Xlib = C Language X Interface
X Consortium Standard

X Version 11, Release 6.7 DRAFT

James Gettys

Cambridge Research Laboratory
Digital Equipment Corporation

Robert W Scheifler

Laboratory for Computer Science
Massachusetts Institute of Technology

with contributions from

Chuck Adams, Tektronix, Inc.
Vania Joloboff, Open Software Foundation
Hideki Hiura, Sun Microsystems, Inc.
Bill McMahon, Hewlett-Packard Company
Ron Newman, Massachusetts Institute of Technology
Al Tabayoyon, Tektronix, Inc.
Glenn WidenerTektronix, Inc.

Shigeru Yamada, Fujitsu OSSI



The X Windav System is a trademark of The Open Group.
TekHVC is a trademark of Tektronix, Inc.

Copyright © 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1994, 1996, 2002 The Open Group

Permission is hereby granted, free of charge, ygarson obtaining a cgpf this software and associated documenta-
tion files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The abee mpyright notice and this permission notice shall be included in all copies or substantial portions of the Soft-
ware.

THE SOFTWARE IS PRVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTIC-
ULAR PURPOSE AND NONINFRINGEMENTIN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACTTORT OR OTH-
ERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of The Open Group shall not be used in advertising or otherwise to pro-
mote the sale, use or other dealings in this Software without prior written authorization from The Open Group.

Copyright © 1985, 1986, 1987, 1988, 1989, 1990, 1991 by Digital Equipment Corporation
Portions Copyright © 1990, 1991 by Tektronix, Inc.

Permission to use, cgpmodify and distribute this documentation forygourpose and without fee is hereby granted,
provided that the alve cpyright notice appears in all copies and that both that copyright notice and this permission
notice appear in all copies, and that the names of Digital and Tektronix not be used in in advertising or publicity per-
taining to this documentation without specific, written prior permission. Digital and Tektronix makes no representa-
tions about the suitability of this documentation foy parpose. lis provided “as is'without express or implied war-
ranty.



Acknowledgments

The design and implementation of the first 10 versions of X were primarily the work of three
individuals: Robert Scheifler of the MIT Laboratory for Computer Science and Jim Gettys of Dig-
ital EQuipment Corporation and Ron Newman of Midth at MIT Project AthenaX version 11,
however, is the result of the efforts of dozens of individuals at almost ay hoaations and
organizations. Atthe risk of offending some of the players by exclusion, we woutddik
acknowledge some of the people who desgpecial credit and recognition for their work on

Xlib. Our apologies to anyone inadvertentiyedooked.

Release 1

Our thanks does to Ron Newman (MIT Project Athena), who contributed substantially to the
design and implementation of the Version 11 Xlib interface.

Our thanks also goes to Ralph Swick (Project Athena and Digital) who kept it all together for us
during the early releases. He handled literally thousands of requests from peppidnere and
saved the sanity of at least one of us. His calm good cheer was a foundation on which we could
build.

Our thanks also goes to Todd Brurii@®ektronix) who was “loaned'to Project Athena at

exactly the right moment to provide very capable and much-needed assistance during the alpha
and beta releases. He was responsible for the successful integration of sources from multiple
sites; we would not va had a release without him.

Our thanks also goes to Al Mento and Al Wojtas of DigstalL.T RIX Documentation Group.

With good humor and chediney took a rough draft and made it an infinitely better and more use-
ful document. The work tlyghavedone will help mawn everywhere. V¢ dso would like to hank

Hal Murray (Digital SRC) and Peter George (Digital VMS) who contributed much by proofread-
ing the early drafts of this document.

Our thanks also goes to fIBfike (Digital UEG), Tom Benson, Jackie Granfield, and Vince Orgo-
van (Digital VMS) who helped with the library utilities implementation; to Hania Gajewska (Dig-
ital UEG-WSL) who, along with Ellis Cohen (CMU and Siemens), was instrumental in the
semantic design of the windananager properties; and to @aRosenthal (Sun Microsystems)

who also contributed to the protocol and provided the sample generic color frame buffer device-
dependent code.

The alpha and beta test participants desgrgcial recognition and thanks as well. It is signifi-
cant that the bug reports (and mdixes) during alpha and beta test came almost exelysi

from just a fev of the alpha testers, mostly hardware vendors working on product implementa-
tions of X. The continued public contribution of vendors andaysities is certainly to the bene-
fit of the entire X community.

Our special thanks must go to Sam FuNéce-President of Corporate Research at Digital, who
has remained committed to the widest publalability of X and who made it possible to greatly
supplement MITS resources with the Digital sfah order to mak version 11 a realityMary of

the people mentioned here are part of the Western Software Laboratory (Digital UEG-WSL) of
the ULTRIX Engineering group and work for Snegk\Wallace, who has been vital to the

projects aiccess. Othensot mentioned here worked on the toolkit and are acknowledged in the
X Toolkit documentation.



Of course, we must particularly thank Paul Asente, formerly of Stanforedity and nav of
Digital UEG-WSL, who wrote \WWthe predecessor to X, and Brian Reid, formerly of Stanford
University and nav of Digital WRL, who had much to do with \&/design.

Finally, our thanks goes to MITDigital Equipment Corporation, and IBM for providing the envi-
ronment where it could happen.

Release 4

Our thanks go to Jim Fulton (MIT X Consortium) for designing and specifying thethle
functions for Inter-Client Communication Gamtions (ICCCM) support.

We dso thank Al Mento of Digital for his continued effort in maintaining this document and Jim
Fulton and Donna Carrse (MIT X Consortium) for their much-appreciated efforts in reviewing
the changes.

Release 5

The principal authors of the Input Method facilities are Vania Jolglyden Software Founda-
tion) and Bill McMahon (Hewlett-&ckard). Theprincipal author of the rest of the international-
ization facilities is Glenn Widener €ktronix). Ourthanks to them for keeping their sense of
humor through a long and sometimes difficult design process. Although the words and much of
the design are due to them, maihers hae cntributed substantially to the design and imple-
mentation. ®m McFarland (HP) and Frank Rojas (IBM) desgparticular recognition for their
contritutions. Othecontributors were: Tim Anderson (Motorola), Alka Badshah (OSF), Gabe
Beged-Da (HP), Chih-Chung K (lll), Vera Cheng (lll), Michael Collins (Digital), Walt Daniels
(IBM), Noritoshi Demizu (OMRON), Keisuk Fukui (Fujitsu), Hitoshoi Fukumoto (Nihon Sun),
Tim Greenwood (Digital), John Haey (BM), Hideki Hiura (Sun), Fred Horman (AT&T),
Norikazu Kaiya (Fujitsu), Yuji Kamata (IBM), Yutaka Kataoka (Wasedavéisity), Ranee
Khubchandani (Sun), Akira Kon (NEC), Hiroshi Kuribayashi (OMRON), Terukilrosaka
(Sun), Seiji Kuwari (OMRON), Sandra Martin (OSF), Narita Masal(i#ujitsu), Masato

Morisaki (NTT), Nelson Ng (Sun), Takashi Nishimura (NTT America), Makato Nishino (IBM),
Akira Ohsone (Nihon Sun), Chris Peterson (MIT), Sam Shteingart (AT&T), Manish Sheth
(AT&T), Muneiyoshi Suzuki (NTT), Cori Mehring (Digital), Shoji Sugiyama (IBM), and Eiji
Tosa (IBM).

We ae deeply indebted to Tatsuya Kato (NTT), Hiroshi Kuribayashi (OMRON), Seiji Kuwari
(OMRON), Muneiyoshi Suzuki (NTT), and Li Yuhong (OMRON) for producing one of the first
complete sample implementation of the internationalization facilities, and Hiromu Inukai (Nihon
Sun), Takashi Fujiwara (Fujitsu), Hideki Hiura (Sun), Yasuhirav#&Oki Technosystems Labo-
ratory), Kazunori Nishihara (Fuji Xerox), Masaki Takeuchi (Sony), Katsuhisa Yano (Toshiba),
Makoto Wakamatsu (SgrCorporation) for producing the another complete sample implementa-
tion of the internationalization facilities.

The principal authors (design and implementation) of the Xcms color management facilities are
Al Tabayoyon (Tektronix) and Chuck AdamseKtronix). Joanaylor (Tektronix), Bob Toole
(Tektronix), and Keith Packard (MIT X Consortium) also contributed significantly to the design.
Others who contributed are: Harold Boll (Kodak), Ken Bronstein (HP), Waam (SGI), Donna
Corverse (MIT X Consortium), Elias Israel (ISC), Deron Johnson (Sun), Jim King (Adobe),
Ricardo Motta (HP), Chuck Peek (IBM), Wil Plouffe (IBM), @aSernlicht (MIT X Consor-

tium), Kumar Talluri (AT&T), and Richard Verbg(IBM).

We dso once again thank Al Mento of Digital for his work in formatting and reformatting text for
this manual, and for producing man pages. Thanks alsove Eather (1XI) for proof-reading
and finding a number of small errors.



Release 6

Stephen Gildea (X Consortium) authored the threads support. Ovais Ashraf (Sun) and Greg
Olsen (Sun) contributed substantially by testing the facilities and reporting bugs in a timely fash-
ion.

The principal authors of the internationalization facilities, including Input and Output Methods,
are Hideki Hiura (SunSoft) and Shigeru Yamada (Fujitsu OSSI). Although the words and much
of the design are due to them, mathers hae ontributed substantially to the design and imple-
mentation. The are: Takashi Fujiwara (Fujitsu), Yoshio Horiuchi (IBM), Makoto Inada (Digital),
Hiromu Inukai (Nihon SunSoft), Song JaeKyung (KAIST), Frabkng (Digital), Tom McFar-

land (HP), Hiroyuki Miyamoto (Digital), MasahikNarita (Fujitsu), Frank Rojas (IBM),

Hidetoshi Tajima (HP), Masaki Takeuchi (Sony), Makoto Wakamatsu (Sony), Masaki Wakao
(IBM), Katsuhisa Yano(Toshiba) and Jinsoo Yoon (KAIST).

The principal producers of the sample implementation of the internationalization facilities are:
Jeffrey Bloomfield (Fujitsu OSSI), Takashi Fujiwara (Fujitsu), Hideki Hiura (SunSoft), Yoshio
Horiuchi (IBM), Makoto Inada (Digital), Hiromu Inukai (Nihon SunSoft), Song JaeKyung
(KAIST), Riki Kawaguchi (Fujitsu), FrankLing (Digital), Hiroyuki Miyamoto (Digital),

Hidetoshi Tajima (HP), Toshimitsu Terazono (Fujitsu), Makoto Wakamatsu (Sony), Masaki
Wakao (IBM), Shigeru Yamada (Fujitsu OSSI) and Katsuhisa Yano (Toshiba).

The coordinators of the integration, testing, and release of this implementation of the internation-
alization facilities are Nobuyuki Tanaka (Sony) and Makoto Wakamatsu (Sony).

Others who hee mntributed to the architectural design or testing of the sample implementation
of the internationalization facilities are: Hector Chan (Digital), Michael Kung (IBM), Joseph
Kwok (Digital), Hiroyuki Machida (Sony), Nelson Ng (SunSoft), Frank Rojas (IBM), Yoshiyuki
Segawa (Fujitsu OSSI), Makik Shimamura (Fujitsu), Shoji Sugiyama (IBM), Lining Sun (SGI),
Masaki Takeuchi (Sony), Jinsoo Yoon (KAIST) and Akiyasu Zen (HP).

Jim Gettys
Cambridge Research Laboratory
Digital Equipment Corporation

Robert W Scheifler
Laboratory for Computer Science
Massachusetts Institute of Technology



Chapter 1

Introduction to Xlib

The X Windav System is a network-transparent wimdsystem that was designed at MIX

display servers run on computers with either monochrome or color bitmap displayteardke
server distributes user input to and accepts output requests from various client programs located
either on the same machine or elsewhere in theanktwXlib is a C subroutine library that appli-
cation programs (clients) use to interface with the winggstem by means of a stream connec-

tion. Althougha dient usually runs on the same machine as the X server it is talking to, this need
not be the case.

Xlib = C Languae X hterfaceis a reference guide to the lowskC language interface to the X
Window System protocol. It is neither a tutorial nor a useriide to programming the X Win-

dow System. Ratheiit provides a detailed description of each function in the library as well as a
discussion of the related background informati¥lib — C Languaye X hterfaceassumes a

basic understanding of a graphics wiwdsystem and of the C programming language. Other
higher-level abstractions (for example, those provided by the toolkits for X) are built on top of the
Xlib library. For further information about these highevdd ibraries, see the appropriate toolkit
documentation. Th¥ Window System Protocprovides the definiie word on the behavior of

X. Althoughadditional information appears here, the protocol document is the ruling document.

To provide an introduction to X programming, this chapter discusses:
. Overview of the X Windav System

. Errors

. Standard header files

. Generic values and types

. Naming and argument ceentions within Xlib

. Programming considerations

. Character sets and encodings

. Formatting comentions

1.1. Owerview of the X Window System

Some of the terms used in this book are unique to X, and other terms that are common to other
window systems hee dfferent meanings in X.You may find it helpful to refer to the glossary,
which is located at the end of the book.

The X Windav System supports one or more screens containiedapping windows or subwin-
dows. Ascreen is a physical monitor and hardware that can be gagscale, or monochrome.
There can be multiple screens for each displayarkstation. Asingle X server can provide dis-
play services for gannumber of screensA set of screens for a single user with oegtioard and
one pointer (usually a mouse) is called a display.

All the windows in an X server are arranged in strict hierarchies. At the top of each higsaach
root windav, which covers each of the display screens. Each root winidggpartially or com-
pletely cavered by child windas. All windows, except for root windows, V&parents. Therés
usually at least one windofor each application program. Child windows may in turvehaeir



Xlib — C Library X11, Release 6.7 DRAFT

own children. Inthis way an gplication program can create an arbitrarily deep tree on each
screen. Xprovides graphics, text, and raster operations for windows.

A child window can be larger than its parent. That is, part or all of the child wiredm extend
beyond the boundaries of the parent, but all output to a wirgldipped by its parent. If seral
children of a windw haveoverlapping locations, one of the children is considered to be on top of
or raised wer the others, thus obscuring them. Output to areasred by other windows is sup-
pressed by the wingosystem unless the windohas backing store. If a windois obscured by

a £cond windwy, the second winde obscures only those ancestors of the second wiirllat

are also ancestors of the first wimdo

A window has a border zero or more pixels in width, which can lpgatiern (pixmap) or solid
color you like. Awindow usually but not aliays has a background pattern, which will be
repainted by the windw system when uncared. Childwindows obscure their parents, and
graphic operations in the parent wimdasually are clipped by the children.

Each windwv and pixmap has its own coordinate system. The coordinate system has the X axis
horizontal and the Y axis vertical with the origin [0, O] at the upper-left co@mordinates are
integral, in terms of pixels, and coincide with pixel centér. a window, the origin is inside the
border at the inside, upper-left corner.

X does not guarantee to presetie contents of windes. Whenpart or all of a winde is hid-

den and then brought back onto the screen, its contents may be lost. The server then sends the
client program arexposeevent to notify it that part or all of the wingoneeds to be repainted.
Programs must be prepared to regenerate the contents of windows on demand.

X also provides off-screen storage of graphics objects, called pixmaps. Single plane (depth 1)
pixmaps are sometimes referred to as bitmaps. Pixmaps can be used in most graphics functions
interchangeably with windows and are used in various graphics operations to define patterns or
tiles. Windows and pixmaps together are referred to asatras.

Most of the functions in Xlib just add requests to an output buffeese requests latexeeute
asynchronously on the X servdtunctions that return values of information stored in the server
do not return (that is, tyeblock) until an explicit reply is receéd or an eror occurs. You can
provide an error handlewhich will be called when the error is reported.

If a client does not want a request ¥e@ite asynchronouslit can follow the request with a call
to XSync, which blocks until all previously buffered asynchronovanés hae keen sent and
acted on. As an important side effect, the output buffer in Xlibnayal flushed by a call to any
function that returns a value from the server or waits for input.

Many Xlib functions will return an integer resource 1D, which allows you to refer to objects
stored on the X serveihese can be of typ&/indow, Font, Pixmap, Colormap, Cursor, and
GContext, as cfined in the file X11/X.h>. Thesaesources are created by requests and are
destroyed (or freed) by requests or when connections are closed. Most of these resources are
potentially sharable between applications, and in fact, windows are manipulated explicitly by
window manager programg-onts and cursors are shared automatically across multiple screens.
Fonts are loaded and unloaded as needed and are shared by multiple Etetstsre often

cached in the serveKlib provides no support for sharing graphics contexts between applica-
tions.

Client programs are informed ofemts. Eents may either be side effects of a request (for exam-
ple, restacking windows generatégposeevents) or completely asynchronous (for example,
from the leyboard). Aclient program asks to be informed ofsts. Becausether applications
can sendents to your application, programs must be prepared to handle (or igneme ef all

types.



Xlib — C Library X11, Release 6.7 DRAFT

Input events (for example, ady ressed or the pointer med) arrive asynchronously from the
server and are queued until yreee requested by an explicit call (for exampt&JextEvent or
XWindowEvent). Inaddition, some library functions (for examp}RaiseWindow) generate
Exposeand ConfigureRequestevents. Thesevents also arxie asynchronouslybut the client
may wish to explicitly wait for them by callingSync after calling a function that can cause the
server to generate/ents.

1.2. Errors

Some functions returBtatus, an integer error indication. If the function fails, it returns a zero.

If the function returns a status of zero, it has not updated the repurmemts. Because does

not provide multiple return values, mafunctions must return their results by writing into client-
passed storage. By default, errors are handled either by a standard library function or by one that
you provide. Functionghat return pointers to strings return NULL pointers if the string does not
exist.

The X server reports protocol errors at the time that it detects them. If more than one error could
be generated for awgin request, the server can repory ahthem.

Because Xlib usually does not transmit requests to the server immediately (that is, it buffers
them), errors can be reported much later thap abiially occur For debugging purposes, how-
eva, Xlib provides a mechanism for forcing synchronous behavior (see section 11.8.1). When
synchronization is enabled, errors are reported gsatbegenerated.

When Xlib detects an errdt calls an error handlewhich your program can pvade. If you do
not provide an error handlghe error is printed, and your program terminates.

1.3. StandardHeader Files
The following include files are part of the Xlib standard:
. <X11/Xlib.h>

This is the main header file for Xlibrhe majority of all Xlib symbols are declared by
including this file. This file also contains the preprocessor syidlilnEpecificationRe-
lease This symbol is defined to faa the 6 in this release of the standard. (Release 5 of
Xlib was the first release to vetis symbol.)

. <X11/X.h>
This file declares types and constants for the X protocol that are to be used by applications.

It is included automatically fromX11/Xlib.h>, so application code shouldvweeneed to
reference this file directly.

. <X11/Xcms.h>
This file contains symbols for much of the color management facilities described in chapter
6. All functions, types, and symbols with the prefix “Xcms”, plus the Colon@imion

Contexts macros, are declared in this fil&X1%/Xlib.h> must be included before including
this file.

. <X11/Xutil.h>

This file declares various functions, types, and symbols used for inter-client communication
and application utility functions, which are described in chapters 14 andxta./Xib.h>
must be included before including this file.

. <X11/Xresource.lr

This file declares all functions, types, and symbols for the resource manager facilities,
which are described in chapter 15XK/Xlib.h> must be included before including this



Xlib — C Library X11, Release 6.7 DRAFT

file.
. <X11/Xatom.h>

This file declares all predefined atoms, which are symbols with the prefix “XA_".
. <X11/cursorfont.h>

This file declares the cursor symbols for the standard cursor font, which are listed in appen-
dix B. All cursor symbols hae te prefix “XC_".

. <X11/keysymdef.h»

This file declares all standar&¥Sym values, which are symbols with the prefix “XK_".

The KeySyms are arranged in groups, and a preprocessor symbol controls inclusion of each
group. Thepreprocessor symbol must be defined prior to inclusion of the file to obtain the
associatedalues. Thereprocessor symbols are XK_MISCELLANXK_XKB_KEYS,
XK_3270, XK_LATIN1, XK_LATIN2, XK_LATIN3, XK_LATIN4, XK_KA TAKANA,
XK_ARABIC, XK_CYRILLIC, XK_GREEK, XK_TECHNICAL, XK_SPECIAL,
XK_PUBLISHING, XK_APL, XK_HEBREW XK_THAI, and XK_KOREAN.

. <X11/keysym.I»

This file defines the preprocessor symbols XK_MISCELLAXK _XKB_KEYS,
XK_LATIN1, XK_LATIN2, XK_LATIN3, XK_LATIN4, and XK_GREEK and then
includes X11/keysymdef.t».

. <X11/Xlibint.h >

This file declares all the functions, types, and symbols used for extensions, which are
described in appendix C. This file automatically includ&s X Xlib.h>.

. <X11/Xproto.h>

This file declares types and symbols for the basic X protocol, for use in implementing
extensions. lis included automatically fromx1/Xlibint.h >, so application and exten-
sion code should ner need to reference this file directly.

. <X11/Xprotostr.h>

This file declares types and symbols for the basic X protocol, for use in implementing
extensions. lis included automatically fromxl1/Xproto.h>, so application and exten-
sion code should ner need to reference this file directly.

. <X11/X10.h>

This file declares all the functions, types, and symbols used for the X10 compatibility func-
tions, which are described in appendix D.

1.4. GenericValues and Types

The following symbols are defined by Xlib and used throughout the manual:

. Xlib defines the typ&ool and the Boolean valués ue and False.

. None is the urwversal null resource ID or atom.

. The typeXID is used for generic resource IDs.

. The typeXPointer is defined to be chaand is used as a generic opaque pointer to data.

1.5. Namingand Argument Corventions within Xlib

Xlib follows a number of corentions for the naming and syntax of the functionsve@ihat you
remember what information the function requires, theseantions are intended to makhe
syntax of the functions more predictable.



Xlib — C Library X11, Release 6.7 DRAFT

The major naming caentions are:

To differentiate the X symbols from the other symbols, the library uses mixed case for
external symbols. It leges lowercase for variables and all uppercase for user macros, as
per existing covention.

All Xlib functions begin with a capital X.
The beginnings of all function names and symbols are capitalized.

All user-visible data structures begin with a capital X. More genegalyhing that a user
might dereference begins with a capital X.

Macros and other symbols do not begin with a capitaldstinguish them from all user
symbols, each word in the macro is capitalized.

All elements of or variables in a data structure arevietoase. Compoungords, where
needed, are constructed with underscorgs (

The display argument, where used, i8agks first in the argument list.

All resource objects, where used, occur at the beginning of the argument list immediately
after the display argument.

When a graphics context is present together with another type of resource (most com-
monly, a dawable), the graphics context occurs in the argument list after the other
resource. Dnaables outrank all other resources.

Source arguments\abys precede the destination arguments in the argument list.
The x argument alays precedes the y argument in the argument list.
The width argument alays precedes the height argument in the argument list.

Where the x, ywidth, and height arguments are used togetherx and y arguments
always precede the width and height arguments.

Where a mask is accompanied with a structure, the masisaprecedes the pointer to the
structure in the argument list.

1.6. Programming Considerations
The major programming considerations are:

Coordinates and sizes in X are actually 16-bit quantities. This decision was made to mini-
mize the bandwidth required for argn levd of performance. Coordinatesually are

declared as amt in the interbce. \Alues larger than 16 bits are truncated silerfilges

(width and height) are declared as unsigned quantities.

Keyboards are the greatest variable between different manufactuoekstations. lfyou
want your program to be portable, you should be particularly conservatie.

Mary display systems e limited amounts of off-screen memory you can, you should
minimize use of pixmaps and backing store.

The user should ka @ntrol of his screen real estate. Therefore, you should write your
applications to react to windomanagement rather than presume control of the entire
screen. Whayou do inside of your top-lel window, howeve, is up to your application.
For further information, see chapter 14 andltiter-Client Communication Conventions
Manual



Xlib — C Library X11, Release 6.7 DRAFT

1.7. CharacterSets and Encodings

Some of the Xlib functions makeference to specific character sets and character encodings.
The following are the most common:

. X Portable Character Set

A basic set of 97 characters, which are assumed to exist in all locales supported by Xlib.
This set contains the following characters:

a..z A..Z 0.9 I"'#$%&'()*+,-./;;<=>?@[\] _{|} <space>, <tab>, and <newline>

This set is the left/lower half of the graphic character set of ISO8859-1 plus space, tab, and
newline. ltis also the set of graphic characters in 7-bit ASCII plus the same three control
characters. Thactual encoding of these characters on the host is system dependent.

. Host Portable Character Encoding

The encoding of the X Portable Character Set on the host. The encoding itself is not
defined by this standard, but the encoding must be the same in all locales supported by Xlib
on the host. If a string is said to be in the Host Portable Character Encoding, then it only
contains characters from the X Portable Character Set, in the host encoding.

. Latin-1
The coded character set defined by the ISO 8859-1 standard.
. Latin Portable Character Encoding

The encoding of the X Portable Character Set using the Latin-1 codepoints plus ASCII con-
trol characters. If a string is said to be in the Latin Portable Character Encoding, then it
only contains characters from the X Portable Character Set, not all of Latin-1.

. STRING Encoding

Latin-1, plus tab and newline.
. UTF-8 Encoding

The ASCII compatible character encoding scheme defined by the ISO 10646-1 standard.
. POSIX Portable Filename Character Set

The set of 65 characters, which can be used in naming files on a POSIX-compliant host,
that are correctly processed in all locales. The set is:

a.zA.Z0.9 . -

1.8. Formatting Conventions
Xlib — C Languaye X hterfaceuses the following camentions:

. Global symbols are printed ithis special bnt. These can be either function names, sym-
bols defined in include files, or structure names. When declared and defined, function argu-
ments are printed italics. In the explanatory text that follows, thasually are printed in
regular type.

. Each function is introduced by a general discussion that distinguishes it from other func-
tions. Thefunction declaration itself follows, and each argument is specifically explained.
Although ANSI C function prototype syntax is not used, Xlib header files normally declare
functions using function prototypes in ANSI Cvénnments. Generaliscussion of the



Xlib — C Library X11, Release 6.7 DRAFT

function, if ary is required, follows the guments. Wherapplicable, the last paragraph of
the explanation lists the possible Xlib error codes that the function can geriaage.
complete discussion of the Xlib error codes, see section 11.8.2.

. To diminate aly ambiguity between those arguments that you pass and those that a func-
tion returns to you, the explanations for all arguments that you pass start with the word
specifiesr, in the case of multiple arguments, the wepecify The explanations for all
arguments that are returned to you start with the wetminsor, in the case of multiple
arguments, the wonetturn. The explanations for all arguments that you can pass and are
returned start with the wordpecifies and returns

. Any pointer to a structure that is used to return a value is designated as suchrieyutime
suffix as part of its name. All other pointers passed to these functions are used for reading
only. A few arguments use pointers to structures that are used for both input and output
and are indicated by using th_outsuffix.



Xlib — C Library X11, Release 6.7 DRAFT

Chapter 2

Display Functions

Before your program can use a displgyu must establish a connection to the X ser@irce
you have established a connection, you then can use the Xlib macros and functions discussed in
this chapter to return information about the displ@jis chapter discussesviado:

. Open (connect to) the display

. Obtain information about the displaynage formats, or screens
. Generate aNoOperation protocol request

. Free client-created data

. Close (disconnect from) a display

. Use X Server connection close operations

. Use Xlib with threads

. Use internal connections

2.1. Openingthe Display
To gpen a connection to the X server that controls a disps@XOpenDisplay.

Display *XOpenDisplaydisplay _namég
char *display_name

display_name Specifies the hardware display nhame, which determines the display and commu-
nications domain to be used. On a POSIX-conformant system, if the dis-
play_name is NULL, it defaults to the value of the DISFLgkvironment vari-
able.

The encoding and interpretation of the display name are implementation-dependent. Strings in
the Host Portable Character Encoding are supported; support for other characters is implementa-
tion-dependent. OROSIX-conformant systems, the display name or DISPé&Avironment

variable can be a string in the format:



Xlib — C Library X11, Release 6.7 DRAFT

protocol/hostnamenumberscreen_number

protocol Specifies a protocol family or an alias for a protocol famypported protocol
families are implementation dependent. The protocol entry is optional. If proto-
col is not specified, the / separating protocol and hostname must also not be spec-
ified.

hostname Specifies the name of the host machine on which the display is physically
attached. Wu follow the hostname with either a single colon (:) or a double
colon (::).

number Specifies the number of the display server on that host mactinemay
optionally follow this display number with a period (A single CPU can ha
more than one displayMultiple displays are usually numbered starting with
zero.

screen_number
Specifies the screen to be used on that seMattiple screens can be controlled
by a single X serverThe screen_number sets an internal variable that can be
accessed by using tlgefaultScreenmacro or theXDefaultScreenfunction if
you are using languages other than C (see section 2.2.1).

For example, the following would specify screen 1 of display 0 on the machine named “dual-
headed”:

dual-headed:0.1

The XOpenDisplay function returns display structure that serves as the connection to the X
server and that contains all the information about that X seK@penDisplay connects your
application to the X server through TCP or DECnet communications protocols, or through some
local inter-process communication protocol. If the protocol is specified as "tcp”, "inet", or

"inet6", or if no protocol is specified and the hostname is a host machine name and a single colon
(:) separates the hosthname and display nund@penDisplay connects using TCP streams. (If

the protocol is specified as "inet", TCRDpIPVv4 is used. If the protocol is specified as "inet6",

TCP over IPv6 is used. Otherwise, the implementation determines which IP version is used.) If
the hostname and protocol are both not specified, Xlib useswehiteelieves is he fastest

transport. Itthe hostname is a host machine name and a double colon (::) separates the hostname
and display numbeXOpenDisplay connects using DECnef single X server can support any

or all of these transport mechanisms simultaneouslgarticular Xlib implementation can sup-

port maly more of these transport mechanisms.

If successful XOpenDisplay returns a pointer to Bisplay structure, which is defined in
<X11/Xlib.h>. If XOpenDisplay does not succeed, it returns NULL. After a successful call to
XOpenDisplay, dl of the screens in the display can be used by the client. The screen number
specified in the display_name argument is returned bipéfaultScreenmacro (or theXDe-
faultScreen function). You can access elements of isplay and Screenstructures only by
using the information macros or functiorisor information about using macros and functions to
obtain information from th®isplay structure, see section 2.2.1.

X servers may implement various types of access control mechanisms (see section 9.8).



Xlib — C Library X11, Release 6.7 DRAFT

2.2. Obtaining Information about the Display, Image Formats, or Screens

The Xlib library provides a number of useful macros and corresponding functions that return data
from the Display structure. Thenacros are used for C programming, and their corresponding
function eguralents are for other language bindings. This section discusses the:

. Display macros
. Image format functions and macros
. Screen information macros

All other members of th®isplay structure (that is, those for which no macros are defined) are
private to Xlib and must not be used. Applications musendirectly modify or inspect these
private members of thBisplay structure.

Note

The XDisplayWidth , XDisplayHeight, XDisplayCells, XDisplayPlanes XDis-
playWidthMM , and XDisplayHeightMM functions in the next sections are mis-
named. Thesginctions really should be named Scwhateverand XScreewhat-
ewer, not Displaywhateveror XDisplaywhatever Our apologies for the resulting
confusion.

2.2.1. DisplayMacros

Applications should not directly modify mipart of theDisplay and Screenstructures. The
members should be considered read-atilgough thg may change as the result of other opera-
tions on the display.

The following lists the C language macros, their corresponding functiovalsais that are for
other language bindings, and what data both can return.

AllPlanes

unsigned long XAllPlanes()

Both return a value with all bits set to 1 suitable for use in a plane argument to a procedure.

Both BlackPixel and WhitePixel can be used in implementing a monochrome application.

These pixel values are for permanently allocated entries in the default colormap. The actual RGB
(red, green, and blue) values are settable on some screens agdiaseamay not actually be

black or white. The names are intended tovegrthe expected relat intensity of the colors.

10



Xlib — C Library X11, Release 6.7 DRAFT

BlackPixel (display, screen_numbegr

unsigned long XBlackP#&{ (display, screen_numbér
Display *display,
int screen_number

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return the black pixel value for the specified screen.

WhitePixel (display, screen_numbér

unsigned long XWhiteP#&! (display, screen_numbér
Display *display,
int screen_number

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return the white pixel value for the specified screen.

ConnectionNumbedjsplay)

int XConnectionNumbedisplay)
Display *display,

display Specifies the connection to the X server.

Both return a connection number for the specified dispglaya FOSIX-conformant system, this
is the file descriptor of the connection.

DefaultColormapdisplay, screen_numb@r

Colormap XDehultColormapdisplay, screen_numbér
Display *display;,
int screen_number

display Specifies the connection to the X server.
screen_number
Specifies the appropriate screen nhumber on the host server.

Both return the default colormap ID for allocation on the specified screen. Most routine

11



Xlib — C Library X11, Release 6.7 DRAFT

allocations of color should be made out of this colormap.

DefaultDepth flisplay, screen_numbér

int XDefaultDepth fisplay, screen_numbér
Display *display;
int screen_number

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return the depth (number of planes) of the default root wifidothe specified screen.
Other depths may also be supported on this screeX{da&chVisuallnfo ).

To determine the number of depths that ara@lable on a gien screen, useXListDepths.

int *XListDepths display, screen_numbecount_returr)
Display *display,
int screen_number
int *count_return

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

count_return Returns the number of depths.

The XListDepths function returns the array of depths that aralable on the specified screen.
If the specified screen_number is valid and sufficient memory for the array can be allocated,
XListDepths sets count_return to the number edilable depths. Otherwise, it does not set
count_return and returns NULLTo release the memory allocated for the array of depths, use
XFree.

DefaultGC display, screen_numbg@r

GC XDefaultGC (display, screen_numbér
Display *display,
int screen_number
display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return the default graphics context for the root windbthe specified screen. This GC is
created for the carenience of simple applications and contains the default GC components with
the foreground and background pixel values initialized to the black and white pixels for the

12



Xlib — C Library X11, Release 6.7 DRAFT

screen, respeeily. You can modify its contents freely because it is not usedyiXhim func-
tion. ThisGC should neer be freed.

DefaultRootWinda (display)

Window XDefaultRootWindav (display)
Display *display;,

display Specifies the connection to the X server.

Both return the root windw for the default screen.

DefaultScreenOfDisplaydisplay)

Screen *XDeaultScreenOfDisplaydisplay)
Display *display;

display Specifies the connection to the X server.

Both return a pointer to the default screen.

ScreenOfDisplaydisplay, screen_numbegr

Screen *XScreenOfDisplag(splay, screen_numbgr
Display *display,
int screen_number

display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen number on the host server.

Both return a pointer to the indicated screen.

DefaultScreendisplay)

int XDefaultScreendisplay)
Display *display,

display Specifies the connection to the X server.

Both return the default screen number referenced bX@enDisplay function. Thismacro or
function should be used to retresthe screen number in applications that will use only a single
screen.

13



Xlib — C Library X11, Release 6.7 DRAFT

DefaultMsual (display, screen_numbér

Visual *XDefaultMsual (display, screen_numbegr
Display *display,
int screen_number
display Specifies the connection to the X server.

screen_number
Specifies the appropriate screen 