with ICMP blocking as well as UDP
lacking automatic retransmission.

MDS is more likely to be useful when coupled with IP source fragmentation or UDP
fragmentation to limit the largest reassembled UDP message as indicated by MRDS (see Section
11.6), e.g., when EMTU_R is larger than the required minimums (576 for IPv4 and
1500 for IPv6).

>> MDS can be used with DPLPMTUD to provide a hint to the Packetization Layer Path
MTU (PLPMTU) value, though it prohibit transmission of larger UDP packets used as
DPLPMTUD probes.

[RFC9293]
[RFC9293]

[RFC1122]

MUST NOT

Figure 13: UDP MDS Option Format

 +--------+--------+--------+--------+
 | Kind=4 | Len=4 | MDS size |
 +--------+--------+--------+--------+

MAY [RFC1191] [RFC8201]
[RFC2923]

[RFC0791]
[RFC8200]

[RFC8899]
MUST NOT

RFC 9868 Transport Options for UDP September 2025

Touch & Heard Standards Track Page 25

MDS is reported to the user, whether used per-datagram or per- fragment (as defined in Section
11.4). When used per-fragment, the reported value is the minimum of the MDS values received
per- fragment.

11.6. Maximum Reassembled Datagram Size (MRDS)
The Maximum Reassembled Datagram Size (MRDS, Kind=5) option is a 16- bit indicator of the
largest reassembled UDP datagram that can be received, including the UDP header and any per-
datagram UDP options, accompanied by an 8-bit indication of how many UDP fragments can be
reassembled. MRDS size is the UDP equivalent of IP's EMTU_R, but the two are not related

. Using the FRAG option (Section 11.4), UDP packets can be transmitted as transport
fragments, each in their own (presumably not fragmented) IP datagram, and be reassembled at
the UDP layer. MRDS segs is the number of UDP fragments that can be reassembled.

>> Endpoints supporting UDP options support a local MRDS size of at least 2,926 bytes for
IPv4 and 2,886 bytes for IPv6. Support for larger values is encouraged.

>> Endpoints supporting UDP options support a local MRDS segs value of at least 2.
Support for larger values is encouraged.

These parameters plus the Path MTU (PMTU) allow a sender to compute the size of the largest
pre-fragmentation UDP packet that a receiver will guarantee to accept. Suppose that MMS_S is
the PMTU less the size of the IP header and the UDP header, i.e., the maximum UDP message size
that can be successfully sent in a single UDP datagram if there are no IP options or extension
headers and no UDP per-fragment options.

Then, the size of the largest pre-fragmentation UDP packet that the receiver will guarantee to
accept is the smaller of the MRDS size and

(MMS_S - 12) * (MRDS segs) - 2 - (Total Per-Frag IP/UDP Options) + 8

where Total Per-Frag IP/UDP Options includes the size of all IP options and extension headers
and all per-fragment UDP options, except for OCS and FRAG, that are in the sequence of UDP
fragments.

>> If no MRDS option has been received, a sender assume that MRDS size is 2,926 bytes for
IPv4 and 2,886 bytes for IPv6 and that MRDS segs is 2, i.e., the minimum values allowed.

MRDS is reported to the user, whether used per-datagram or per- fragment (as defined in Section
11.4). When used per-fragment, the reported value is the minimum of the MRDS values received
per- fragment.

[RFC1122]

Figure 14: UDP MRDS Option Format

 +--------+--------+--------+--------+---------+
 | Kind=5 | Len=5 | MRDS size |MRDS segs|
 +--------+--------+--------+--------+---------+

MUST

MUST

MUST

RFC 9868 Transport Options for UDP September 2025

Touch & Heard Standards Track Page 26

11.7. Echo Request (REQ) and Echo Response (RES)
The echo Request (REQ, Kind=6) and echo Response (RES, Kind=7) options provides UDP packet-
level acknowledgments as a capability for use by upper layer protocols, e.g., user applications,
libraries, operating systems, etc. Both the REQ and RES are under the control of these upper
layers, i.e., UDP option support described in this document never automatically responds to a
REQ with a RES. Instead, the REQ is delivered to the upper layer, which decides whether and
when to issue a RES.

One such use is described as part of DPLPMTUD . This use case is described as part of
UDP options but is logically considered to be a capability of an upper layer that uses UDP
options. The options both have the format indicated in Figure 15, in which the token has no
internal structure or meaning.

>> As advice to upper layer protocol/library designers, when supporting REQ/RES and
responding with a RES, the upper layer respond with the most recently received REQ
token.

>> If the implementation includes a layer/library that produces and consumes REQ/RES on
behalf of the user/application, then that layer be disabled by default; in which case, REQ/
RES are simply sent upon request by the user/application and passed to it when received, as with
most other UDP options.

For example, an application needs to explicitly enable the generation of a RES response by
DPLPMTUD when using UDP Options .

>> The token transmitted in a RES option be a token received in a REQ option by the
transmitter. This ensures that the response is to a received request.

REQ and RES option kinds each appear at most once in each UDP packet, as with most other
options. A single packet can include both options, though they would be otherwise unrelated to
each other. Note also that the FRAG option is not used when sending DPLPMTUD probes to
determine a PLPMTU .

REQ and RES are reported to the user, whether used per-datagram or per-fragment (as defined in
Section 11.4). When used per-fragment, the reported value indicates the most recently received
token.

[RFC9869]

Figure 15: UDP REQ and RES Options Format

 +--------+--------+-----------------+
 | Kind | Len=6 | token |
 +--------+--------+-----------------+
 1 byte 1 byte 4 bytes

SHOULD

MUST

[RFC9869]

MUST

[RFC9869]

RFC 9868 Transport Options for UDP September 2025

Touch & Heard Standards Track Page 27

11.8. Timestamps (TIME)
Timestamps are provided as a capability to be used by applications and other upper layer
protocols. They are based on a notion of time as a monotonically non-decreasing unsigned
integer, with wraparound. They are defined the same way as TCP Protection Against Wrapped
Sequence (PAWS) numbers, i.e., "without any connection to [real-world, classical physics wall-
clock] time" . They are quite similar to the behavior of relativistic time or the
individual scalars of Lamport clocks . However, if desired, they can correspond to real-
world time, e.g., as used for round-trip time (RTT) estimation. This option makes no assertions as
to which is the case; the decision is up to the application layer using this option.

The Timestamp (TIME, Kind=8) option exchanges two four-byte unsigned timestamp fields. It
serves a similar purpose to TCP's TS option , enabling UDP to estimate the RTT
between hosts. For UDP, this RTT can be useful for establishing UDP fragment reassembly
timeouts or transport-layer rate limiting .

TS Value (TSval) and TS Echo Reply (TSecr) are used in a similar manner to the TCP TS option
. On transmitted UDP packets using the option, TSval is always set based on the local

"time" value. Received TSval and TSecr values are provided to the application, which can pass
the TSval value to be used as TSecr on UDP messages sent in response (i.e., to echo the received
TSval). A received TSecr of zero indicates that the TSval was not echoed by the transmitter, i.e.,
from a previously received UDP packet.

>> TIME use an RTT estimate based on non-zero Timestamp values as a hint for
fragmentation reassembly, rate limiting, or other mechanisms that benefit from such an
estimate.

>> An application use TIME to compute this RTT estimate for further use by the user.

UDP timestamps are modeled after TCP timestamps and have similar expectations. In particular,
they are expected to follow these guidelines:

Values are monotonic and non-decreasing except for anticipated number-space rollover
events.
Values "increase" (allowing for rollover, i.e., modulo the field size except zero) according to a
typical 'tick' time.
A request is defined as TSval being non-zero, and a reply is defined as TSecr being non-zero.

[RFC7323]
[La78]

[RFC7323]

[RFC8085]

Figure 16: UDP TIME Option Format

 +--------+--------+------------------+------------------+
 | Kind=8 | Len=10 | TSval | TSecr |
 +--------+--------+------------------+------------------+
 1 byte 1 byte 4 bytes 4 bytes

[RFC7323]

MAY

MAY

•

•

•

RFC 9868 Transport Options for UDP September 2025

Touch & Heard Standards Track Page 28

A receiver always responds to a request with the highest TSval received (allowing for
rollover), which is not necessarily the most recently received.

Rollover can be handled as a special case or more completely using sequence number extension
; however, zero values need to be avoided explicitly.

>> TIME values use zeros as valid time values, because they are used as indicators of
requests and responses.

TIME is reported to the user, whether used per-datagram or per- fragment (as defined in Section
11.4). When used per-fragment, the reported value is the minimum and maximum of each of the
timestamp values received per-fragment.

>> Use of TIME per-fragment is . Exceptions include supporting diagnostics
on the reassembly process itself, which could be more appropriate to handle within the UDP
option processing implementation.

•

[RFC9187]

MUST NOT

NOT RECOMMENDED

11.9. Authentication (AUTH), RESERVED Only
The Authentication (AUTH, Kind=9) option is reserved for all UDP authentication mechanisms

. AUTH is expected to cover the UDP user data and UDP options, with possible additional
coverage of the IP pseudoheader and UDP header and potentially also support for NAT traversal
(i.e., by zeroing the remote socket -- the source IP address and UDP port -- before computing the
check), the latter in a similar manner as per TCP Authentication Option (TCP-AO) NAT traversal

.

Like APC, AUTH is a SAFE option because it does not modify the UDP user data. AUTH could fail
even where the user data has not been corrupted, such as when its contents have been
overwritten. Such overwrites could be intentional and not widely known; defaulting to silent
ignore ensures that option-aware endpoints do not change how users or applications operate
unless explicitly directed to do otherwise. When a socket pair relies on AUTH, e.g., upon
configuration of a security policy, this default is expected to be overridden, where incoming
packets without AUTH or with a failed AUTH check would be silently dropped, such that only
authenticated packets would be sent to the user. This approach enables security checks for
AUTH to occur above UDP, in a separate shim layer or application library.

A specification for using AUTH is expected to define the coordination of AUTH security
parameters and configuration of the socket pair when those parameters are installed. That
specification is expected to address rules for when AUTH is required upon transmission and
when the presence and correct validation of AUTH is required on reception.

[To24]

[RFC6978]

11.10. Experimental (EXP)
The Experimental (EXP, Kind=127) option is allocated for experiments . Only one such
value is allocated because experiments are expected to use an Experimental ID (ExID) to
differentiate concurrent use for different purposes, using UDP ExIDs registered with IANA
according to the approach developed for TCP experimental options .

[RFC3692]

[RFC6994]

RFC 9868 Transport Options for UDP September 2025

Touch & Heard Standards Track Page 29

>> The length of the Experimental option be at least 4 to account for the Kind, Len, and 16-
bit UDP ExID (similar to TCP ExIDs).

The UDP EXP option uses only 16-bit ExIDs, unlike TCP ExIDs. In TCP, the first 16 bits of the ExID
is unique; the additional 16 bits, where present, are used to decrease the chance of the entire
ExID occurring in legacy use of the TCP EXP option. This extended variant provides no similar
use for UDP EXP because ExIDs are required.

The UDP EXP option also includes an extended length format, where the option Len is 255,
followed by two bytes of extended length.

Assigned UDP Experimental IDs (ExIDs) are assigned from a combined TCP/UDP ExID registry
managed by IANA (see Section 26). Assigned ExIDs can be used in either the EXP or UEXP options
(see Section 12.3 for the latter).

Figure 17: UDP EXP Option Format

 +----------+----------+----------+----------+
 | Kind=127 | Len | UDP ExID |
 +----------+----------+----------+----------+
 | (option contents, as defined)... |
 +----------+----------+----------+----------+

MUST
[RFC6994]

Figure 18: UDP EXP Extended Option Format

 +----------+----------+----------+----------+
 | Kind=127 | 255 | Extended Length |
 +----------+----------+----------+----------+
 | UDP ExID |(option contents...) |
 +----------+----------+----------+----------+

12. UNSAFE Options
UNSAFE options are not safe to ignore and can be used unidirectionally or without soft-state
confirmation of UDP option capability. They are always used only when the user data occurs
inside a reassembled set of one or more UDP fragments, such that if UDP fragmentation is not
supported, the enclosed UDP user data would be silently dropped anyway.

>> Applications using UNSAFE options also use zero-length UDP packets as signals,
because they will arrive when UNSAFE options fail. Those that choose to allow such packets

 account for such events.

>> UNSAFE options be used only as part of UDP fragments, used either per-fragment or
after reassembly.

SHOULD NOT

MUST

MUST

RFC 9868 Transport Options for UDP September 2025

Touch & Heard Standards Track Page 30

>> Receivers supporting UDP options silently drop the UDP user data of the reassembled
datagram if any fragment or the entire datagram includes an UNSAFE option whose UKind is not
supported or if an UNSAFE option appears outside the context of a fragment or reassembled
fragments.

MUST

12.1. UNSAFE Compression (UCMP)
The UNSAFE Compression (UCMP, Kind=192) option is reserved for all UDP compression
mechanisms. UCMP is expected to cover the UDP user data and some (e.g., later or in sequence)
UDP options.

12.2. UNSAFE Encryption (UENC)
The UNSAFE Encryption (UENC, Kind=193) option is reserved for all UDP encryption
mechanisms. UENC is expected to provide all of the services of the AUTH option (Section 11.9)
and in addition to encrypt the UDP user data and some (e.g., later or in sequence) UDP options,
in a similar manner as TCP Authentication Option Encryption (TCP-AO-ENC) .[To18]

12.3. UNSAFE Experimental (UEXP)
The UNSAFE Experimental (UEXP, Kind=254) option is reserved for experiments . As
with EXP, only one such UEXP value is reserved because experiments are expected to use an
Experimental ID (ExIDs) to differentiate concurrent use for different purposes, using UDP ExIDs
registered with IANA according to the approach developed for TCP experimental options

.

Assigned ExIDs can be used with either the UEXP or EXP options.

[RFC3692]

[RFC6994]

13. Rules for Designing New Options
The UDP option Kind space allows for the definition of new options; however, the currently
defined options (including AUTH, UENC, and UCMP) do not allow for arbitrary new options. The
following is a summary of rules for new options and their rationales:

>> New options be defined as "must-implement", i.e., they are not eligible for the
asterisk ("*") designation used in Section 10.

This document defines the minimum set of "must-implement" UDP options. All new options are
included at the discretion of a given implementation.

>> New options modify the content of options that precede them (in order of
appearance and thus processing).

>> The fields of new options depend on the content of other options.

UNSAFE options can both depend on and vary user data content because they are contained
only inside UDP fragments and thus are processed only by receivers capable of handling UDP
options.

MUST NOT

MUST NOT

MUST NOT

RFC 9868 Transport Options for UDP September 2025

Touch & Heard Standards Track Page 31

>> New options declare their order relative to other options, whether new or old,
even as a preference.

>> At the sender, new options modify UDP packet content anywhere except within
their option field, except only those contained within the UNSAFE option; areas that need to
remain unmodified include the IP header, IP options, UDP user data, and surplus area (i.e., other
options).

>> Options be modified in transit. This includes those already defined as well as new
options.

>> New options require or allow that any UDP options (including themselves) or the
remaining surplus area be modified in transit.

>> All options indicate whether they can be used per-fragment and, if so, also
indicate how their success or failure is reported to the user. This document RECOMMENDS that
options be useful per-fragment and also RECOMMENDS that options used per- fragment be
reported to the user as a finite aggregate (e.g., a sum, a flag, etc.) rather than individually.

Note that only certain of the initially defined options violate these rules:

>> The FRAG option modifies UDP user data, splitting it across multiple IP packets. UNSAFE
options modify the UDP user data, e.g., by encryption, compression, or other
transformations. All other (SAFE) options modify the UDP user data.

MUST NOT

MUST NOT

MUST NOT

MUST NOT

MUST MUST

•
MAY

MUST NOT

14. Option Inclusion and Processing
The following rules apply to option inclusion by senders and processing by receivers.

>> Senders add any option, as configured by the API.

>> All "must-support" options be processed by receivers, if present (presuming UDP
options are supported at that receiver).

>> Non-"must-support" options be ignored by receivers, if present, e.g., based on API
settings.

>> All options be processed by receivers in the order encountered in the options area.

>> Unless configuration settings direct otherwise, all options except UNSAFE options result
in the UDP user data being passed to the upper layer protocol or application, regardless of
whether all options are processed, are supported, or succeed.

The basic premise is that, for options-aware endpoints, the sender decides what options to add
and the receiver decides what options to handle. Simply adding an option does not force work
upon a receiver, with the exception of the "must-support" options.

MAY

MUST

MAY

MUST

MUST

RFC 9868 Transport Options for UDP September 2025

Touch & Heard Standards Track Page 32

Upon receipt, the receiver checks various properties of the UDP packet and its options to decide
whether to accept or drop the UDP packet and whether to accept or ignore some of its options as
follows (in order):

The design of the UNSAFE options ensures that the resulting UDP data will be silently dropped in
both legacy receivers and options-aware receivers that do not recognize those options. Again,
note that this still results in the delivery of a zero-length UDP packet.

Options-aware receivers can drop UDP packets with option processing errors via either an
override of the default UDP processing or at the application layer.

That is, all options are treated the same, in that the transmitter can add it as desired and the
receiver has the option to require it or not. Only if it is required (e.g., by API configuration)
would the receiver require it being present and correct.

That is, for all options:

if the option is not required by the receiver, then UDP packets missing the option are
accepted.
if the option is required (e.g., by override of the default behavior at the receiver) and
missing or incorrectly formed, silently drop the UDP packet.
if the UDP packet is accepted (either because the option is not required or because it was
required and correct), then pass the option with the UDP packet via the API. Note that FRAG,
NOP, and EOL are not passed to the user (see Section 15).

>> Any options whose length exceeds that of the UDP packet (i.e., intending to use data that
would have been beyond the surplus area) be silently ignored (again to model legacy
behavior).

 if the UDP checksum fails then
 silently drop the entire UDP packet (per RFC 1122)
 if the UDP checksum passes or is zero then
 if (OCS != 0 and OCS fails) or
 (OCS == 0 and UDP CS != 0) then
 deliver the UDP user data but ignore other options
 (this is required to emulate legacy behavior)
 if (OCS != 0 and OCS passes) or
 (OCS == 0 and UDP CS == 0) then
 deliver the UDP user data after parsing
 and processing the rest of the options,
 regardless of whether each is supported or succeeds
 (again, this is required to emulate legacy behavior)

•

•

•

SHOULD

RFC 9868 Transport Options for UDP September 2025

Touch & Heard Standards Track Page 33

15. UDP API Extensions
UDP currently specifies an Application Programming Interface (API), summarized as follows
(with Unix-style command as an example) :

Method to create new receive ports

e.g., bind(handle, recvaddr(optional), recvport)

Receive, which returns data octets, source port, and source address

e.g., recvfrom(handle, srcaddr, srcport, data)

Send, which specifies data, source and destination addresses, and source and destination
ports

e.g., sendto(handle, destaddr, destport, data)

This API is extended to support options as follows:

Extend the method to create receive ports to include per-packet and per-fragment receive
options that are required or omitted as indicated by the application.

>> Datagrams not containing these required options be silently dropped and
be logged.

Extend the method to create receive ports to have a means to indicate that all packets
containing UDP options that are received on a particular socket pair are to be discarded.

>> The default value for the setting to drop all packets containing UDP options be to
process packets containing UDP options normally (i.e., not to discard them).

Extend the receive function to indicate the per-packet options and their parameters as
received with the corresponding received datagram. Note that per-fragment options are
handled within the processing of each fragment.

>> Options and their processing status (success/fail) be available to the user (i.e.,
application layer or upper layer protocol/service), both for the packet and for the fragment
set, except for FRAG, NOP, and EOL; those three options are handled within UDP option
processing only. As a reminder (from Section 14), all options except UNSAFE options
result in the UDP user data being passed to the application layer (unless overridden in the
API), regardless of whether all options are processed, supported, or succeed.

For fragments, success for an option is reported only when all fragments succeed for that
option.

>> Per-fragment option status reporting default as needed (e.g., not computed and/
or not passed up to the upper layers) to minimize overhead unless actively requested (e.g.,
by the user/application layer).

[RFC0768]

•

◦

•

◦

•

◦

•

MUST SHOULD

•

MUST

•

MUST

MUST

•

SHOULD

RFC 9868 Transport Options for UDP September 2025

Touch & Heard Standards Track Page 34

>> SAFE options associated with fragments are accumulated when associated with the
reassembled packet; values be coalesced, e.g., to indicate that only an AUTH failure of a
fragment occurred, rather than not indicating the AUTH status of each fragment.

Extend the send function to indicate the options to be added to the corresponding sent
datagram. This includes indicating which options apply to individual fragments vs. which
apply to the UDP packet prior to fragmentation, if fragmentation is enabled. This includes a
minimum datagram length, such that the options list ends in EOL and additional space is
zero-filled as needed. It also includes a maximum fragment size, e.g., as discovered by
DPLPMTUD, whether implemented at the application layer per or in conjunction
with other UDP options .

Examples of API instances for Linux and FreeBSD are provided in Appendix A to encourage
uniform cross-platform implementations.

APIs are not intended to provide user control over option order, especially on a per-packet basis,
as this could create a covert channel (see Section 25). Similarly, APIs are not intended to provide
user/application control over UDP fragment boundaries on a per-packet basis; although, they are
expected to allow control over which options, including fragmentation, are enabled (or disabled)
on a per-packet basis. Such control over fragmentation is critical to DPLPMTUD.

MAY

•

[RFC8899]
[RFC9869]

16. UDP Options Are for Transport, Not Transit
UDP options are indicated in the surplus area of the IP payload that is not used by UDP. That area
is really part of the IP payload, not the UDP payload, and as such, it might be tempting to
consider whether this is a generally useful approach to extending IP.

Unfortunately, the surplus area exists only for transports that include their own transport layer
payload length indicator. TCP and SCTP include header length fields that already provide space
for transport options by indicating the total length of the header area, such that the entire
remaining area indicated in the network layer (IP) is the transport payload. UDP-Lite already
uses the UDP Length field to indicate the boundary between data covered by the transport
checksum and data not covered, and so there is no remaining area where the length of the UDP-
Lite payload as a whole can be indicated .

UDP options are transport options. They are no more (or less) appropriate to be modified in-
transit than any other portion of the transport datagram.

>> Generally, transport headers, options, and data are not intended to be modified in-transit.
UDP options are no exception and are specified here as " be altered in transit".

However, note that the UDP option mechanism provides no specific protection against in-transit
modification of the UDP header, UDP payload, or surplus area, except as provided by the OCS or
the options selected (e.g., AUTH or UENC).

Unless protected by encryption (e.g., UENC or via other layers, like IPsec), UDP options remain
visible to devices on the network path. The decision to not require mandatory encryption for
UDP options to prevent such visibility was made because the key distribution and management

[RFC3828]

MUST NOT

RFC 9868 Transport Options for UDP September 2025

Touch & Heard Standards Track Page 35

infrastructure necessary to support such encryption does not exist in many of the deployment
scenarios of interest, notably those that use UDP directly as a stateless and connectionless
transport protocol (e.g., see).[He24]

17. UDP Options vs. UDP-Lite
UDP-Lite provides partial checksum coverage so that UDP packets with errors in some locations
can be delivered to the user . It uses a different transport protocol number (136) than
UDP (17) to interpret the UDP Length field as the prefix covered by the UDP checksum.

UDP (protocol 17) already defines the UDP Length field as the limit of the UDP checksum but by
default also limits the data provided to the application as that which precedes the UDP Length. A
goal of UDP-Lite is to deliver data beyond UDP Length as a default, which is why a separate
transport protocol number was required.

UDP options do not use or need a separate transport protocol number because the data beyond
the UDP Length offset (surplus data) is not provided to the application by default. That data is
interpreted exclusively within the UDP transport layer.

UDP-Lite cannot support UDP options, either as proposed here or in any other form, because the
entire payload of the UDP packet is already defined as user data and there is no additional field
in which to indicate a surplus area for options. The UDP Length field in UDP-Lite is already used
to indicate the boundary between user data covered by the checksum and user data not covered.

[RFC3828]

18. Interactions with Legacy Devices
It has always been permissible for the UDP Length to be inconsistent with the IP transport
payload length . Such inconsistency has been utilized in UDP-Lite using a different
transport number. There are no known systems that use this inconsistency for UDP . It
is possible that such use might interact with UDP options, i.e., where legacy systems might
generate UDP datagrams that appear to have UDP options. The OCS provides protection against
such events and is stronger than a static "magic number".

UDP options have been tested as interoperable with Linux, macOS, and Windows Cygwin and
worked through NAT devices. These systems successfully delivered only the user data indicated
by the UDP Length field and silently discarded the surplus area.

One reported embedded device passes the entire IP datagram to the UDP application layer.
Although this feature could enable application-layer UDP option processing, it would require
that conventional UDP user applications examine only the UDP user data.

This feature is also inconsistent with the UDP application interface .

It has been reported that Alcatel-Lucent's "Brick" Intrusion Detection System has a default
configuration that interprets inconsistencies between UDP Length and IP Length as an attack to
be reported. Note that other firewall systems, e.g., Check Point, use a default "relaxed UDP length
verification" to avoid falsely interpreting this inconsistency as an attack.

[RFC0768]
[RFC3828]

[RFC0768] [RFC1122]

RFC 9868 Transport Options for UDP September 2025

Touch & Heard Standards Track Page 36

There are known uses of UDP exchanges of zero-length UDP user data packets, notably in the
TIME protocol . The need to support such packets is also noted in the UDP usage
guidelines . Some of the mechanisms in this document can generate more zero- length
UDP packets for a UDP option-aware endpoint than for a legacy (non-aware) endpoint (e.g.,
based on some error conditions), and some can generate fewer (e.g., fragment reassembly).
Because such packets inherently carry no unique transport header or transport content,
endpoints are already expected to be tolerant of their (inadvertent) replication or loss by the
network, so such variations are not expected to be problematic.

[RFC0868]
[RFC8085]

19. Options in a Stateless, Unreliable Transport Protocol
There are two ways to interpret options for a stateless, unreliable protocol -- an option is either
local to the message or intended to affect a stream of messages in a soft-state manner. Either
interpretation is valid for defined UDP options.

It is impossible to know in advance whether an endpoint supports a UDP option.

>> All UDP options other than UNSAFE ones be ignored if not supported or upon failure
(e.g., APC).

>> All UDP options that fail result in the UDP data still being sent to the application layer
by default to ensure equivalence with legacy devices.

UDP options that rely on soft-state exchange need to allow message reordering and loss, in the
same way as UDP applications .

The above requirements prevent using any option that cannot be safely ignored unless it is
hidden inside the FRAG area (i.e., UNSAFE options). Legacy systems also always need to be able
to interpret the transport fragments as individual UDP packets.

MUST

MUST

[RFC8085]

20. UDP Option State Caching
Some TCP connection parameters, stored in the TCP Control Block (TCB), can be usefully shared
either among concurrent connections or between connections in sequence, known as TCP
Sharing . Although UDP is stateless, some of the options proposed herein could have
similar benefits in being shared or cached. We call this UCB sharing, or UDP Control Block
sharing, by analogy. Just as TCB sharing is not a standard because it is consistent with existing
TCP specifications, UCB sharing would be consistent with existing UDP specifications, including
this one. Both are implementation issues that are outside the scope of their respective
specifications, and so UCB sharing is outside the scope of this document.

[RFC9040]

RFC 9868 Transport Options for UDP September 2025

Touch & Heard Standards Track Page 37

21. Updates to RFC 768
This document updates as follows:

This document defines the meaning of the IP payload area beyond the UDP length but
within the IP Length as the surplus area used herein for UDP options.
This document extends the UDP API to support the use of UDP options.

[RFC0768]

•

•

22. Interactions with Other RFCs (and drafts)
This document clarifies the interaction between UDP Length and IP Length that is not explicitly
constrained in either UDP or the host requirements .

Teredo extensions (TEs) define use of a similar difference between these lengths for trailers
. In , TE defines the length of an IPv6 payload inside UDP as

pointing to less than the end of the UDP payload, enabling trailing options for that IPv6 packet:

...the IPv6 packet length (i.e., the Payload Length value in the IPv6 header plus the IPv6
header size) is less than or equal to the UDP payload length (i.e., the Length value in the
UDP header minus the UDP header size)

UDP options are not affected by the difference between the UDP user payload end and the
payload IPv6 end; both would end at the UDP user payload, which could end before the
enclosing IPv4 or IPv6 header indicates -- allowing UDP options in addition to the trailer options
of the IPv6 payload. The result, if UDP options were used, is shown in Figure 19.

UDP options cannot be supported when a UDP packet has no independent UDP Length. One such
case is when UDP Length==0 in IPv6, intended for (but not limited to) IPv6 Jumbograms

. Note that although this technique is "Standard", the specification did not "update"
UDP . Another such case arises when UDP is proxied via HTTP , as the UDP
header is omitted and only the UDP user data is transported.

[RFC0768] [RFC1122]

[RFC4380] [RFC6081] [RFC6081]

Figure 19: TE Trailers and UDP Options Used Concurrently

 Outer IP Length
 <-->
 +--------+---------+------------------------------+----------+
 | IP Hdr | UDP Hdr | IPv6 packet/len | TE trailer | surplus |
 +--------+---------+------------------------------+----------+
 <--------------->
 Inner IPv6 Length
 <-------------------------------------->
 UDP Length

[RFC2675]
[RFC0768] [RFC9298]

RFC 9868 Transport Options for UDP September 2025

Touch & Heard Standards Track Page 38

This document is consistent with the UDP profile for RObust Header Compression (ROHC)
, noted here:

The Length field of the UDP header match the Length field(s) of the preceding
subheaders, i.e., there must not be any padding after the UDP payload that is covered by
the IP Length.

ROHC compresses UDP headers only when this match succeeds. It does not prohibit UDP headers
where the match fails; in those cases, ROHC default rules () would cause
the UDP header to remain uncompressed. Upon receipt of a compressed UDP header,

 indicates that the UDP length is "INFERRED"; in uncompressed packets, it
would simply be explicitly provided.

This issue of handling UDP header compression is more explicitly described in more recent
specifications, e.g., .

[RFC3095]

MUST

Section 5.10 of [RFC3095]
Appendix

A.1.3 of [RFC3095]

Section 10.10 of [RFC8724]

23. Multicast and Broadcast Considerations
UDP options are primarily intended for unicast use. Using these options over multicast or
broadcast IP requires careful consideration, e.g., to ensure that the options used are safe for
different endpoints to interpret differently (e.g., either to support or silently ignore) or to ensure
that all receivers of a multicast or broadcast group confirm support for the options in use.

24. Network Management Considerations
UDP options use and configuration may be useful to track and manage remotely. IP Flow
Information Export (IPFIX) Information Elements for UDP options have been defined
in . Similar to what has been done for TCP , a YANG model for use by
network management protocols (e.g., NETCONF or RESTCONF) may be
developed. Development of these models is outside the scope of this document.

[RFC7011]
[Bo24] [RFC9648] [RFC7950]

[RFC6241] [RFC8040]

25. Security Considerations
There are a number of security issues raised by the introduction of options to UDP. Some are
specific to this variant, but others are associated with any packet processing mechanism; all are
discussed further in this section.

25.1. General Considerations Regarding the Use of Options
Note that any user application that considers UDP options to adversely affect security need not
enable them. However, their use does not impact security in a substantially different way than
TCP options; both enable the use of a control channel that has the potential for abuse. Similar to
TCP, there are many options that, if unprotected, could be used by an attacker to interfere with
communication.

RFC 9868 Transport Options for UDP September 2025

Touch & Heard Standards Track Page 39

https://www.rfc-editor.org/rfc/rfc3095#section-5.10
https://www.rfc-editor.org/rfc/rfc3095#appendix-A.1.3
https://www.rfc-editor.org/rfc/rfc3095#appendix-A.1.3
https://www.rfc-editor.org/rfc/rfc8724#section-10.10

UDP options are not covered by DTLS . Neither TLS (Transport Layer
Security for TCP) nor DTLS (TLS for UDP) protect the transport layer; both operate as a shim
layer solely on the user data of transport packets, protecting only their contents.

Just as TLS does not protect the TCP header or its options, DTLS does not protect the UDP header
or the new options introduced by this document. Transport security is provided in TCP by the
TCP Authentication Option (TCP-AO) and (when defined) in UDP by the Authentication
(AUTH) option (Section 11.9) and (when defined) the UNSAFE Encryption (UENC) option (Section
12). Transport headers are also protected as payload when using IP security (IPsec) .

Some UDP options are never passed to the receiving application, notably FRAG, NOP, and EOL.
They are not intended to convey information, either by their presence (FRAG, EOL) or number
(NOP). It could also be useful to provide the options received in a reference order (e.g., sorted by
option number) to avoid the order of options being used as a covert channel.

All logging is rate limited to avoid logging itself becoming a resource vulnerability.

[RFC9147] [RFC8446]

[RFC5925]

[RFC4301]

25.2. Considerations Regarding On-Path Attacks
UDP options, like any options, have the potential to expose option information to on-path
attackers, unless the options themselves are encrypted (as might be the case with some
configurations of UENC, when defined). Application protocol designers are expected to ensure
that information in UDP options is not used with the assumption of privacy unless UENC
provides that capability. Application protocol designers using secure payload contents (e.g., via
DTLS) are expected to be aware that UDP options add information that is not inside the UDP
payload and thus not protected by the same mechanism and that alternate mechanisms (again,
as might be the case with some configurations of UENC) could be additionally required to protect
against information disclosure.

>> Implementations concerned with the potential use of UDP options as a covert channel
consider limiting use of some or all options. Such implementations return options in an
order not related to their sequence in the received packet.

UDP options create new potential opportunities for Distributed DoS (DDos) attacks, notably
through the use of fragmentation. When enabled, UDP options cause additional work at the
receiver; however, of the "must-support" options, only REQ (e.g., when used with DPLPMTUD

) will cause the upper layer to initiate a UDP response in the absence of user
transmission.

>> Implementations concerned with the potential for DoS attacks involving large numbers of
UDP options, either implemented or unknown, or excessive sequences of valid repeating options
(e.g., NOPs) detect excessive numbers of such occurrences and limit resources they use,
e.g., through silent packet drops. Such responses be logged. Specific thresholds for such
limits will vary based on implementation and are thus not included here.

MAY
SHOULD

[RFC9869]

SHOULD
SHOULD

RFC 9868 Transport Options for UDP September 2025

Touch & Heard Standards Track Page 40

25.3. Considerations Regarding Option Processing
UDP options use the TLV syntax similar to that of TCP. This syntax is known to require serial
processing and could pose a DoS risk, e.g., if an attacker adds large numbers of unknown options
that need to be parsed in their entirety, as is the case for IPv6 .

The use of UDP packets with inconsistent IP and UDP Length fields has the potential to trigger a
buffer overflow error if not properly handled, e.g., if space is allocated based on the smaller field
and copying is based on the larger field. However, there have been no reports of such
vulnerability, and it would rely on inconsistent use of the two fields for memory allocation and
copying.

Because required options come first and at most once each (with the exception of NOPs, which
never need to come in sequences of more than seven in a row), their DoS impact is limited. Note
that TLV formats for options do require serial processing, but any format that allows future
options, whether ignored or not, could introduce a similar DoS vulnerability.

>> Implementations concerned with the potential for UDP options introducing a vulnerability
 implement only the required UDP options and also limit processing of TLVs, in

number of non-padding options, total length, or both. The number of non-zero TLVs allowed in
such cases be at least as many as the number of concurrent options supported with an
additional few to account for unexpected unknown options but also consider being
adaptive and based on the implementation to avoid locking in that limit globally.

For example, if a system supports 10 different option types that could concurrently be used, it is
expected to allow up to around 13-14 different options in the same packet. This document avoids
specifying a fixed minimum but recognizes that a given system might not expect to receive more
than a few unknown option types per packet.

[RFC8504]

MAY SHOULD

MUST
SHOULD

25.4. Considerations for Fragmentation
UDP fragmentation introduces its own set of security concerns, which can be handled in a
manner similar to IP reassembly or TCP segment reordering . In particular, the number
of UDP packets pending reassembly and effort used for reassembly is typically limited. In
addition, it could be useful to assume a reasonable minimum fragment size, e.g., that non-
terminal fragments are never be smaller than 500 bytes.

>> Implementations concerned with the potential for UDP fragmentation introducing a
vulnerability implement limits on the number of pending fragments.

[CERT18]

SHOULD

25.5. Considerations for Providing UDP Security
UDP security is not intended to rely solely on transport layer processing of options. UNSAFE
options are the only type that share fate with the UDP data because of the way that data is hidden
in the surplus area until after those options are processed. All other options default to being

RFC 9868 Transport Options for UDP September 2025

Touch & Heard Standards Track Page 41

silently ignored at the transport layer but could be dropped if that default is either overridden
(e.g., by configuration) or discarded at the application layer (e.g., using information about the
options processed that are passed along with the UDP packet).

Options providing UDP security, e.g., AUTH and UENC, require endpoint key and security
parameter coordination, which UDP options (being stateless) do not facilitate. These parameters
include whether and when to override the defaults described herein, especially at the
transmitter as to when emitted packets need to include AUTH and at the receiver as to whether
(and when) packets with failed AUTH and/or without AUTH (or that fail the AUTH checks) are
not to be forwarded to the user/application.

25.6. Considerations Regarding Middleboxes
Some middleboxes operate as UDP relays, forwarding data between a UDP socket and another
transport socket by modifying the IP and/or UDP headers without properly acting as a protocol
endpoint (i.e., an application layer proxy). In such cases, a sender might add UDP options that
could be stripped by the middlebox before the packet is forwarded to the second socket. A
remote application will not receive the options (for SAFE options, the payload data will be
received; for UNSAFE options, the payload data will not be received). In such cases, the
application will function as it would if communicating with a remote endpoint that does not
support UDP options.

Additionally, reports that packets containing UDP options do not traverse certain Internet
paths; most likely, those options were stripped (e.g., by resetting the IP Length to correspond to
the UDP length, truncating the surplus area) or packets with options were dropped. UDP options
do not function over such paths.

[Zu20]

26. IANA Considerations
IANA has created the "User Datagram Protocol (UDP)" registry group, which consists of the "UDP
Option Kind Numbers" registry and a pointer to the unified "TCP/UDP Experimental Option
Experiment Identifiers (TCP/UDP ExIDs)" registry. Note that the "TCP experimental IDs (ExIDs)"
registry has been renamed as the "TCP/UDP Experimental Option Experiment Identifiers (TCP/
UDP ExIDs)" registry, and is a unified registry for both TCP and UDP ExIDs. IANA has added the
following note to the unified TCP/UDP ExID registry:

Note 16-bit ExIDs can be used with either TCP or UDP; 32-bit ExIDs can be used with TCP
or their first 16 bits can be used with UDP. Use with each transport (TCP, UDP) is
indicated in the protocol column, as defined in RFC 9868.

Initial values of the UDP Option Kind registry are as listed in Section 10, including those both
assigned and reserved. Additional values in this registry are to be assigned from the Unassigned
values in Section 10 by IESG Approval or Standards Action . Those assignments are
subject to the conditions set forth in this document, particularly (but not limited to) those in
Section 13.

[RFC8126]

RFC 9868 Transport Options for UDP September 2025

Touch & Heard Standards Track Page 42

>> Although option nicknames are not used in-band, new UNSAFE option names
commence with the capital letter "U" and new SAFE options commence with either
uppercase or lowercase "U".

IANA has added the following note to the "UDP Option Kind Numbers" indicating entries are
mandatory to implement when UDP options are supported. No new options may be created that
are mandatory to implement in all UDP options implementations.

Codepoints 0-7 be supported on any implementation supporting UDP options. All
others are supported at the discretion of each implementation.

UDP Experimental Option Experiment Identifiers (UDP ExIDs) are intended for use in a similar
manner as TCP ExIDs . Both TCP and UDP ExIDs are managed as a single, unified
registry because such options could be used for both transport protocols and because the option
space is large enough that there is no clear need to maintain them separately. This new TCP/UDP
ExIDs registry has entries for both transports, although each codepoint needs to be explicitly
defined for each transport protocol in which it is used, i.e., defining a codepoint in TCP does not
imply it has a similar use in UDP. IANA has added a "Protocol" field to the registry and updated
the current TCP ExIDs to be indicated as defined for TCP. New assignments are to indicate the
transport for which it is defined.

TCP/UDP ExIDs can be used in either (or both) the UDP EXP (Section 11.10) or UEXP (Section 12.3)
options. TCP/UDP ExID entries for use in UDP consist of a 16-bit ExID (in network-standard
order), and (as with the original TCP ExIDs) will preferentially also include a short description
and acronym for use in documentation. TCP/UDP ExIDs used for UDP are always 16 bits because
their use in EXP and UEXP options is required and thus do not need a larger codepoint value to
decrease the probability of accidental occurrence with non-ExID uses of the experimental
options, as is the case with TCP ExIDs (e.g., when using 32-bit ExIDs). ExIDs defined solely for
TCP options could be either 16 or 32 bits and all ExIDs (including now UDP) need to be unique in
their first 16 bits, as originally described for TCP .

Values in the TCP/UDP ExID registry are to be assigned by IANA using first-come, first-served
(FCFS) rules applied to both the ExID value and the acronym . UDP options using these
ExIDs are subject to the same conditions as new UDP options, i.e., they too are subject to the
conditions set forth in this document, particularly (but not limited to) those in Section 13.

MUST
MUST NOT

MUST

[RFC6994]

[RFC6994]

[RFC8126]

27. References

[RFC0768]

[RFC0791]

27.1. Normative References

, , , , ,
August 1980, .

, , , , , September
1981, .

Postel, J. "User Datagram Protocol" STD 6 RFC 768 DOI 10.17487/RFC0768
<https://www.rfc-editor.org/info/rfc768>

Postel, J. "Internet Protocol" STD 5 RFC 791 DOI 10.17487/RFC0791
<https://www.rfc-editor.org/info/rfc791>

RFC 9868 Transport Options for UDP September 2025

Touch & Heard Standards Track Page 43

https://www.rfc-editor.org/info/rfc768
https://www.rfc-editor.org/info/rfc791

[RFC1122]

[RFC2119]

[RFC8174]

[RFC9869]

, ,
, , , October 1989,

.

, , ,
, , March 1997,
.

, ,
, , , May 2017,

.

 and , , ,
, September 2025, .

Braden, R., Ed. "Requirements for Internet Hosts - Communication Layers" STD
3 RFC 1122 DOI 10.17487/RFC1122 <https://www.rfc-editor.org/
info/rfc1122>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Fairhurst, G. T. Jones "Datagram PLPMTUD for UDP Options" RFC 9869 DOI
10.17487/RFC9869 <https://www.rfc-editor.org/info/rfc9869>

[Bo24]

[CERT18]

[Fa18]

[He24]

[Hi15]

[La78]

[RFC0793]

[RFC0868]

27.2. Informative References

 and ,
, ,

, 22 July 2024,
.

,
, , ,

2018, .

, , and ,
, , ,

19 October 2018,
.

, ,
,

, 28 April 2024,
.

 and ,
, ,

, 9 March 2015,
.

, ,
,

, July 1978, .

, , , ,
September 1981, .

 and , , , ,
, May 1983, .

Boucadair, M. T. Reddy.K "Export of UDP Options Information in IP Flow
Information Export (IPFIX)" Work in Progress Internet-Draft, draft-ietf-opsawg-
tsvwg-udp-ipfix-14 <https://datatracker.ietf.org/doc/html/draft-ietf-
opsawg-tsvwg-udp-ipfix-14>

CERT Coordination Center "TCP implementations vulnerable to Denial of
Service" Vulnerability Note VU#962459 Software Engineering Institute, CMU

<https://www.kb.cert.org/vuls/id/962459>

Fairhurst, G. Jones, T. R. Zullo "Checksum Compensation Options for UDP
Options" Work in Progress Internet-Draft, draft-fairhurst-udp-options-cco-00

<https://datatracker.ietf.org/doc/html/draft-fairhurst-udp-
options-cco-00>

Heard, C. M. "Use of UDP Options for Transmission of Large DNS Responses"
Work in Progress Internet-Draft, draft-heard-dnsop-udp-opt-large-dns-
responses-00 <https://datatracker.ietf.org/doc/html/draft-heard-
dnsop-udp-opt-large-dns-responses-00>

Hildebrand, J. B. Trammell "Substrate Protocol for User Datagrams (SPUD)
Prototype" Work in Progress Internet-Draft, draft-hildebrand-spud-
prototype-03 <https://datatracker.ietf.org/doc/html/draft-
hildebrand-spud-prototype-03>

Lamport, L. "Time, clocks, and the ordering of events in a distributed system"
Communications of the ACM, vol. 21, no. 7, pp. 558-565 DOI
10.1145/359545.359563 <https://doi.org/10.1145/359545.359563>

Postel, J. "Transmission Control Protocol" RFC 793 DOI 10.17487/RFC0793
<https://www.rfc-editor.org/info/rfc793>

Postel, J. K. Harrenstien "Time Protocol" STD 26 RFC 868 DOI 10.17487/
RFC0868 <https://www.rfc-editor.org/info/rfc868>

RFC 9868 Transport Options for UDP September 2025

Touch & Heard Standards Track Page 44

https://www.rfc-editor.org/info/rfc1122
https://www.rfc-editor.org/info/rfc1122
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc9869
https://datatracker.ietf.org/doc/html/draft-ietf-opsawg-tsvwg-udp-ipfix-14
https://datatracker.ietf.org/doc/html/draft-ietf-opsawg-tsvwg-udp-ipfix-14
https://www.kb.cert.org/vuls/id/962459
https://datatracker.ietf.org/doc/html/draft-fairhurst-udp-options-cco-00
https://datatracker.ietf.org/doc/html/draft-fairhurst-udp-options-cco-00
https://datatracker.ietf.org/doc/html/draft-heard-dnsop-udp-opt-large-dns-responses-00
https://datatracker.ietf.org/doc/html/draft-heard-dnsop-udp-opt-large-dns-responses-00
https://datatracker.ietf.org/doc/html/draft-hildebrand-spud-prototype-03
https://datatracker.ietf.org/doc/html/draft-hildebrand-spud-prototype-03
https://doi.org/10.1145/359545.359563
https://www.rfc-editor.org/info/rfc793
https://www.rfc-editor.org/info/rfc868

[RFC1071]

[RFC1141]

[RFC1191]

[RFC2675]

[RFC2923]

[RFC3095]

[RFC3173]

[RFC3385]

[RFC3692]

[RFC3828]

[RFC4301]

[RFC4340]

, , and , ,
, , September 1988,

.

 and , ,
, , January 1990,
.

 and , , ,
, November 1990, .

, , and , , ,
, August 1999, .

, , ,
, September 2000, .

, , , , ,
, , , , , , ,
, , , and ,

,
, , July 2001,

.

, , , and ,
, , , September 2001,

.

, , , and ,

, , , September 2002,
.

, ,
, , , January 2004,

.

, , , , and ,
, ,

, July 2004, .

 and , , ,
, December 2005,

.

, , and ,
, , , March 2006,

.

Braden, R. Borman, D. C. Partridge "Computing the Internet checksum"
RFC 1071 DOI 10.17487/RFC1071 <https://www.rfc-editor.org/
info/rfc1071>

Mallory, T. A. Kullberg "Incremental updating of the Internet checksum"
RFC 1141 DOI 10.17487/RFC1141 <https://www.rfc-editor.org/info/
rfc1141>

Mogul, J. S. Deering "Path MTU discovery" RFC 1191 DOI 10.17487/
RFC1191 <https://www.rfc-editor.org/info/rfc1191>

Borman, D. Deering, S. R. Hinden "IPv6 Jumbograms" RFC 2675 DOI
10.17487/RFC2675 <https://www.rfc-editor.org/info/rfc2675>

Lahey, K. "TCP Problems with Path MTU Discovery" RFC 2923 DOI 10.17487/
RFC2923 <https://www.rfc-editor.org/info/rfc2923>

Bormann, C. Burmeister, C. Degermark, M. Fukushima, H. Hannu, H. Jonsson,
L. Hakenberg, R. Koren, T. Le, K. Liu, Z. Martensson, A. Miyazaki, A. Svanbro,
K. Wiebke, T. Yoshimura, T. H. Zheng "RObust Header Compression
(ROHC): Framework and four profiles: RTP, UDP, ESP, and uncompressed" RFC
3095 DOI 10.17487/RFC3095 <https://www.rfc-editor.org/info/
rfc3095>

Shacham, A. Monsour, B. Pereira, R. M. Thomas "IP Payload Compression
Protocol (IPComp)" RFC 3173 DOI 10.17487/RFC3173 <https://
www.rfc-editor.org/info/rfc3173>

Sheinwald, D. Satran, J. Thaler, P. V. Cavanna "Internet Protocol Small
Computer System Interface (iSCSI) Cyclic Redundancy Check (CRC)/Checksum
Considerations" RFC 3385 DOI 10.17487/RFC3385 <https://
www.rfc-editor.org/info/rfc3385>

Narten, T. "Assigning Experimental and Testing Numbers Considered Useful"
BCP 82 RFC 3692 DOI 10.17487/RFC3692 <https://www.rfc-
editor.org/info/rfc3692>

Larzon, L. Degermark, M. Pink, S. Jonsson, L., Ed. G. Fairhurst, Ed. "The
Lightweight User Datagram Protocol (UDP-Lite)" RFC 3828 DOI 10.17487/
RFC3828 <https://www.rfc-editor.org/info/rfc3828>

Kent, S. K. Seo "Security Architecture for the Internet Protocol" RFC 4301
DOI 10.17487/RFC4301 <https://www.rfc-editor.org/info/
rfc4301>

Kohler, E. Handley, M. S. Floyd "Datagram Congestion Control Protocol
(DCCP)" RFC 4340 DOI 10.17487/RFC4340 <https://www.rfc-
editor.org/info/rfc4340>

RFC 9868 Transport Options for UDP September 2025

Touch & Heard Standards Track Page 45

https://www.rfc-editor.org/info/rfc1071
https://www.rfc-editor.org/info/rfc1071
https://www.rfc-editor.org/info/rfc1141
https://www.rfc-editor.org/info/rfc1141
https://www.rfc-editor.org/info/rfc1191
https://www.rfc-editor.org/info/rfc2675
https://www.rfc-editor.org/info/rfc2923
https://www.rfc-editor.org/info/rfc3095
https://www.rfc-editor.org/info/rfc3095
https://www.rfc-editor.org/info/rfc3173
https://www.rfc-editor.org/info/rfc3173
https://www.rfc-editor.org/info/rfc3385
https://www.rfc-editor.org/info/rfc3385
https://www.rfc-editor.org/info/rfc3692
https://www.rfc-editor.org/info/rfc3692
https://www.rfc-editor.org/info/rfc3828
https://www.rfc-editor.org/info/rfc4301
https://www.rfc-editor.org/info/rfc4301
https://www.rfc-editor.org/info/rfc4340
https://www.rfc-editor.org/info/rfc4340

[RFC4380]

[RFC4787]

[RFC5925]

[RFC6081]

[RFC6241]

[RFC6864]

[RFC6935]

[RFC6978]

[RFC6994]

[RFC7011]

[RFC7323]

[RFC7950]

[RFC8040]

[RFC8085]

,
, , , February 2006,

.

 and ,
, , , ,

January 2007, .

, , and , , ,
, June 2010, .

, , , , January 2011,
.

, , , and ,
, , ,

June 2011, .

, , ,
, February 2013, .

, , and ,
, , , April 2013,

.

, , ,
, July 2013, .

, , ,
, August 2013, .

, , and ,
,

, , , September 2013,
.

, , , and ,
, , , September 2014,

.

, , ,
, August 2016, .

, , and , , ,
, January 2017, .

, , and , , ,
, , March 2017,

.

Huitema, C. "Teredo: Tunneling IPv6 over UDP through Network Address
Translations (NATs)" RFC 4380 DOI 10.17487/RFC4380 <https://
www.rfc-editor.org/info/rfc4380>

Audet, F., Ed. C. Jennings "Network Address Translation (NAT) Behavioral
Requirements for Unicast UDP" BCP 127 RFC 4787 DOI 10.17487/RFC4787

<https://www.rfc-editor.org/info/rfc4787>

Touch, J. Mankin, A. R. Bonica "The TCP Authentication Option" RFC 5925
DOI 10.17487/RFC5925 <https://www.rfc-editor.org/info/rfc5925>

Thaler, D. "Teredo Extensions" RFC 6081 DOI 10.17487/RFC6081
<https://www.rfc-editor.org/info/rfc6081>

Enns, R., Ed. Bjorklund, M., Ed. Schoenwaelder, J., Ed. A. Bierman, Ed.
"Network Configuration Protocol (NETCONF)" RFC 6241 DOI 10.17487/RFC6241

<https://www.rfc-editor.org/info/rfc6241>

Touch, J. "Updated Specification of the IPv4 ID Field" RFC 6864 DOI 10.17487/
RFC6864 <https://www.rfc-editor.org/info/rfc6864>

Eubanks, M. Chimento, P. M. Westerlund "IPv6 and UDP Checksums for
Tunneled Packets" RFC 6935 DOI 10.17487/RFC6935 <https://
www.rfc-editor.org/info/rfc6935>

Touch, J. "A TCP Authentication Option Extension for NAT Traversal" RFC 6978
DOI 10.17487/RFC6978 <https://www.rfc-editor.org/info/rfc6978>

Touch, J. "Shared Use of Experimental TCP Options" RFC 6994 DOI 10.17487/
RFC6994 <https://www.rfc-editor.org/info/rfc6994>

Claise, B., Ed. Trammell, B., Ed. P. Aitken "Specification of the IP Flow
Information Export (IPFIX) Protocol for the Exchange of Flow Information" STD
77 RFC 7011 DOI 10.17487/RFC7011 <https://www.rfc-
editor.org/info/rfc7011>

Borman, D. Braden, B. Jacobson, V. R. Scheffenegger, Ed. "TCP Extensions
for High Performance" RFC 7323 DOI 10.17487/RFC7323
<https://www.rfc-editor.org/info/rfc7323>

Bjorklund, M., Ed. "The YANG 1.1 Data Modeling Language" RFC 7950 DOI
10.17487/RFC7950 <https://www.rfc-editor.org/info/rfc7950>

Bierman, A. Bjorklund, M. K. Watsen "RESTCONF Protocol" RFC 8040 DOI
10.17487/RFC8040 <https://www.rfc-editor.org/info/rfc8040>

Eggert, L. Fairhurst, G. G. Shepherd "UDP Usage Guidelines" BCP 145 RFC
8085 DOI 10.17487/RFC8085 <https://www.rfc-editor.org/info/
rfc8085>

RFC 9868 Transport Options for UDP September 2025

Touch & Heard Standards Track Page 46

https://www.rfc-editor.org/info/rfc4380
https://www.rfc-editor.org/info/rfc4380
https://www.rfc-editor.org/info/rfc4787
https://www.rfc-editor.org/info/rfc5925
https://www.rfc-editor.org/info/rfc6081
https://www.rfc-editor.org/info/rfc6241
https://www.rfc-editor.org/info/rfc6864
https://www.rfc-editor.org/info/rfc6935
https://www.rfc-editor.org/info/rfc6935
https://www.rfc-editor.org/info/rfc6978
https://www.rfc-editor.org/info/rfc6994
https://www.rfc-editor.org/info/rfc7011
https://www.rfc-editor.org/info/rfc7011
https://www.rfc-editor.org/info/rfc7323
https://www.rfc-editor.org/info/rfc7950
https://www.rfc-editor.org/info/rfc8040
https://www.rfc-editor.org/info/rfc8085
https://www.rfc-editor.org/info/rfc8085

[RFC8126]

[RFC8200]

[RFC8201]

[RFC8446]

[RFC8504]

[RFC8724]

[RFC8899]

[RFC9040]

[RFC9147]

[RFC9187]

[RFC9260]

[RFC9293]

[RFC9298]

, , and ,
, , , , June

2017, .

 and , ,
, , , July 2017,

.

, , , and ,
, , , , July 2017,

.

, , ,
, August 2018, .

, , and , , ,
, , January 2019,

.

, , , , and ,
,

, , April 2020,
.

, , , , and ,
, ,

, September 2020, .

, , and , ,
, , July 2021,

.

, , and ,
, , , April

2022, .

, , ,
, January 2022, .

, , and , ,
, , June 2022,
.

, , , ,
, August 2022, .

, , , , August
2022, .

Cotton, M. Leiba, B. T. Narten "Guidelines for Writing an IANA
Considerations Section in RFCs" BCP 26 RFC 8126 DOI 10.17487/RFC8126

<https://www.rfc-editor.org/info/rfc8126>

Deering, S. R. Hinden "Internet Protocol, Version 6 (IPv6) Specification" STD
86 RFC 8200 DOI 10.17487/RFC8200 <https://www.rfc-editor.org/info/
rfc8200>

McCann, J. Deering, S. Mogul, J. R. Hinden, Ed. "Path MTU Discovery for IP
version 6" STD 87 RFC 8201 DOI 10.17487/RFC8201 <https://www.rfc-
editor.org/info/rfc8201>

Rescorla, E. "The Transport Layer Security (TLS) Protocol Version 1.3" RFC 8446
DOI 10.17487/RFC8446 <https://www.rfc-editor.org/info/rfc8446>

Chown, T. Loughney, J. T. Winters "IPv6 Node Requirements" BCP 220 RFC
8504 DOI 10.17487/RFC8504 <https://www.rfc-editor.org/info/
rfc8504>

Minaburo, A. Toutain, L. Gomez, C. Barthel, D. JC. Zuniga "SCHC: Generic
Framework for Static Context Header Compression and Fragmentation" RFC
8724 DOI 10.17487/RFC8724 <https://www.rfc-editor.org/info/
rfc8724>

Fairhurst, G. Jones, T. Tüxen, M. Rüngeler, I. T. Völker "Packetization
Layer Path MTU Discovery for Datagram Transports" RFC 8899 DOI 10.17487/
RFC8899 <https://www.rfc-editor.org/info/rfc8899>

Touch, J. Welzl, M. S. Islam "TCP Control Block Interdependence" RFC
9040 DOI 10.17487/RFC9040 <https://www.rfc-editor.org/info/
rfc9040>

Rescorla, E. Tschofenig, H. N. Modadugu "The Datagram Transport Layer
Security (DTLS) Protocol Version 1.3" RFC 9147 DOI 10.17487/RFC9147

<https://www.rfc-editor.org/info/rfc9147>

Touch, J. "Sequence Number Extension for Windowed Protocols" RFC 9187 DOI
10.17487/RFC9187 <https://www.rfc-editor.org/info/rfc9187>

Stewart, R. Tüxen, M. K. Nielsen "Stream Control Transmission Protocol"
RFC 9260 DOI 10.17487/RFC9260 <https://www.rfc-editor.org/info/
rfc9260>

Eddy, W., Ed. "Transmission Control Protocol (TCP)" STD 7 RFC 9293 DOI
10.17487/RFC9293 <https://www.rfc-editor.org/info/rfc9293>

Schinazi, D. "Proxying UDP in HTTP" RFC 9298 DOI 10.17487/RFC9298
<https://www.rfc-editor.org/info/rfc9298>

RFC 9868 Transport Options for UDP September 2025

Touch & Heard Standards Track Page 47

https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8200
https://www.rfc-editor.org/info/rfc8200
https://www.rfc-editor.org/info/rfc8201
https://www.rfc-editor.org/info/rfc8201
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8504
https://www.rfc-editor.org/info/rfc8504
https://www.rfc-editor.org/info/rfc8724
https://www.rfc-editor.org/info/rfc8724
https://www.rfc-editor.org/info/rfc8899
https://www.rfc-editor.org/info/rfc9040
https://www.rfc-editor.org/info/rfc9040
https://www.rfc-editor.org/info/rfc9147
https://www.rfc-editor.org/info/rfc9187
https://www.rfc-editor.org/info/rfc9260
https://www.rfc-editor.org/info/rfc9260
https://www.rfc-editor.org/info/rfc9293
https://www.rfc-editor.org/info/rfc9298

[RFC9648]

[To18]

[To24]

[Zu20]

, , and , ,
, , October 2024,

.

, ,
, , 19 July 2018,

.

, , ,
, 3 March 2024,

.

, , and ,
, ,

2020, .

Scharf, M. Jethanandani, M. V. Murgai "YANG Data Model for TCP" RFC
9648 DOI 10.17487/RFC9648 <https://www.rfc-editor.org/info/
rfc9648>

Touch, J. D. "A TCP Authentication Option Extension for Payload Encryption"
Work in Progress Internet-Draft, draft-touch-tcp-ao-encrypt-09
<https://datatracker.ietf.org/doc/html/draft-touch-tcp-ao-encrypt-09>

Touch, J. D. "The UDP Authentication Option" Work in Progress Internet-Draft,
draft-touch-tsvwg-udp-auth-opt-00 <https://datatracker.ietf.org/
doc/html/draft-touch-tsvwg-udp-auth-opt-00>

Zullo, R. Jones, T. G. Fairhurst "Overcoming the Sorrows of the Young UDP
Options" 4th Network Traffic Measurement and Analysis Conference (TMA)

<https://dl.ifip.org/db/conf/tma/tma2020/tma2020-camera-paper70.pdf>

Appendix A. Implementation Information
The following information is provided to encourage consistent naming for API implementations.

System-level variables (sysctl):

Name Default Meaning

net.ipv4.udp_opt 0 UDP options available

net.ipv4.udp_opt_ocs 1 Use OCS

net.ipv4.udp_opt_apc 0 Include APC

net.ipv4.udp_opt_frag 0 Fragment

net.ipv4.udp_opt_mds 0 Include MDS

net.ipv4.udp_opt_mrds 0 Include MRDS

net.ipv4.udp_opt_req 0 Include REQ

net.ipv4.udp_opt_resp 0 Include RES

net.ipv4.udp_opt_time 0 Include TIME

net.ipv4.udp_opt_auth 0 Include AUTH

net.ipv4.udp_opt_exp 0 Include EXP

net.ipv4.udp_opt_ucmp 0 Include UCMP

net.ipv4.udp_opt_uenc 0 Include UENC

RFC 9868 Transport Options for UDP September 2025

Touch & Heard Standards Track Page 48

https://www.rfc-editor.org/info/rfc9648
https://www.rfc-editor.org/info/rfc9648
https://datatracker.ietf.org/doc/html/draft-touch-tcp-ao-encrypt-09
https://datatracker.ietf.org/doc/html/draft-touch-tsvwg-udp-auth-opt-00
https://datatracker.ietf.org/doc/html/draft-touch-tsvwg-udp-auth-opt-00
https://dl.ifip.org/db/conf/tma/tma2020/tma2020-camera-paper70.pdf

Name Default Meaning

net.ipv4.udp_opt_uexp 0 Include UEXP

Table 2

Socket options (sockopt), cached for outgoing datagrams:

Name Meaning

UDP_OPT Enable UDP options (at all)

UDP_OPT_OCS Use UDP OCS

UDP_OPT_APC Enable UDP APC option

UDP_OPT_FRAG Enable UDP fragmentation

UDP OPT MDS Enable UDP MDS option

UDP OPT MRDS Enable UDP MRDS option

UDP OPT REQ Enable UDP REQ option

UDP OPT RES Enable UDP RES option

UDP_OPT_TIME Enable UDP TIME option

UDP OPT AUTH Enable UDP AUTH option

UDP OPT EXP Enable UDP EXP option

UDP_OPT_UCMP Enable UDP UCMP option

UDP_OPT_UENC Enable UDP UENC option

UDP OPT UEXP Enable UDP UEXP option

Table 3

Send/sendto parameters:

(Same as sysctl, with different prefixes)

Connection parameters (per-socket pair cached state, part UCB):

Name Initial Value

opts_enabled net.ipv4.udp_opt

•

RFC 9868 Transport Options for UDP September 2025

Touch & Heard Standards Track Page 49

Name Initial Value

ocs_enabled net.ipv4.udp_opt_ocs

Table 4

NB: The JUNK option is included for debugging purposes and is not intended to be enabled
otherwise.

System variables:

net.ipv4.udp_opt_junk 0

System-level variables (sysctl):

Name Default Meaning

net.ipv4.udp_opt_junk 0 Default use of junk

Table 5

Socket options (sockopt):

Name Params Meaning

UDP_JUNK - Enable UDP junk option

UDP_JUNK_VAL fillval Value to use as junk fill

UDP_JUNK_LEN length Length of junk payload in bytes

Table 6

Connection parameters (per-socket pair cached state, part UCB):

Name Initial Value

junk_enabled net.ipv4.udp_opt_junk

junk_value 0xABCD

junk_len 4

Table 7

RFC 9868 Transport Options for UDP September 2025

Touch & Heard Standards Track Page 50

Acknowledgments
This work benefitted from feedback from , , , ,

 (including OCS for errant middlebox traversal), (editor of this
document, including combining previous FRAG and LITE options into the new FRAG, as well as
Figure 12), , , , , and , as well as
discussions on the IETF TSVWG and SPUD email lists.

This work was partly supported by USC/ISI's Postel Center.

Erik Auerswald Bob Briscoe Ken Calvert Ted Faber
Gorry Fairhurst C. M. Heard

Tom Herbert Tom Jones Mark Smith Carl Williams Raffaele Zullo

Authors' Addresses
Joe Touch
Independent Consultant

, Manhattan Beach CA 90266
United States of America

+1 (310) 560-0334Phone:
touch@strayalpha.comEmail:

C. M. (Mike) Heard ()editor
Unaffiliated
PO Box 2667

, Redwood City CA 94064-2667
United States of America

+1 (408) 499-7257Phone:
heard@pobox.comEmail:

RFC 9868 Transport Options for UDP September 2025

Touch & Heard Standards Track Page 51

tel:+1%20(310)%20560-0334
mailto:touch@strayalpha.com
tel:+1%20(408)%20499-7257
mailto:heard@pobox.com

	RFC 9868
	Transport Options for UDP
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions Used in This Document
	3. Terminology
	4. Background
	5. UDP Option Intended Uses
	6. UDP Option Design Principles
	7. The UDP Option Area
	8. The UDP Surplus Area Structure
	9. The Option Checksum (OCS)
	10. UDP Options
	11. SAFE UDP Options
	11.1. End of Options List (EOL)
	11.2. No Operation (NOP)
	11.3. Additional Payload Checksum (APC)
	11.4. Fragmentation (FRAG)
	11.5. Maximum Datagram Size (MDS)
	11.6. Maximum Reassembled Datagram Size (MRDS)
	11.7. Echo Request (REQ) and Echo Response (RES)
	11.8. Timestamps (TIME)
	11.9. Authentication (AUTH), RESERVED Only
	11.10. Experimental (EXP)

	12. UNSAFE Options
	12.1. UNSAFE Compression (UCMP)
	12.2. UNSAFE Encryption (UENC)
	12.3. UNSAFE Experimental (UEXP)

	13. Rules for Designing New Options
	14. Option Inclusion and Processing
	15. UDP API Extensions
	16. UDP Options Are for Transport, Not Transit
	17. UDP Options vs. UDP-Lite
	18. Interactions with Legacy Devices
	19. Options in a Stateless, Unreliable Transport Protocol
	20. UDP Option State Caching
	21. Updates to RFC 768
	22. Interactions with Other RFCs (and drafts)
	23. Multicast and Broadcast Considerations
	24. Network Management Considerations
	25. Security Considerations
	25.1. General Considerations Regarding the Use of Options
	25.2. Considerations Regarding On-Path Attacks
	25.3. Considerations Regarding Option Processing
	25.4. Considerations for Fragmentation
	25.5. Considerations for Providing UDP Security
	25.6. Considerations Regarding Middleboxes

	26. IANA Considerations
	27. References
	27.1. Normative References
	27.2. Informative References

	Appendix A. Implementation Information
	Acknowledgments
	Authors' Addresses

